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Abstract
More accurate and more complete predictions of cis-regulatory modules (CRMs) and constituent transcription factor (TF) binding sites (TFBSs)
in genomes can facilitate characterizing functions of regulatory sequences. Here, we developed a database predicted cis-regulatory modules
(PCRMS) (https://cci-bioinfo.uncc.edu) that stores highly accurate and unprecedentedly complete maps of predicted CRMs and TFBSs in the
human and mouse genomes. The web interface allows the user to browse CRMs and TFBSs in an organism, find the closest CRMs to a gene,
search CRMs around a gene and find all TFBSs of a TF. PCRMS can be a useful resource for the research community to characterize regulatory
genomes.

Database URL:https://cci-bioinfo.uncc.edu/

Introduction
Cis-regulatory modules (CRMs), such as enhancers, promot-
ers, silencers and insulators, are composed of clusters of short
DNA sequences where transcription factors (TFs) can bind
to regulate the expression of target genes in many biologi-
cal processes (1). Recent studies have showed that the vast
majority of complex trait-associated single nucleotide variants
(SNVs) are located in noncoding sequences (NCSs) and often
disrupt TF binding sites (TFBSs) in CRMs (2, 3). Variation of
CRMs also plays a crucial role in divergence in closely related
species (4–7). In principle, variation in TFBSs in a CRM
could affect the affinity of cognate TFs, resulting in changes
in chromatin modifications and target gene expression in spe-
cific cell types in tissues and ultimately leading to diversity of
complex traits, including susceptibility to common complex
diseases (8–14). Therefore, more accurate and more com-
plete categorization of CRMs and constituent TFBSs in the
human and important model organisms’ genomes can greatly
facilitate characterizing functions of regulatory sequences and
their roles in many important biological processes including
disease and evolution.

Recently, a plethora of next-generation sequencing (NGS)-
based technologies have been developed to characterize dif-
ferent features of CRMs at a genome scale, such as chromatin

immunoprecipitation followed by sequencing (ChIP-seq) (15)
to locate TFs binding or histone modifications, and DNase
I hypersensitive sites sequencing (DNase-seq) (16), assay for
transposase-accessible chromatin using sequencing (ATAC-
seq) (17), formaldehyde-assisted isolation of regulatory ele-
ments sequencing (FAIRE-seq) (18) and micrococcal nuclease
digestion with deep sequencing (MNase-seq) (19) to identify
the chromatin accessibility. Consequently, an exponentially
increased number of datasets have been generated using these
technologies by consortia such as ENCODE (20, 21), Epige-
nomics Roadmap (22, 23) and Genotype-Tissue Expression
(GTEx) (24). Based on different data types that capture dif-
ferent features of CRMs, many computational strategies have
been developed to predict CRMs. For instances based on
TF ChIP-seq data, methods such as SpaMo (25), CPMod-
ule (26), COPS (27) and INSECT (28) have been developed
to identify regions of TF binding as potential CRMs. Based
on histone modification marks and chromatin accessibility
data, hidden Markov models (29, 30) and dynamics Bayesian
models (31) have been developed to predict CRMs and their
functional states in different cell types. Based on bidirec-
tionally transcribed pairs of capped RNAs or enhancer RNA
(eRNA), the FANTOM 5 project identified active enhancers
in various human and mouse tissues (32). By integrating
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multiple tracks of epigenetics marks, TF binding, as well
as predicted and experimentally validated enhancers, several
groups have developed CRM/enhancer databases, such as
dbSUPER (33), SEdb (34), DENdb (35), EPDnew promoters
(36), UCNEbase (37), CraniofacialAtlas (38), GeneHancer
(39), HACER (40), RAEdb (41), HEDD (42), DiseaseEn-
hancer (43), SEA (44), EnhancerAtlas (45) and SCREEN
(46). However, these databases only cover a small portion
of enhancers/CRMs encoded in the genomes, and some may
have a high false positive rate (FDR) (47). For instance, even
the most currently updated SCREEN database that stores
candidate cis-regulatory elements (cCREs) predicted by the
ENCODE phase 3 consortium contains only 926 535 and
339815 cCREs in the human and mouse genomes, with a
mean length of 273bp and 272bp, respectively (46), which
is much shorter than the mean length (∼2000bp) of known
human and mouse CRMs in the VISTA database (48), indi-
cating that cCREs in both the human and mouse genomes
might be underpredicted for both their lengths and numbers.
Moreover, none of these databases provide de novo predicted
TFBSs in enhancers/CRMs, which are critical to understand
the mechanisms of transcriptional regulation, and to pinpoint
causal variants of phenotype diversity and disease risks.

