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Abstract

Background: The intracerebroventricular injection of ouabain, a specific inhibitor of the Na+/K+-adenosine-triphosphatase 
(Na+/K+-ATPase) enzyme, induces hyperactivity in rats in a putative animal model of mania. Several evidences have suggested 
that the protein kinase C signaling pathway is involved in bipolar disorder. In addition, it is known that protein kinase C 
inhibitors, such as lithium and tamoxifen, are effective in treating acute mania.
Methods: In the present study, we investigated the effects of lithium and tamoxifen on the protein kinase C signaling pathway 
in the frontal cortex and hippocampus of rats submitted to the animal model of mania induced by ouabain. We showed that 
ouabain induced hyperlocomotion in the rats.
Results: Ouabain increased the protein kinase C activity and the protein kinase C and MARCKS phosphorylation in frontal 
cortex and hippocampus of rats. Lithium and tamoxifen reversed the behavioral and protein kinase C pathway changes 
induced by ouabain. These findings indicate that the Na+/K+-ATPase inhibition can lead to protein kinase C alteration.
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Conclusions: The present study showed that lithium and tamoxifen modulate changes in the behavior and protein kinase C 
signalling pathway alterations induced by ouabain, underlining the need for more studies of protein kinase C as a possible 
target for treatment of bipolar disorder.

Keywords: bipolar disorder, animal model of mania, ouabain, Na+/K+-ATPase, protein kinase C

ACSF, artificial cerebrospinal fluid; MARCKS, myristoylated alanine-rich C kinase substrate

Introduction
Bipolar disorder (BD) is the third most impactful mood disor-
der, with a lifetime prevalence of approximately 5% (Proudfoot 
et al., 2009). BD is characterized by mood changes that alternate 
between mania, depression, mixed states, and euthymia, all of 
which cause psychosocial impairments for the patient. Despite 
its importance, the pathophysiology of BD remains unknown 
(American Psychiatric Association, 2014).

A number of clinical and preclinical studies have suggested 
that the protein kinase C (PKC) plays an important role in the 
pathophysiology of BD (Zaratte and Manji, 2009; Cechinel-Recco 
et al., 2012; Steckert et al., 2012). In this context, initial inter-
est in the role of PKC arose from the discovery that the mood 
stabilizer drugs lithium (Li) and valproate directly inhibited this 
enzyme (Zaratte and Manji, 2006). Additionally, clinical and 
preclinical studies have showed that tamoxifen (TMX), a PKC 
inhibitor, is effective in treating manic-like behavior (Amrollahi 
et al., 2011; Moretti et al., 2011; Fallah et al., 2016). Furthermore, 
Birnbaum and colleagues (2004) have demonstrated that exces-
sive activation of PKC in rodents impairs cognitive functions 
related to frontal cortex and mood stabilizers protected cog-
nitive functions. Even though cognitive impairment is not a 
clinical mark of mania, it is important to emphasize that bipo-
lar patients show cognitive damage (Rolstad et  al., 2016) and 
prefrontal alterations (Blumberg et  al., 1999) compared with 
healthy control groups. Amodeo and colleagues (2017) demon-
strated that ouabain induces cognitive flexibility impairment 
and alters plasticity in frontal cortex in rats submitted to the 
model of mania.

Indeed, PKC was implicated in the regulation of systems 
involved in the modulation of moods, including neuronal excit-
ability, neurotransmitter release, and long-term alterations in 
gene expression and plasticity (DiazGranados and Zarate, 2008). 
A  previous preclinical study has suggested that myristoylated 
alanine-rich C kinase substrate (MARCKS) plays an important 
role in the manic-like behaviors (Szabo et al., 2009). MARCKS is 
a substrate of PKC, which has been implicated in the neuronal 
membrane trafficking. The phosphorylation of MARCKS by PKC 
results in the translocation of MARCKS from the membrane to 
the cytosol (Aderem, 1992). MARCKS is an important protein 
in the transduction of calcium- and PKC-mediated signaling 
events (Ramakers et al. 1999).

