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Background: Although anterior communicating artery (ACoA) aneurysms have a higher
risk of rupture than aneurysms in other locations, whether to treat unruptured ACoA
aneurysms incidentally found is a dilemma because of treatment-related complications.
Machine learning models have been widely used in the prediction of clinical medicine.
In this study, we aimed to develop an easy-to-use decision tree model to assess the
rupture risk of ACoA aneurysms.

Methods: This is a retrospective analysis of rupture risk for patients with ACoA
aneurysms from two medical centers. Morphologic parameters of these aneurysms
were measured and evaluated. Univariate analysis and multivariate logistic regression
analysis were performed to investigate the risk factors of aneurysm rupture. A decision
tree model was developed to assess the rupture risk of ACoA aneurysms based on
significant risk factors.

Results: In this study, 285 patients were included, among which 67 had unruptured
aneurysms and 218 had ruptured aneurysms. Aneurysm irregularity and vessel angle
were independent predictors of rupture of ACoA aneurysms. There were five features,
including size ratio, aneurysm irregularity, flow angle, vessel angle, and aneurysm size,
selected for decision tree modeling. The model provided a visual representation of a
decision tree and achieved a good prediction performance with an area under the
receiver operating characteristic curve of 0.864 in the training dataset and 0.787 in
the test dataset.

Conclusion: The decision tree model is a simple tool to assess the rupture risk of
ACoA aneurysms and may be considered for treatment decision-making of unruptured
intracranial aneurysms.

Keywords: intracranial aneurysm, anterior communicating artery aneurysm, rupture risk, decision tree model,
machine learning
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INTRODUCTION

Unruptured intracranial aneurysms (IAs) are increasingly
detected with the development of modern imaging modalities
(1), such as magnetic resonance imaging angiography and
CT angiography (CTA). Anterior communicating artery
(ACoA) aneurysms are the most common IAs, accounting for
approximately 30% (2). Although aneurysms located at ACoA
have a higher risk of rupture than those located in other locations
(3), whether to treat unruptured ACoA aneurysms is still a
dilemma because treatment-related complications still exist
(4). This dilemma further brings considerable anxiety to these
patients with unruptured IAs.

Morphologic features, hemodynamics parameters, and genetic
factors for aneurysm rupture have been widely reported (5, 6).
A literature review (7) has shown that size ratio, the direction of
the dome, and fenestration were the independent predictors of
ACoA aneurysm rupture. Our previous study has shown a larger
aneurysm, anterior projection of the dome, the dominant A1
segment, and irregular aneurysms were associated with aneurysm
rupture (8). However, these results are inconsistent probably
because the relationship between these morphologic parameters
and aneurysm rupture is complex (5). Accurately assessing the
rupture risk of IAs is still a challenging task.

Machine learning is capable of finding the nonlinear complex
relationship between input and output variables and has been
applied in the medical field (9). Machine learning models, such as
support vector machines, artificial neural networks, and random
forests have been applied for the prediction of rupture risk of IAs
(10–13). As a supervised machine learning technique, decision
tree modeling can provide a visualized graph including a set of
rules for predictive classification (14), which satisfies the easy-to-
use requirement in clinics.

In this study, we performed a retrospective analysis of
rupture risk for patients with ACoA aneurysms. Morphologic
parameters of these aneurysms were measured and evaluated.
We aimed to assess the rupture risk of ACoA aneurysms using
decision tree modeling.

MATERIALS AND METHODS

Patients
This study was approved by local institutional ethics committees
and written informed consent was waived. We retrospectively
reviewed patients with ACoA aneurysms at the First Affiliated
Hospital of Wenzhou Medical University from December 2007
to January 2016 and at Renji Hospital, Shanghai Jiao Tong
University School of Medicine from March 2017 to October 2019.
We excluded patients with fusiform ACoA aneurysms because
fusiform aneurysms are rare and have different underlying
pathologies, hemodynamics, natural histories, and treatments
compared to saccular aneurysms. We also excluded patients
with multiple ACoA aneurysms, patients with Moyamoya disease
or arteriovenous malformations, and patients with a brain
tumor. Those with poor image quality were also excluded
to ensure measurement accuracy of aneurysm morphology.