Using a highly efficient CRM and TFBS prediction pipeline
dePCRM2 that we developed recently (47), we have predicted
CRMs and constituent TFBSs in the human (Homo sapiens)
and mouse (Mus musculus) genomes using a large number of
TF ChIP-seq datasets in the organisms. Comparative analysis
indicates that our predictions are substantially more accurate
and more complete than those in existing databases (47). To
facilitate the research community to use these predictions for
various purposes, we constructed an online database PCRMS
The database currently contains 1 404 973 and 920068 CRM
candidates (CRMCs) and 90 671 016 and 104 251155 TFBSs
for 201 and 210 unique motif (UM) families in the human and
mouse genomes, respectively. To our best knowledge, these
represent the most complete collections of accurately pre-
dicted CRMs and constituent TFBSs in the human and mouse
genomes. The web interface to PCRMS allows a quick search,
browse and visualization of the contents of the database, and
provides three functional analysis modules. Using these mod-
ules, a user can find the closest CRMs to a gene; search CRMs
that are located in a specified region around a gene; and search
TFBSs in CRMs for a given TF. The interface also provides
copy, export and download functions of selected CRMs or all
the predicted CRMs in BED format. We hope that PCRMS
will facilitate the research community’s efforts to characterize
the regulatory genomes in important organisms.

Materials and methods
Datasets
We downloaded (6/1/2019) 6092 TF ChIP-seq datasets for
779 TFs in 468 cells/tissues/organs of humans, and 4786 TF
ChIP-seq datasets for 501 TFs in 162 cells/tissues/organs of
mice from the CISTROME database (49). After filtering out
called binding peaks with low quality, for each left peak, we
extracted 1000bp genome sequence centring on the middle of
the binding peaks. As most called binding peaks have a length
shorter than 1000bp (47), we extendedmost of them.We have
shown earlier that such extension could greatly increase the
power of the datasets without including much noise (47, 50).

Prediction of CRMs and constituent TFBSs
To predict CRMs and TFBSs, we applied our dePCRM2
algorithm (47) to the datasets with extended binding
peaks from each organism using the default parameters.
Briefly, dePCRM2 first finds over-represented motifs and
co-occurring motifs pairs (CPs) in each dataset in an
organism. It then identifies UMs by combining highly simi-
lar motifs in CPs across all the datasets in the organism. To
model the interactions among coperative TFs, dePCRM2 con-
structs an interaction network, where UMs are the nodes, and
two nodes are connected by a edge with a weight being their
interaction score, defined as,

SINTER(Ui,Uj) =
1∣∣D(Ui,Uj)
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where D(Ui, Uj) is the dataset in which TFBSs of both
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and orientation of TFBSs in a CRM and at the same time,
it rewards motifs with binding sites cooccurring frequently in
a shorter distance in a CRM. Next, dePCRM2 connects two
adjacent TFBSs of the UMs if their distance d≤300bp (about
the length of two nucleosomes), and predicts each result-
ing connected DNA segment as a CRM candidate (CRMC).
In this way, dePCRM2 partitions the genome regions cov-
ered the extended binding peaks into a CRMC set and a
non-CRMC set. Finally, dePCRM2 evaluates each CRMC
containing b1,b2 · · · ,bn TFBSs by computing a score defined
as,
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where U(bk) is the UM of TFBS bk, SINTER
[
U(bi) ,U