Recent advances in genetic, neurobiological, and phar-
macological methodologies have enabled the development 
of animal models, which are important tools in investigating 
new intracellular systems that may be involved in the patho-
physiology of BD (Einat et al., 2003; Valvassori et al., 2013). The 
animal model of mania induced by ouabain is regarded as suit-
able to study bipolar mania (El-Mallakh et al., 2003; Valvassori 
et  al., 2013). Ouabain is a cardiac glycoside that inhibits the 
Na+/K+-adenosine-triphosphatase (Na+/K+-ATPase) enzyme. The 
intracerebroventricular (ICV) injection of ouabain in rats mim-
ics certain manic-like symptoms, which can then be reverted 
by the administration of classical mood stabilizers, including 
Li and valproate (Li et al., 1997; El-Mallakh et al., 2003; Jornada 
et al., 2010, 2011).

Therefore, the present study aimed to evaluate the effects 
of Li or TMX on the PKC activity and phosphorylation, as well 
as the MARCKS phosphorylation in the frontal cortex and hip-
pocampus of rats submitted to an animal model of mania 
induced by ouabain.

Materials and Methods

Animals

The subjects were adult male Wistar rats (Rattus norvegicus; body 
weight ranging from 250 to 350 g) obtained from our breeding 
colony. Animals were housed 5 to a cage with ad libitum food 
and water and were maintained on a 12-h-light/-dark cycle 
(lights on at 7:00 am) at 22 ± 1°C. All experimental procedures 
were carried out in accordance with the National Institutes of 
Health Guide for the Care and Use of Laboratory Animals and 
the Brazilian Society for Neuroscience and Behavior. This study 
was approved by the local ethics committee, Comissão de Etica 
no Uso de Animais da Universidade do Extremo Sul Catarinense. 
All experiments were performed at the same time during the 
day to avoid circadian variations.

Surgical Procedure

Animals were anesthetized via i.p. injection of ketamine (80 mg/
kg) plus xylazine (10  mg/kg) and were kept in a stereotaxic 
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apparatus. The skin covering the rat skull was excised and a 
27-gauge, 9-mm guide cannula was put on the surface of cra-
nial bone according to the following coordinates: 0.9 mm pos-
terior to bregma, 1.5 mm right from the midline, and 1.0 mm 
above the lateral cerebral ventricle. Thereafter, a cannula was 
ventrally implanted 2.6 mm to the superior surface of the skull 
through a 2-mm-diameter orifice and fixed with acrylic cement. 
Immediately after the surgical procedure, the animals received 
a single intramuscular injection of tramadol hydrochloride (10 
mk/kg). Within 3  days, the rats presented complete recovery 
from the procedure.

Treatment

The model included in the present study was designed to repro-
duce the management of an acute manic episode. Animals 
(n = 10/group) received a single ICV injection of ouabain 10−3 M 
(5 μL) dissolved in artificial cerebrospinal fluid (ACSF) or 5 μL of 
ACSF alone on the fourth day following surgery (El-Mallakh et al., 
2003; Riegel et al., 2009). A 30-gauge cannula was placed inside 
the guide cannula and connected to a microsyringe through a 
polyethylene tube. The tip of the cannula infusion protruded 
1.0  mm beyond the guide cannula to target the right lateral 
cerebral ventricle. From the day following the injection of oua-
bain or ACSF, the rats were treated for 7 days with i.p. injections 
of saline, Li, or TMX in 6 experimental groups (n = 10 animals/
group): (1) ACSF ICV + Saline i.p.; (2) ACSF ICV + Li i.p.; (3) ACSF 
ICV + TMX i.p.; (4) Ouabain ICV + Saline i.p.; (5) Ouabain ICV + Li 
i.p., (6) Ouabain ICV + TMX i.p. Animals received twice a day i.p. 
injections of Li (47.5 mg/kg) and TMX (1 mg/kg) (Cechinel-Recco 
et  al., 2012). The rats were euthanized 24 hours after the last 
injection of Li, TMX, or saline.