FIGURE 1 | Measurement of morphologic parameters. Left ventricle (LV)11
and LV12 represent cross-section diameters of the artery, left atrium (LA)1
proximal to aneurysm neck and at 1.5XLV11 away from aneurysm neck,
respectively; vessel size of LA1 is calculated as (LV11+LV12)/2. Vessel sizes of
LA2, right atrium (RA)1, and RA2 are similarly calculated. Hmax is aneurysm
height.

Patients’ demographic and clinical information, including sex,
age, history of smoking, and hypertension were retrieved from
medical records. All aneurysms were grouped into ruptured and
unruptured groups according to the clinical condition.

Aneurysm Morphologic Parameters
Aneurysm morphologic parameters were measured or evaluated
on CTA or digital subtraction angiography by independent
neuroradiologists who were blind to patients’ clinical
information. The average value was used for data analysis.
Corresponding imaging technique was published elsewhere (15).

Figure 1 shows the measurement of morphological
parameters. Detailed definitions of these parameters are
summarized as follows: (1) aneurysm size, maximal aneurysm
diameter; (2) vessel size, mean cross-sectional diameter of all
arteries associated with an aneurysm; (3) aneurysm height, largest
distance from the center of aneurysm neck to aneurysm dome;
(4) perpendicular height, largest perpendicular distance from the
center of aneurysm neck to aneurysm dome; (5) neck size, largest
neck diameter; (6) aspect ratio, ratio between perpendicular
height and neck size; (7) size ratio, aneurysm height divided by
vessel size; (8) aneurysm angle between aneurysm neck line and
aneurysm height line; (9) vessel angle, angle between the vector
of blood flow and aneurysm neck line; and (10) flow angle, the
angle between aneurysm height line and vector of blood flow in
the parent artery. Aneurysm irregularity was classified into three
types, i.e., regular, bleb, and daughter-sac (16). Projection of the
aneurysm dome was dichotomized as anterior and posterior
projections. A1 segment configurations were classified into
symmetrical, dominant, and complete configurations according
to the inflow contribution of A1 segments over the other A2
segments (17).
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Decision Tree Modeling
We partitioned data into the training and test datasets with a ratio
of 80:20. Features were selected with a correlation-based feature
subset selection method using the training dataset in Weka
3.8.5 (The University of Waikato, Hamilton, New Zealand).
Grid search strategy with a fivefold cross-validation was used
to acquire the optimal hyper-parameters, and the following
parameters were obtained: criterion, Gini impurity; maximum
depth of the tree, 4; minimum number of samples to split,
10; minimum number of samples required to be at a leaf
node, 5; the number of features to consider, 7; class weight,
“balanced.” Note that Gini impurity or Gini index measures the
probability of incorrectly classifying an element randomly chosen
in the dataset if it is randomly labeled according to the class
distribution in the dataset. The decision tree iteratively splits
current data into two categories during training, and Gini index
quantitatively evaluates the quality of a split. The equation of the
Gini index is (18).

Gini =
n∑

i = 1

pi(1− pi),

where pi is the probability of an object being classified to a
particular class. The Gini index varies from 0 to 1, where 0
denotes that all elements belong to a certain class or if there
exists only one class and is the best possible impurity, 0.5 means
that elements are equally distributed into some classes, and 1
represents those elements which are randomly distributed across
various classes.

We evaluated model performance using sensitivity, specificity,
accuracy, and area under the receiver operating characteristic
(ROC) curve (AUC). Sensitivity is the fraction that a model
prediction will indicate ruptured aneurysms among those with
ruptured aneurysms; specificity measures the probability of those
with unruptured aneurysms who will have a model prediction
result of unruptured aneurysms.

Statistical Analysis
We performed statistical analysis using the software SPSS
22 (IBM Corp, Armonk, NY, United States). We presented
continuous variables as mean value ± SD and categorical
variables as frequency (percentage). We compared continuous
variables using the Student’s t-test or Mann–Whitney U tests,
and categorical variables using Fisher exact test or χ2 tests,
as appropriate. We further conducted a multivariate logistic
regression analysis to determine the independent risk factors of
aneurysm rupture, and those variables with P-value less than 0.1
were entered into the analysis (variables with missing values more
than 5% were excluded). P-values less than 0.05 were considered
statistically significant.