(
bj
)]

the
interaction score between U(bi) and U

(
bj
)
, S(bk) the bind-

ing score of bk based on the position weight matrix (PWM)
of U(bk) . Only TFBSs with a positive score are considered.
dePCRM2 also computes a P-value for each CRMC as fol-
lows. For each predicted CRMC, dePCRM2 generates a Null
CRMC that has the same length and 4-mer nucleotide fre-
quencies as the CRMC using a third-order Markov chain
model (50), and computes the SCRM score for each Null
CRMC based on a random interaction network which is gen-
erated by randomly rewiring the nodes of the UM interaction
network. Then, an empirical P-value for a CRMC with a
SCRM = sis computed based on the distribution of SCRM score
of the Null CRMCs,

p=
n(s)
N

, (3)

where n(s) is the number of Null CRMCs with a SCRM score
greater than s and N the total number of the CRMCs.
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Technical implementation
The current version of PCRMS (v2) was developed using
MySQL 5.7.17 (http://www.mysql.com) and it runs on
a Linux-based Apache2 server (http://www.apache.org).
PHP 7.4 (http://www.php.net) scripts were used for back-
end processing. The interactive interface and responsive
features were implemented using Bootstrap 4 (https://
getbootstrap.com/), JQuery (http://jquery.com) and dataTa-
bles (https://datatables.net/). NCBI sequence viewer 3.38.0
(https://www.ncbi.nlm.nih.gov/projects/sviewer/) was used
for visualization.

Results and discussion
Predicted CRMs and constituent TFBSs in the
human and mouse genomes
Applying dePCRM2 to the TF ChIP-seq datasets available to
us (6/1/2019) in each organism, we predicted 1 404973 and
920068CRMCs in the human (47) andmouse genomes, com-
prising 44.03% and 50.39% of their genomes, respectively.
These CRMCs contain 90 671 016 and 104 251155 TFBSs,
comprising 16.71% and 20.34% of the human and mouse
genomes, respectively. We compared the numbers and lengths
of our CRMCs with those of cCREs in the SCREEN database
(46) and those of enhancers in the GeneHancer database
(39). cCREs were predicted based on overlaps among hun-
dreds or thousands of DNase-seq, ATAC-seq and histone
marks ChIP-seq datasets in various cell/tissue types in an
organism (46). Enhancers in GeneHancer were predicted by
combing nine sets of earlier predicted and experimentally
determined human CRMs using a voting schema (39). As
shown in Table 1, the numbers of our predicted CRMCs are
much larger than those of cCREs and that of GeneHancer
enhancers. Our predicted CRMCs also comprise much larger
proportions of the genomes than do those in CREEN or Gene-
Hancer (Table 1). We attribute to two reasons the larger num-
bers and higher genome coverages of our predicted CRMCs.
First, the types of input data used by the three methods were
different, which might capture different features of CRMs,
thus have different capabilities of predicting CRMs. Specifi-
cally, the input data for predicting cCREs were DNase-seq,
ATAC-seq and histone marks ChIP-seq data, those for pre-
dicting GeneHancer enhancers were earlier predicted and
experimentally determined CRM sets by different groups, and
those for predicting CRMCs were TF ChIP-seq data. Second,
the number of predicted cCREs was limited by the number
of called DNase I hypersensitive sites, transposase-accessible
sites and epigenetic mark peaks, while the number of Gene-
Hancer enhancers was constrained by the sizes of earlier

predicted and experimentally determined enhancer sets. In
contrast, by appropriately extending the originally called
short TF binding peaks, we could greatly increase the power
of available TF ChIP-seq data as we demonstrated earlier
(47), since binding sites of co-operative TFs tend to be closely
located on a genome segment to form a CRM (1), while a
called short binding peak to which the ChIP-ed TF bind can
be only a part of a longer CRM. For instance, the extended
binding peaks (1000bp) in the 6079 human ChIP-seq datasets
cover 77.47% of the mappable genome, and the extended
parts of the peaks contribute to almost half (47.10%) of
the coverage (47). dePCRM2 predicts 56.84% of the cov-
ered genome to be CRMC positions, and 42.13% of them
are predicted solely based on the extended parts of originally
called binding peaks (47). Importantly, we have shown that
CRMC positions predicted by the extended parts of originally
called binding peaks are under similarly strong evolutionary
constraints as those predicted by the originally called bind-
ing peaks, thus, are likely true CRMC positions (47). On
the other hand, due to the noisy nature of ChIP-seq data
(51–53), 37.82% of genome positions covered by originally
called binding peaks are not predicted to be CRMCs, and they
are largely selectively neutral (47).