Immunoblotting

The hippocampus and frontal cortex were dissected (n =8/
group). The tissues were promptly homogenized in extraction 
buffer (1% Triton-X 100, 100 mM Tris, pH 7.4, containing 100 mM 
sodium pyrophosphate, 100 mM sodium fluoride, 10 mM EDTA, 
10 mM sodium vanadate, 2 mM phenylmethylsulfonyl fluoride 
(PMSF), and 0.1 mg of aprotinin/mL) at 4°C with a Polytron PTA 
20S generator (Brinkmann Instruments model PT 10/35) oper-
ating at maximum speed for 30 seconds. Centrifugation of the 
extracts at 11 000 rpm and 4°C in a Beckman 70.1 Ti rotor for 40 
minutes was performed to remove insoluble debris. The result-
ing supernatants were used for protein quantification using the 
assay described by Bradford (1976). Denaturation of proteins 
was carried out by boiling in Laemmli (Laemmli, 1970) sample 
buffer supplemented with 100 mM 2-mercaptoethanol (DTT) 
(De Souza et al., 2003). Thereafter, 0.2 mg of protein extracts 
collected from each tissue was fractioned by SDS-PAGE, trans-
ferred to nitrocellulose membranes, and blotted with anti-total 
PKC, anti-total MARCKS, anti-phospho-PKC, and anti-phospho-
MARCKS (Ser96). The antibodies (1:1000) were diluted in TBS-
Tween supplemented with azide. Antibodies were purchased 
from Millipore. Chemiluminescent detection was performed 
with horseradish secondary antibodies conjugated to peroxi-
dase. Membranes were exposed to RX-films to support the visu-
alization of protein bands. Ponceau solution was used to stain 
the membrane after transfer. Bands were visualized, photo-
graphed, and quantified prior to the primary antibody to control 
the transfer. Quantification of the band intensities was carried 
out by optical densitometry (Scion Image Software, ScionCorp) 
of the developed autoradiographs.

PKC Activity Analysis by ELISA

The PKC activity was measured in frontal cortex and hippocam-
pus of rats using the PKC Kinase Activity Assay Kit (AbCam) 
following the instructions of the manufacturer. Assays were 
performed in triplicate with the mean ± SEM shown.

Protein Determination

All biochemical measures were normalized to the protein con-
tent with bovine albumin as standard (Lowry et al., 1951).

Open-Field Task

The locomotor activity (crossings and rearings) were assessed 
7 days after ICV injection of ouabain or aCSF using the open-
field task. This task was carried out in a 40- x 60-cm open 
field surrounded by 50-cm-high walls made of brown ply-
wood with a frontal glass wall. The floor of the open field was 
divided into 9 equal rectangles by black lines. The animals 
were gently placed to explore the arena for 5 minutes. The fol-
lowing behavioral parameters were assessed in the open field 
test (crossings: total number of square crossings during the 
entire test period [Ericson et al., 1991]; rearings: total number 
of erect postures during the entire test period [Ericson et al., 
1991]). It is important to note that a 5-minute test is a short 
test and represents one aspect of motor activity, the initial 
phase of novelty exploration (Platel and Porsolt, 1982; Thiel 
et al., 1999).

Statistical Analysis

Data are presented as mean ± SEM. The variables were analyzed 
according to their distribution. The Shapiro–Wilk’s test for nor-
mality was used to this purpose. Among experimental groups, 
the homogeneity of variances was evaluated by the Levene’s 
test, whereas the differences were determined by 2-way ANOVA 
followed by Tukey’s posthoc test when ANOVA was significant. 
Correlations were assessed using the Pearson’s correlation test. 
P < .05 was rated as statistically significant.