RESULTS

Baseline Characteristics
Table 1 shows patients’ baseline characteristics. Two hundred
and eighty-five patients were enrolled in this study. Of these

TABLE 1 | Baseline characteristics.

All (n = 285) Unruptured
(n = 67)

Ruptured
(n = 218)

P-value

Sex (women) 136 (47.7%) 34 (50.7%) 102 (46.8%) 0.571

Age (years) 58.2 ± 11.8 61.8 ± 9.8 57.1 ± 12.1 0.001

Smoking (yes) a 71 (24.9%) 14 (20.9%) 57 (26.1%) 0.685

Hypertension (yes)a 152 (53.3%) 39 (58.2%) 113 (51.8%) 0.580

Multi aneurysms (yes) 41 (14.4%) 14 (20.9%) 27 (12.4%) 0.083

a24 (8.4%) missing values.

TABLE 2 | Morphological parameters between ruptured and
unruptured aneurysms.

All (n = 285) Unruptured
(n = 67)

Ruptured
(n = 218)

P-value

Aneurysm size
(mm)

5.11 ± 2.63 4.24 ± 2.50 5.37 ± 2.62 0.002

Vessel size (mm) 1.97 ± 0.48 2.08 ± 0.47 1.94 ± 0.47 0.042

Aneurysm height
(mm)

4.14 ± 1.35 3.39 ± 2.22 4.37 ± 2.35 0.003

Perpendicular
height (mm)

3.32 ± 1.80 2.96 ± 1.94 3.43 ± 1.75 0.066

Neck size (mm) 3.05 ± 1.20 2.77 ± 1.12 3.14 ± 1.21 0.026

Aspect ratio 1.15 ± 0.59 1.15 ± 0.70 1.15 ± 0.56 0.985

Size ratio 2.24 ± 1.46 1.71 ± 1.21 2.40 ± 1.50 <0.001

Aneurysm angle (◦) 67.81 ± 18.29 71.56 ± 18.63 66.66 ± 18.07 0.028

Vessel angle (◦) 57.20 ± 30.30 42.98 ± 30.56 61.57 ± 28.91 <0.001

Flow angle (◦) 133.53 ± 29.15 121.90 ± 28.26 137.10 ± 28.54 <0.001

Aneurysm
irregularity
Regular type
bleb type
Daughter-sac type

184 (64.6%)
61 (21.4%)

40 (14.0%)

56 (83.6%)
3 (4.5%)

8 (11.9%)

128 (58.7%)
58 (26.6%)

32 (14.7%)

<0.001

Aneurysm
projection
Anterior
Posterior

192 (67.4%)
93 (32.6%)

37 (55.2%)
30 (44.8%)

155 (71.7%)
63 (28.9%)

0.015

A1 segment
configuration
Symmetric A1
segment
Dominant A1
segment
Absent A1 segment

124 (43.5%)

82 (28.8%)

79 (27.7%)

38 (56.7%)

15 (22.4%)

14 (20.9%)

86 (39.4%)

67 (30.7%)

65 (29.8%)

0.045

patients, 136 (47.7%) were female and 149 (42.3%) were male,
with a mean age of 58.2 ± 11.8 years. Among them, 67 had
unruptured aneurysms and 218 had ruptured aneurysms. Forty-
one patients had multiple aneurysms. Patients with unruptured
aneurysms were significantly more likely to be older (61.8 ± 9.8
vs. 57.1± 12.1 years).

Morphologic Characteristics Between
Ruptured and Unruptured Anterior
Communicating Artery Aneurysms
Table 2 illustrates the comparison of morphological parameters
between ruptured and unruptured aneurysms. The shape of
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TABLE 3 | Results of multivariate logistic regression analysis.