The lengths of our predicted CRMCs in the human
(Figure 1A) and mouse (Figure 1B) genomes have similar dis-
tributions, ranging from a few hundred bp to a few thousand
bp with a mean length of 981bp and 1,439bp, respectively,
which are shorter than those of known human (2049bp) and
mouse (2432bp) enhancers in the VISTA database (48), indi-
cating that a portion of our CRMCs are only components
of longer CRMs as we argued earlier (47). In contrast, the
lengths of cCREs in the human andmouse genomes are almost
uniform with a mean length of 273bp and 272bp, respectively
(46) (Table 1), while the lengths of GeneHancer enhancers
show a periodic pattern (47) with a mean length of 1489bp.
Such erratic lengths of cCREs and GeneHancer enhancers are
likely artifacts of the underlying algorithms as we argued ear-
lier (47). On the other hand, as we pointed out earlier (47),
accurate prediction of the lengths of CRMs is a highly chal-
lenge task, because a truncated enhancer can still be functional
(1), and a super-enhancer may contain multiple discrete short
enhancers (54). Thus, the length of a CRM depends on how it
is defined. dePCRM2 predicts a CRMC as a cluster of TFBSs
with the distance between any two adjacent TFBSs being
short than 300bp (Methods and (47)). While cCREs might be
shorter discrete units of longer CRMs, we estimated a FDR of
23.12% for the human cCREs positions based on their largely
neutrally evolutionary behaviors (47). GeneHancer enhancers
have a mean length of 1,489bp, which is shorter than that
of known human enhancers (2049bp) in the VISTA database

Table 1. Comparison of the contents of the three databases

CRMCs TFBSs

Databases Species Mean length (bp) Number Coverage of genome (%) Number Coverage of genome (%)

H. sapiens 981 1404 973 44.03 90 671 016 16.71
PCRMS

M. musculus 1493 920068 50.39 104251 155 20.34
H. sapiens 1489 394086 18.99 X X

GeneHancer
M. musculus X X X X X
H. sapiens 273 926535 8.2 X X

SCREEN
M. musculus 272 339815 3.39 X X

http://www.mysql.com
http://www.apache.org
http://www.php.net
https://getbootstrap.com/
https://getbootstrap.com/
http://jquery.com
https://datatables.net/
https://www.ncbi.nlm.nih.gov/projects/sviewer/
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Figure 1. Summary of the lengths of CRMCs and the numbers of TFBSs
in a CRMC in the human and mouse genomes. A. Distributions of the
lengths of CRMCs in the human and mouse genomes. B. Distributions of
the number of TFBSs in a CRMC in the human and mouse genomes. C.
Scatter plot of the number of TFBSs in a CRMC vs its length in the
human genome. D. Scatter plot of the number of TFBSs in a CRMC vs its
length in the mouse genome.

(48), we estimated a FDR of 29.28% for the genome positions
of the GeneHancer enhancers based on their largely neutrally
evolutionary behaviors (47). We have shown that our pre-
dicted CRMCs and TFBSs positions in the human genome are
highly accurate based on validations using multiple indepen-
dent data (47), and the same is true for the predicted CRMCs
and TFBSs in the mouse genome (manuscript in preparation,
P.N. and Z.S).

The number of TFBSs in a CRMC in either the human
genome or the mouse genome varies widely, ranging from a
few to a few hundreds, with a mean/median number of 90/34
and 183/67, respectively (Figure 1B). Interestingly, the num-
ber of TFBSs in a CRMCs is largely linearly related to the
length of the CRMC in both the human (Figure 1C) and the
mouse (Figure 1D) genomes, indicating that the density of
TFBSs is largely the same in the most of the CRMCs. In con-
trast, no information of de novo predicted TFBSs in cCREs
or enhancers is available in the SCREEN or GeneHancer
databases (Table 1).