Results

In Figure 1, ouabain increased crossings (A) and rearings (B) in 
rats, and both Li and TMX reversed ouabain-related hyperac-
tive behavior. The administration of Li or TMX in ACSF-treated 
animals did not change behavioral measures, indicating that 
the effects of the drugs in ouabain-treated rats were not asso-
ciated with sedation. Two-way ANOVA revealed significant 
effects of ouabain administration [crossings: F(1.38)  =  28.19, 
P < .001; rearings: F(1.38) = 18.06, P < .001] and treatment [cross-
ings: F(2.38) = 16.38, P < .001; rearings: F(2.38) = 12.22, P < .001] 
and a significant ouabain administration × treatment interac-
tion [crossings: F(2.38) = 8.74, P < .001; rearings: F(2.38) = 9.33, 
P < .001].

It can be observed in Figure 2 that ouabain administration 
increased PKC phosphorylation in rat frontal cortex (A) and 
hippocampus (B); however, Li and TMX reversed this enzyme 
alteration. The treatment with Li per se decreased the PKC 
phosphorylation. Data from the 2-way ANOVA revealed sig-
nificant effects of ICV ouabain administration [frontal cortex: 
F(1.38) = 7.07, P = .011; hippocampus: F(1.38) = 38.87, P < .001] and 
treatment [frontal cortex: F(2.38) = 13.00, P < .001; hippocampus: 
F(2.38) = 15.31, P < .001] and a significant ouabain administration ×  
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treatment interaction [frontal cortex: F(2.38) = 4.87, P = .013; hip-
pocampus: F(2.38) = 12.27, P < .001].

As shown in Figure 3, ouabain increased MARCKS phosphoryla-
tion, and the treatment with Li and TMX decreased this enzyme 
alteration in frontal cortex (A). In the hippocampus (B), only TMX 
reversed the increase in MARCKS phosphorylation induced by oua-
bain. Data from the 2-way ANOVA for ICV ouabain administration 

[frontal cortex: F(1.38) = 68.61, P < .001; hippocampus: F(1.38) = 13.68, 
P < .001] and treatment [frontal cortex: F(2.38)  =  8.61, P < .001; 
 hippocampus: F(2.38)  =  2.53, P = .093] and a significant oua-
bain administration × treatment interaction [frontal cortex: 
F(2.38) = 12.78, P < .001; hippocampus: F(2.38) = 2.83, P = .072].

In Figure 4, ouabain increased PKC activity in frontal cortex (A) 
and hippocampus (B). TMX reversed the PKC activity alteration 

Figure 1. Effects of the ouabain administration on the number of crossings (A) and rearings (B) in animals submitted to ouabain-induced animal model (n = 10/group). 

Data were analyzed by 2-way ANOVA followed by the Tukey test when F was significant. Values are expressed as mean ± SEM. *P < .05 compared with ACSF group.  

#P < .05 compared with ouabain group.

Figure 2. Effects of the lithium (Li) and tamoxifen (TMX) administration on the phosphorylation of protein kinase C (PKC) in frontal cortex (A) and hippocampus (B) in 

animals submitted to ouabain-induced animal model (n = 8/group). Data were analyzed by 2-way ANOVA followed by the Tukey test when F was significant. Values are 

expressed as mean ± SEM. *P < .05 compared with ACSF group. #P < .05 compared with ouabain group.
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Figure 4. Effects of lithium (Li) and tamoxifen (TMX) administration on the phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) in frontal 

cortex (A) and hippocampus (B) of animals submitted to ouabain-induced animal model (n = 8/group). Data were analyzed by 2-way ANOVA followed by the Tukey test 

when F was significant. Values are expressed as mean ± SEM. *P < .05 compared with the ACSF group. #P < .05 compared with the ouabain group.

Figure 3. Effects of lithium (Li) and tamoxifen (TMX) administration on the activity of protein kinase C (PKC) in frontal cortex (A) and hippocampus (B) of animals sub-

mitted to ouabain-induced animal model (n = 8/group). Data were analyzed by 2-way ANOVA followed by the Tukey test when F was significant. Values are expressed 

as mean ± SEM. *P < .05 compared with the ACSF group. #P < .05 compared with the ouabain group.

induced by ouabain in all structures evaluated. Li treatment 
reversed this enzyme alteration in frontal cortex and partially 
reversed in hippocampus. Data from the 2-way ANOVA revealed 
significant effects of ICV ouabain administration [frontal cortex: 
F(1.38) = 29.19, P < .001; hippocampus: F(1.38) = 63.37, P < .001] and 
treatment [frontal cortex: F(2.38) = 17.78, P < .001; hippocampus: 
F(2.38) = 22.47, P < .001] and a significant ouabain administration ×  

treatment interaction [frontal cortex: F(2.38)  =  21.31, P < .001; 
hippocampus: F(2.38) = 20.44, P < .001].