Variables β coefficient OR 95% CI P-value

Vessel angle 0.02 ± 0.01 1.02 1.01–1.03 <0.001

Aneurysm irregularity

Regular type 1.0 (reference)

Bleb type 1.99 ± 0.62 7.31 2.17–24.68 0.001

Daughter-sac type 0.65 ± 0.44 1.92 0.82–4.54 0.140

OR, odds ratio; CI, confidence interval.

ruptured aneurysms was more frequently irregular (bleb or
daughter-sac types) (41.3 vs. 16.4%), whereas unruptured
aneurysms tended to be regular (83.6 vs. 58.7%). Anterior
projection of an aneurysm dome was more common in ruptured
aneurysms than in unruptured ones (71.7 vs. 55.2%). Aneurysm
size, vessel size, aneurysm height, neck size, and size ratio were
significantly larger in ruptured aneurysms than in unruptured
ones. Aneurysm angle was significantly larger in unruptured
aneurysms, while vessel and flow angles were obviously larger in
ruptured aneurysms.

Results of multivariate logistic regression to assess rupture
risk of ACoA aneurysms are presented in Table 3. Vessel angle
and aneurysm irregularity were the independent predictors of
aneurysm rupture.

Decision Tree Model
Illustrated in Figure 2 is the decision tree model for rupture
risk assessment of ACoA aneurysms. The model used 5 variables
for risk assessment, including size ratio, flow angle, vessel angle,
aneurysm size, and aneurysm irregularity. A detailed explanation
of how to use the decision tree is shown in the legend of
Figure 2. Continue comparing the attribute value of an aneurysm
with other internal nodes of the decision tree until an elliptical
node is reached, at which point the predicted status, rupture, or
unruptured, is obtained.

Table 4 summarizes the prediction results of the decision tree
model. In the training dataset, the model achieved a sensitivity
of 82%, a specificity of 73.2%, and an overall accuracy of 79.8%.
In the test dataset, the model achieved a sensitivity of 73.9%, a
specificity of 72.7%, and an overall accuracy of 73.7%. Figure 3
shows the ROC curves of the decision tree model for both
training and test. AUC were 0.864 and 0.787 for the training and
test datasets, respectively.

DISCUSSION

In this study, we measured detailed morphologic features
of ACoA aneurysms and investigated their association with
aneurysm rupture. Aneurysm irregularity and vessel angle
were independent predictors of rupture of ACoA aneurysms.
Size ratio, aneurysm irregularity, flow angle, vessel angle, and
aneurysm size were selected for decision tree modeling. An
easy-to-use decision tree model achieved a good performance in
assessing the rupture risk of ACoA aneurysms.

Although many morphologic parameters contribute to
aneurysm rupture, aneurysm size is the most common one to
assess the rupture risk of unruptured aneurysms (19, 20). A meta-
analysis of a large number of aneurysms demonstrated that
rupture risk of aneurysms increased with increased aneurysm
size (21). The Unruptured Cerebral Aneurysm in Japan (UCAS)
cohort found a similar trend (3). Population, hypertension, age,
size of an eurysm, earlier subarachnoid hemorrhage, site of a
neurysm (PHASES) scoring system (19) used aneurysm size as
one of the significant predictors of aneurysm rupture. Except
for aneurysm size, we found aneurysm irregularity and vessel
angle were the independent predictors of rupture of ACoA
aneurysms. Aneurysm irregularity represents the shape regularity
of aneurysms. Several studies (3, 22) have found a significant
correlation between aneurysmal shape and rupture risk. Irregular
aneurysms are more commonly found in ruptured aneurysms
than in unruptured aneurysms (23). One of the predictors for
aneurysm growth in the ELAPSS score system was the shape of
an aneurysm (24). Dhar et al. (25) proposed vessel angle for the
first time. They evaluated vessel angles between 25 unruptured
and 20 ruptured intracranial aneurysms and found no significant
difference; however, Zheng et al. (26) reported a contrasting
result. We found vessel angle was significantly larger in ruptured
aneurysms than in unruptured aneurysms, which was consistent
with the result of Zheng et al. Vessel angle incorporates the parent
vessel geometry and implies blood flow direction, which may
reflect hemodynamic characteristics (26, 27).