To evaluate the significance of the CRMCs, dePCRM2
computes a P-value for each predicted CRMCs based on
its SCRM. We have shown earlier that the longer a CRMC,
the higher its SCRM score, the smaller its P-value, and the
stronger evolutionary constraint it is subject to (47). There-
fore, both the SCRM score and its associated P-value capture
essential features of a true CRM. This result also justifies our
assumption that a genome segment containing closely located
putative TFBSs is more likely a CRM than a segment without
such sequence patterns. It is based on this assumption that
dePCRM2 predicts CRMs The assumption is clearly in agree-
ment with the well-known notion that a functional genome
segment such as a CRM must contain certain sequence pat-
terns (i.e, clusters of TFBSs) that are unlikely to occur by

chance, and that the longer the patterns, the less likely they
occur by chance.

However, as dePCRM2 predicts CRMCs based on the pre-
dicted TFBSs in the genome, false positive and false negative
predictions of TFBSs would result in false positive, false neg-
ative and incomplete predictions of CRMs. We estimated the
FDR of our motif-finder ProSampler used in the dePCRM2
pipeline to be about 8% (50). Thus, we designed dePCRM2
to further filter out potentially false positive motifs returned
by ProSampler in the extended binding peaks in a dataset
based on their cooccurring patterns (see Method and (47)).
We estimated the FDR of the predicted CRMC positions to be
about 0.05%, thus, FDR for TFBSs are likely further reduced
(47). However, as we indicated earlier (47), due to the lim-
itation of the available TF ChIP-seq datasets, our predicted
TFBSs are still incomplete, and a proportion of our predicted
CRMCs might be only components of long CRMs whose
full prediction depends on more data available in the future.
Nonetheless, the short CRMC components can be effectively
filtered out using a higher SCRM score cutoff or a lower P-value
cutoff (47). To assist the users who might be interested in
CRMCs with different lengths, statistical significance or with
different evolutionary constraints, in addition to making the
entire sets of predicted CRMs available for bulk download-
ing, we provide four options of P-value cutoffs (P-value <0.05,
0.01, 5×10−6 and 1×10−6) to query the database. Table 2
summarizes the predicted CRMs using these P-value cutoffs;
they are subsets of the CRMCs with different length distri-
butions and conservation levels (47). Clearly, the smaller a
P-value cutoff, the longer the predicted CRMs.

Web interface to the database
We provide a user-friendly web interface to the PCRMS
database for quickly inquiring and browsing predicted CRMs
and TFBSs at different statistically significant levels in each
organism as well as three functional analysis modules. Using
these modules, the user can (i) search the closest CRM to
a given gene, (ii) search all CRMs in the upstream and/or
downstream regions of a gene of interest and (iii) search the
TFBSs of a TF on one or more chromosomes in an organism
(Figure 2).

Browse of database contents
We provide a Browse function by which the user can browse
all CRMs predicted at a selected P-value cutoff on one or
multiple selected chromosomes in a selected organism and
inspect each CRMs and constituent TFBSs in detail. The user
starts in the search form (Figure 3A) by selecting an organ-
ism (e.g. H. sapiens), one or more chromosomes (e.g. chrX)
and a P-value cutoff (e.g. 1E-06). The search returns all the
predicted CRMs (n=8762) on the chromosome (chrX) of
the organism (H. sapiens) in the interactive CRM list table
(Figure 3B). Clicking on a CRM of interest, e.g. the first
CRM hse1000017 in the table pops up the CRM informa-
tion table (Figure 3C), where some parameter of the CRM
are shown in the left panel and the locus of the CRM is
displayed in the NCBI sequence viewer (shadowed rectan-
gle) in the right panel, enabling detailed inspections of the
genomic context of the CRM, including its neighboring genes
and other annotations using the zooming and the translation
functions of the viewer. For instance, the viewer reveals that



Database, Vol. 2022, Article ID baac024 5

Table 2. Summary of the predicted CRMs at different P -values in the human and mouse genomes

CRMs TFBSs

Species P-value Mean length (bp) Number Coverage of genome (%) Number Coverage of genome (%)

H. sapiens 0.05 1162 1155 151 43.47 89 948 206 16.54
0.01 1292 1020 679 42.72 88 912 654 16.32
5.00E-06 2292 428628 31.81 71 478 114 12.88
1.00E-06 2624 327396 27.82 64 136 635 11.47