In Figure 5, it can be observed the correlation between loco-
motor activity and PKC phosphorylation in frontal cortex (A) and 
hippocampus (B), MARCKS phosphorylation in frontal cortex (C) 
and hippocampus (D), as also PKC activity in frontal cortex (E) 
and hippocampus (F) of rats. Locomotor activity was positively 
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Figure 5. Correlations between locomotor activity (number of crossings) and protein kinase C (PKC) phosphorylation in frontal cortex (A). Correlations between loco-

motor activity (number of crossings) and PKC phosphorylation in hippocampus (B). Myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation in frontal 

cortex (C). Correlations between locomotor activity (number of crossings) and MARCKS phosphorylation in hippocampus (D); and PKC activity in frontal cortex (E). Cor-

relations between locomotor activity (number of crossings) and PKC activity in hippocampus (F) of animals submitted to ouabain-induced animal model. Results were 

assessed using the Pearson correlation test. PKC phosphorylation x crossings [frontal cortex (n = 44; r2 = 0.29; P < .001), hippocampus (n = 44; r2 = 0.48; P < .001)]. MARCKS 

phosphorylation x crossings [frontal cortex (n = 44; r2 = 0.25; P < .001), hippocampus (n = 44; r2 = 0.25; P < .001)]. PKC activity x crossings [frontal cortex (n = 44; r2 = 0.44; 

P < .001), hippocampus (n = 44; r2 = 0.5; P < .001)].

correlated with PKC activity in all brain structures evalu-
ated. Data from Pearson correlation to PKC phosphorylation x 
Crossings [frontal cortex (n = 44; r2 = 0.29; P < .001), hippocampus 
(n = 44; r2 = 0.48; P < .001)], MARCKS phosphorylation x Crossings 
[frontal cortex (n = 44; r2 = 0.25; P < .001), hippocampus (n = 44; 
r2 = 0.25; P < .001)] and PKC activity x Crossings [frontal cortex  
(n = 44; r2 = 0.44; P < .001), hippocampus (n = 44; r2 = 0.5; P < .001)].

Discussion

The ICV administration of ouabain in rats induces hyperloco-
motion, mimicking the manic-like behavior (Machado-Vieira 
et  al., 2004; Valvassori et  al., 2013). In the present study, the 

administration of Li and TMX reverses the hyperlocomotion 
induced by ouabain. Previous studies also showed that Li and 
TMX reversed the hyperlocomotion induced by amphetamine 
(Einat et  al., 2007; Sabioni et  al., 2008) and by sleep depriva-
tion (Armani et al., 2012; Abrial et al., 2014). TMX, which is also 
an estrogenic inhibitor, triggers antimanic effect assigned to 
inhibition of PKC (Sabioni et  al., 2008). Furthermore, Sabioni 
and colleagues (2008) have demonstrated that the administra-
tion of Li, TMX, or chelerythrine (a specific PKC inhibitor) com-
pletely blocked the amphetamine-induced manic-like behavior. 
However, while an intermediate dose of medroxyprogesterone 
(an estrogenic inhibitor) partially reduced the amphetamine-
induced hyperlocomotion, lower and higher doses produced no 
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effect. These findings suggest a pivotal role for PKC inhibition 
in the antimanic-like effect of TMX, although its antiestrogenic 
properties may also have contributed to this effect.