We developed a model combining the valuable morphologic
parameters to assess the rupture risk of ACoA aneurysms.
The PHASES score (28) used several risk factors to evaluate
aneurysm rupture risk, and only one morphologic feature (i.e.,
aneurysm size) was considered. Recent studies (4, 29) found
that this score might only provide a weak tool for evaluating
aneurysm rupture risk and more parameters beyond those in
the PHASES score might be needed to improve prediction
performance. Another popular score consisted of six predictors,
ELAPSS (24), which used two morphologic features, aneurysm
size, and shape, for predicting the risk of growth of IA. This
ELAPSS score was further externally validated and showed
accurate calibration and modest discrimination in the external
validation cohort (30). Therefore, more significant morphologic
parameters may provide additional valuable information for
rupture risk evaluation of IAs. We included aneurysm size,
size ratio, aneurysm irregularity, flow angle, and vessel angle
to develop a decision tree model to assess the rupture risk
of ACoA aneurysms.

The decision tree model is capable of finding complex
nonlinear relationships between variables (14). We developed
the decision tree model achieving a relatively good prediction
performance with overall accuracies of 79.8% in the training
dataset and 73.7% in the test dataset by combining five valuable
morphologic variables. This model is a tree-like structure that
shows the various outcomes from a series of decisions, which
consists of three main elements: a root node, leaf nodes, and
branches. Any path beginning from the root node is described
by a data separating sequence until a Boolean outcome at the
leaf node is achieved (31). Currently, with the advancement of
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FIGURE 2 | Decision tree model for rupture risk assessment of anterior communicating artery (ACoA) aneurysms. In the decision tree, rectangle nodes represent
conditions and elliptical nodes stand for the ruptured or unruptured status of the aneurysm predicted. One can start from the root node (i.e., “Size ratio ≤ 1.43”) and
compare the value of the size ratio of an aneurysm with the not node. If it is true that the size ratio is less or equal to 1.43, then the next node of “Flow
angle ≤ 166.6◦” can be moved; otherwise, jump to the node of “Flow angle 111.3◦.” Continue comparing the attribute value of an aneurysm with other internal
nodes of the decision tree until an elliptical node is reached, at which point the predicted status, ruptured or unruptured, is obtained.

TABLE 4 | Prediction results of aneurysm rupture.

Actual class Predicted class

Unruptured Ruptured Accuracy (%)

(a) Training dataset

Unruptured 41 15 73.2

Ruptured 31 141 82.0

Overall 79.8

(b) Test dataset

Unruptured 8 3 72.7

Ruptured 12 34 73.9

Overall 73.7

AUC, area under the curve.

machine learning techniques, support vector machines, artificial
neural networks, linear, ridge, and lasso regression models, and
random forest have been applied for rupture risk assessment of
IAs (10–13). The random forest models of Tanioka et al. (13)
achieved accuracies of 77, 71.2, and 78.3% by using morphologic
parameters, hemodynamic parameters, and both morphologic
and hemodynamic parameters, respectively. Accuracy was not
significantly improved by adding hemodynamic features, and
possible reasons were that scientists used generalized boundary
conditions instead of patient-specific boundary conditions.
Compared with other machine learning methods, the decision
tree visually demonstrates cause-and-effect relationships and
provides a simplified and easy-to-understand view of a potentially

FIGURE 3 | Receiver operating characteristic (ROC) curves of the decision
tree model for both training and test datasets.

complicated process (14). Therefore, our finding suggests that
the decision tree model may be an ideal tool to assess
aneurysm rupture.

There are several limitations to this study. First, this is not
an observational prospective natural history study of aneurysms
[such as the ISUIA study (20)], which may limit the application
of our decision tree model in future rupture risk assessment of
IAs. Second, IAs may shrink after rupture, which may influence
the measurement accuracy of morphologic parameters. However,
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several studies found no evidence for shrinkage of IAs after
rupture (32, 33). Third, our model has not been externally
validated. Finally, only the Chinese population is involved in this
study. Previous studies have found that the rupture risk of IA is
population-dependent. The generalization of our model to other
populations should be with caution.

CONCLUSION

In summary, we investigated risk factors associated with ACoA
aneurysm rupture and developed a decision tree model to assess
rupture risk based on size ratio, flow angle, vessel angle, aneurysm
irregularity, and aneurysm size. Our model achieved a good
performance and is easy to use, which may facilitate the decision-
making of treatment for unruptured ACoA aneurysms.
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