M. musculus 0.05 1749 777409 49.9 103 718 473 20.21
0.01 1944 688033 49.06 102730 265 19.99
5.00E-06 3182 338635 39.53 88 579 892 16.96
1.00E-06 3780 250606 34.75 80 002 349 15.2

Figure 2. Overview of data integration and analysis modules and features of the PCRMS database.

hse1000017 is located in the second through the fifth introns,
and spans the third through fifth exons, of the BCOR gene
that codes for a corepressor of a transcription repressor BCL6.
Both BCOR and BCL6 are involved in B lymphocytes dif-
ferentiation (55, 56). Interestingly, hse1000017 overlaps two
regulatory sequences annotated as ‘enhancer’ and ‘transcrip-
tional cis-regulation’, while many ClinVar variants are located
in hse1000017 (Figure 3C). Finally, clicking on the CRM ID
(e.g. hse1000017) in the right panel of the CRM informa-
tion table (Figure 3C) displays the CRM’s 5094 constituent
TFBSs in the interactive TFBS table (Figure 3D), which
includes the coordinates of the TFBSs, their UM IDs, bind-
ing scores, UM logos and matched known motifs. The vast
majority of these TFBSs match those of known TF families
(Figure 3D).

In both the interactive CRM list table (Figure 3B) and the
interactive TFBS table (Figure 3C), the user can change the
number of entries to display in a page, sort results based on
different columns, filter the results using the search box and
set visible columns. The user can copy or export the selected
items in a file in the CSV or Excel formats or export all records
if no item is selected by default (Figure 3).

Functional analyses
To facilitate analyzing potential CRM-gene relationships and
TFBSs landscape of specific TFs, we provide three functional
analysis modules. First, using the ‘select the closest CRMs to
a gene’ function, the user can search the closest CRMs to a
gene (e.g. GL13) in an organism (e.g. H. sapiens) at a P-value
cutoff (e.g., 1×10−6) (Figure 4A). The search returns the
interactive CRM list table containing all CRMs to which the
gene is the closest among all other genes in the chromosome
(Figure 4B). In the example of the GLI3 gene, a total of 53
CRMs are returned. The user can inspect any of them by
clicking on the CRM ID, which pops up the information
table of the CRM as we demonstrated earlier (Figure 3C).
For instance, clicking on the third CRM hse1003435 in the
table displays it in the NCBI sequence viewer, revealing that
the CRM is located in the third and fourth introns, and spans
the fourth and fifth exons, of the GL13 gene (shadowed rect-
angle in Figure 4C). Interestingly, hse1003435 overlaps two
annotated enhancers and many ClinVar variants (Figure 4C).
Finally, clicking on the CRM ID hse1003435 in the right
panel of the CRM information table (Figure 4C) displays the
CRM’s 988 constituent TFBSs in the interactive TFBS table
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Figure 3. The browse functions. A. In the search form, the use selects an organism (e.g. H. sapiens), one or more chromosomes (e.g. chrX) and a
P -value cutoff (e.g. 1E-06). B. The searching results are displayed in the CRM list table. Shown is a snapshot of the resulting CRM list table containing
8762 predicted CRMs on chrX of H. sapiens. The first CRM hse1000017 in the list table is selected for further visualization. C. In the CRM information
table, some parameters of the selected CRM hse1000017 is shown in the right panel, and the locus is displayed in the NCBI sequence viewer for further
inspection. Clicking on ‘hse1000017’ in the right panel of the CRM information table displays its constituent TFBSs. D. A snapshot of the TFBS table of
hse1000017 containing its 5094 constituent TFBSs.
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Figure 4. Search the closest CRM(s) to a gene. A. In the search form, the use selects an organism (e.g. H. sapiens) and a P -value cutoff (e.g. 1E-06), and
inputs a gene name (e.g. GL13). B. The searching results are displayed in the CRM list table. Shown is a snapshot of the returned CRM list table
containing 53 predicted CRMs. The third CRM hse1003435 in the list table is selected for further inspection. C. In the CRM information table, some
parameters of the selected CRM hse10003435 is displayed in the right panel, and the locus is displayed in the NCBI sequence viewer for further
inspections. Clicking on ‘hse1003435’ in the right panel of the CRM information table displays its constituent TFBSs. D. A snapshot of the TFBS table of
hse1003435 containing its 988 constituent TFBSs.
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Figure 5. Search CRM(s) in a region around a gene. A. In the search form, the use selects an organism (e.g. H. sapiens) and a P -value cutoff (e.g. 1E-06),
and inputs a gene name (e.g.SOX2). B. The searching results are displayed in the CRM list table. Shown is a snapshot of the 102 returned CRMs in the
table. The second CRM hse1002109 in the list table is selected for further inspection. C. In the CRM information table, parameters of the selected CRM
hse1002109 is shown in the right panel, and the locus is displayed in the NCBI sequence viewer for further inspections. Clicking on ‘hse1002109’ in the
right panel of the CRM information table displays its constituent TFBSs. D. A snapshot of the TFBS table of hse1002109 containing its 1344 constituent
TFBSs.
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Figure 6. Search TFBSs of a TF. A. In the search form, the use selects an organism (e.g. H. sapiens), input the name of a TF (e.g. RUNX1), and select a
chromosome (e.g. chrX). B. A snapshot of the resulting TFBS table containing 2678 TFBSs of RUNX1 in chrX of H. sapiens.

