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Abstract

Inhibition of unwanted response is an important function of the executive system. Since the inhibitory system is impaired in
patients with dysregulated dopamine system, we examined dopamine neurotransmission in the human brain during
processing of a task of executive inhibition. The experiment used a recently developed dynamic molecular imaging
technique to detect and map dopamine released during performance of a modified Eriksen’s flanker task. In this study,
young healthy volunteers received an intravenous injection of a dopamine receptor ligand (11C-raclopride) after they were
positioned in the PET camera. After the injection, volunteers performed the flanker task under Congruent and Incongruent
conditions in a single scan session. They were required to inhibit competing options to select an appropriate response in
the Incongruent but not in the Congruent condition. The PET data were dynamically acquired during the experiment and
analyzed using two variants of the simplified reference region model. The analysis included estimation of a number of
receptor kinetic parameters before and after initiation of the Incongruent condition. We found increase in the rate of ligand
displacement (from receptor sites) and decrease in the ligand binding potential in the Incongruent condition, suggesting
dopamine release during task performance. These changes were observed in small areas of the putamen and caudate
bilaterally but were most significant on the dorsal aspect of the body of left caudate. The results provide evidence of
dopaminergic processing of executive inhibition and demonstrate that neurochemical changes associated with cognitive
processing can be detected and mapped in a single scan session using dynamic molecular imaging.
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Introduction

Neurochemical control of executive inhibition remains unin-

vestigated because of the lack of a reliable technique to detect task-

induced changes in the brain chemistry. Indirect evidence

acquired in cognitive studies suggests that dopamine may be

involved in the processing. These studies have found that the

patients with dysregulated dopamine neurotransmission show

impaired performance in executive inhibition tasks. Thus, poor

performance is reported in patients with attention deficit

hyperactivity disorder (ADHD), Tourette’s syndrome (TS),

Parkinson’s disease (PD), and schizophrenia [1]. In most of these

studies modified Eriksen’s flanker task [2] was used to elicit

executive inhibition. Involvement of dopamine in the processing is

suggested also by the data obtained in laboratory animals. For

example, it was shown in monkeys that the number of inhibited

neurons reduces significantly after depletion of dopamine [3]. The

depletion therefore increases the number of nonspecifically

activated neurons and reduces signal to noise ratio. As a result,

the depleted monkeys find it extremely difficult to inhibit

competing options and select an appropriate response.

Additionally, neuroimaging experiments have consistently

reported increased activation in the brain areas that are innervated

by dopaminergic neurons. In an fMRI experiment [4] we

observed increased BOLD activation in the caudate, anterior

cingulate cortex (ACC), and superior and middle frontal gyri

during performance of the flanker task. Since these structures are

innervated by dopamine, the experiment provides indirect

evidence of dopaminergic processing of the inhibition. A number

of neurocognitive models of learning (based primarily on the data

acquired in laboratory animals) also assume involvement of

dopamine in the processing. For example, the actor-critic model

of reinforcement learning [5] assumes that dopamine-mediated

processes help animals learn the most rewarding action by

inhibiting competing options.

There is however no direct evidence of dopaminergic processing

of the human executive inhibition. Because of the lack of direct

evidence, its significance remains unclear. As a result, we have

incomplete understanding of the neurocognitive deficits that are

responsible for impaired inhibitory control in psychiatric and

neuropsychiatric conditions.

In this experiment we used a newly developed dynamic

molecular imaging technique [6,7] to detect and map dopamine

released during performance of a task of executive inhibition. The

technique exploits the competition between dopamine and its

ligand for receptor occupancy and detects dopamine released

during task performance in a single scan session. We used this

technique previously to study dopamine released during perfor-

mance of a number of cognitive, emotional and behavioral tasks

[6,7,8,9,10,11,12]. In the present experiment we detected and

PLoS ONE | www.plosone.org 1 December 2011 | Volume 6 | Issue 12 | e28075



mapped dopamine released in the Congruent and Incongruent

conditions of a modified Eriksen’s flanker task [2]. The task

elicited executive inhibition.

Results

In the modified Eriksen’s flanker task performed in the PET

camera, volunteers made accurate responses in most trials. In the

Congruent condition they made 97.162.0% correct response

while in the Incongruent condition 91.0610.9% of responses were

accurate. Even though responses were less accurate in the

Incongruent condition, the accuracy was not significantly different

from that in the Congruent. Similarly, response time was longer in

the Incongruent (6956183 msec) as compared to the Congruent

(6026151 msec) condition but the difference was not significant

statistically. The trend of lower accuracy and greater response time

in the Incongruent condition indicated cognitive cost of processing

the inhibition. For making a response in this condition volunteers

had to inhibit prepotent responses indicated by the direction of

flanker arrowheads. This inhibition was not needed in the

Congruent condition in which target and flanker arrowheads

pointed to the same direction.