Indeed, the present study demonstrated that ouabain 
increases PKC activity and phosphorylation. This study also 
showed that there is a positive correlation between manic-like 
behavior and PKC activity and phosphorylation in the frontal 
cortex and hippocampus of rats. In addition, the antimanic 
effects of Li and TMX was accompanied by decreases in the PKC 
activity and phosphorylation. Accordingly, Abrial and colleagues 
(2013) showed that PKC activation induces manic-like behav-
iors, whereas PKC inhibition produces antimanic-like effects. 
Several evidences indicate that inhibition of the Na+/K+-ATPase 
by ouabain induces depolarization and subsequent neuronal 
excitation, which leads to increased intracellular Ca2+ levels via 
the Na+-Ca2+ exchange system and neurotransmitter release 
(Scheiner-Bobis, 2002; Albers and Siegel, 2012). These molecu-
lar events have been associated with hyperactivity in rats and 
manic episodes in BD patients (Jornada et  al., 2010; Banerjee 
et al., 2012). An in vitro study performed by Wu and coworkers 
(2015) using ventricular myocytes showed that ouabain mark-
edly increased late sodium current and reversed the Na+-Ca2+ 
exchange. Interestingly, these effects induced by ouabain were 
suppressed by bisindolylmaleimide, a PKC inhibitor. The authors 
also showed that ouabain increases PKC activation, leading to 
phosphorylation of membrane Na+ channels (Wu et  al., 2015). 
Therefore, these studies and our data suggest that PKC activity 
can be mediated and modulated by effects of ouabain.

To evaluate the PKC signaling pathway involved in the effects 
of ouabain, we evaluated MARCKS phosphorylation in the brain 
of ouabain-administered rats. As previously described, MARCKS 
is a substrate of PKC implicated in the transduction of calcium- 
and PKC-mediated signaling events (Ramakers et al. 1999). The 
present study demonstrated that ouabain induces increase in 
MARCKS phosphorylation in the frontal cortex and hippocam-
pus of rats. In addition, a positive correlation was demonstrated 
between manic-like behavior and MARCKS phosphorylation. 
According to our results, Szabo and colleagues (2009) detected 
an increase in MARCKS phosphorylation in the frontal cor-
tex of rats submitted to the animal model of mania induced 
by amphetamine and sleep deprivation. A clinical study dem-
onstrated an increase of MARCKS expression in the platelets 
collected from BD patients (Pandey et  al., 2002). Additionally, 
MARCKS mRNA expression was found to have increased in 
the dorsolateral prefrontal cortex of BD subjects (Konopaske 
et al., 2015). Together with our data, these findings indicate an 
important role of MARCKS in both manic-like behaviors and BD 
pathophysiology.

In the present study, treatments with Li and TMX reversed 
the increase of MARCKS phosphorylation induced by oua-
bain in the frontal cortex of rats. In the hippocampus, only 
TMX significantly reversed this enzyme alteration. In accord-
ance with our data, Szabo and coworkers (2009) showed a 
decrease of MARCKS phosphorylation after the treatment 
with Li. Furthermore, a previous study demonstrated that 
chronic treatment with Li decreased the hippocampal levels 
of the MARCKS protein (Lenox et al., 1992). Watson and cow-
orkers (1998) showed that valproate, at therapeutic concentra-
tions, induces a concentration- and time-dependent reduction 
of MARCKS in immortalized hippocampal cells. Collectively, 
these findings suggest that the regulation of MARCKS is a tar-
get for the action of mood stabilizers whose effect is mediated 
by PKC and may be specific to a class of drugs effective in the 
treatment of BD.

In conclusion, we showed an important relationship between 
the manic-like behavior and alterations in the PKC signaling 
pathway induced by ouabain in rats. Moreover, treatments with 
Li or TMX prevented the manic-like behavior while protect-
ing the brain against alterations in the PKC signaling pathway. 
Therefore, we can suggest that the Na+/K+-ATPase inhibition 
observed in BD patients may be associated with alterations in 
the PKC signaling pathway. Moreover, we can provide additional 
evidence for the involvement of the PKC signaling pathway in 
the therapeutic effects of Li and TMX.

The brain structures used in this study were dissected 
entirely, not taking into account the specific subareas of frontal 
cortex and hippocampus.
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