(Figure 4D). Most of these TFBSs match those of known TF
families, while a few need to be determined (TBD) for their
cognate TFs (Figure 4D).

Second, using the ‘select CRMs around a gene’ function,
the user can search in an organism (e.g. H. sapiens) all CRMs
in the upstream and/or downstream regions (e.g. 0.5Mbp) of
a given gene (SOX2) (Figure 5A). The search returns all CRMs
in the interactive CRM list table (Figure 5B). As before, each
CRM can be inspected in its information table by clicking
on the CRM ID. In the example of the SOX2 gene of H.
sapiens, a total of 102 CRMs on chr3 are returned in the
CRM list table (Figure 5B). Inspection of the second CRM
hse1002109 in the NCBI sequence viewer reveals that the
CRM is located in the sixth and seventh intron, and spans
the seventh exon, of the SOX2 gene. Interestingly, it overlaps
two annotated enhancer sequences, as well as many ClinVar
variants (Figure 5C). Clicking on the CRM ID hse1002109
in the right panel of the CRM information table (Figure 5C)
displays the CRM’s 1344 constituent TFBSs in the interactive
TFBS table (Figure 5D). Some of these TFBSs match those of
known TF families, while others need to be determined (TBD)
for their cognate TFs.

Using the ‘search TFBSs of a transcription factor’ function,
the user can retrieve all TFBSs of a given TF (e.g. RUNX1) in
one or more selected chromosomes (e.g. chrX) in an organism
(e.g. H. sapiens) (Figure 6A). The results are returned in the
interactive TFBS table (Figure 6B). In the example of the TF
RUNX1, a total of 2678 binding sites are found in chrX of H.
sapiens.

Batch download
Using the Download function from the home page, the user
can download all predicted CRMCs and constituent TFBSs in
an organism in a file in BED format.

Future development
In the future, we will add predicted CRMCs and TFBSs in
other important model organisms such as the worm (C. ele-
gans) and the fly (D. melanogaster). We will also update the
predictions in each organism when more data are available.
We will add more information about the CRMCs, including
their predicted functional states (active or non-active) of the
CRMCs in various cell/tissue types, predicted target genes and
causal variants of complex traits and diseases by integrating
more data sources.

Conclusions
We have developed the PCRMS database that contains the
most comprehensive collections of accurately predicted CRMs
and constituent TFBSs in the human and mouse genomes. The
web interface to PCRMS allows the user to browse, search
and visualize the CRMs and constituent TFBSs. It also pro-
vides three functional analysis modules to search the closest
CRM(s) to a gene, CRM(s) in a region around a gene and
TFBSs landscape of a specific TF. The results can be inspected
in interactive ways and exported in files in different formats.
All the predicted CRMCs and TFBSs in an organism can be
download in BED format. PCRMS will facilitate the research
community’s efforts to characterize the regulatory genomes in
important organisms
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