As described in Materials and Methods section, analysis of the

PET data involved measurement of a number of receptor kinetic

parameters using two models: linear extension of simplified

reference region model or LE-SRRM [12,13]; and extended

simplified reference tissue model or E-SRTM [14]. Using the LE-

SRRM we dynamically measured changes in the rate of ligand

displacement (c) in the Incongruent condition. This measurement

allowed detection and mapping of dopamine released in each

voxel at each time point. By comparing the rate of change

measured in the Congruent and Incongruent conditions, we

located voxels where it increased significantly during task

performance (Incongruent condition). To ensure that this

measurement reflected endogenously released dopamine and it

was not a chance finding, we measured additional receptor kinetic

parameters using the E-SRTM [14]. These parameters included

the binding potentials (BPs) and dissociation coefficients (k2a) of the

ligand in the Congruent and Incongruent conditions. Voxel-wise

comparison of the parameter values allowed us to locate voxels

where the values (DBP and Dk2a) changed significantly after task

initiation (Incongruent condition).

The LE-SRRM analysis revealed that the values of c changed

significantly after task initiation in 4 striatal areas located one each

in the caudate and putamen of the two hemispheres (Figure 1). It

was most significant (Table 1) on the dorsal aspect of anterior part

of the body of left caudate (t = 2.56). Stereotactic (MNI)

coordinates (x,y,z) of this location were 210,14, and 8 mm. In

this area we observed maximum change in the rate of ligand

displacement (c= 0.1). It was 384% higher than the mean striatal

value (0.026). The changes were less significant (t,2.1) in the other

three striatal areas: the left dorsal putamen (222,4,26); right

dorsal body of the caudate (16,16,14); and right dorsal putamen

(24,4,2). In these areas values of c were relatively low (,0.08) but

significantly higher than the mean striatal value (Table 1).

To ensure validity of this finding we estimated the ligand BP

and k2a (Table 2) in the Congruent and Incongruent conditions

using E-SRTM [14]. As compared to the control (Congruent

condition), the BP decreased in 3 striatal areas (Figure 2) during

task performance (Incongruent condition). It was most significant

(t.2.5) in the left caudate (28%) and left putamen (26%).

Additionally, relatively small (23%) but significant (t = 2.21)

decrease was observed in the right putamen. There was no

significant change in any other area. The ligand dissociation

coefficient (k2a) also increased in all of these 3 areas but it was

statistically significant only in the left caudate (t = 2.07).

Thus, both models found most significant change in the left

dorsal caudate. Additionally, both models suggested significant

changes in the left and right putamen also. Interestingly, the

voxels where maximum change in the rate of ligand displacement

(c) and maximum reduction in the ligand BP occurred, were

located within 6 mm of each other in the left caudate and

putamen even though these measurements were made using two

different receptor kinetic models. In the right putamen these

locations were .10 mm apart. It appears that the two models

picked up activations from the same neuronal clusters of the left

caudate (210,14,8 and 212,8,10) and left putamen (222,4,26

and 226,4,26). In the right putamen (24,4,2 and 24,8,28)

activations identified by the two models probably came from

different clusters. Changes in the left caudate were therefore most

significant, consistent and reliable. All parameter values mea-

sured in this area were consistent with increased dopamine

release in the Incongruent condition in comparison with the

Congruent condition.

Discussion

The results demonstrate increased dopamine release in a

number of striatal areas during performance of a flanker task.

The increase was most significant on the dorsal aspect of the body

of left caudate. All receptor kinetic parameters measured in this

area (using two different receptor kinetic models: LE-SRRM and

E-SRTM) suggested significant release of endogenous dopamine.

In addition, most parameter values suggest dopamine release in

three additional striatal locations: dorsal part of the left and right

putamen and body of the right caudate (Figure 1).

These findings are interesting because in an earlier fMRI

experiment [4] we found increased activation in the same region of

the left caudate. Further, the maxima of BOLD response observed

in the fMRI experiment and change in the rate of ligand

displacement observed in the present experiment were located

only 4 mm apart (MNI coordinates: 214,16,10 and 210,14,8).

Additionally, maxima of the fMRI activation were located within

8 mm of the location where maximum decrease in the ligand BP

(212,8,10) was observed during task performance. Finding of

activation in the same location in experiments that used different

techniques validates the observation and underscores significance

of the left caudate in processing of executive inhibition.

This observation of dopamine release in the left caudate is

consistent with the observation of a number of fMRI studies

[15,16,17,18]. These studies however, have implicated other

striatal areas also in the processing of executive inhibition tasks,

and it was suggested that different striatal structures process

different aspects of the task. Thus, caudate and putamen of the

right hemisphere are associated with the preparatory phase of

response execution [19,20] and those of the left side with

inhibition and interference resolution [18]. In a recent study

[18] the caudate and putamen of both hemispheres were activated

in a flanker task that involved response selection and interference

suppression. When the task was modified to require only response

selection without interference (in a stimulus-response compatibility

task) only the caudate was activated. Further, requirement of

inhibition without selection (in a go-no-go task) activated the right

putamen. This finding is supported by another recent experiment

in which a negative correlation was observed between the volume

of left putamen and the degree of interference. This study also

found a positive correlation between the right putamen volume

and the accuracy of response [21].

Dopaminergic Processing of Executive Inhibition
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Thus, it appears that different striatal areas process different

aspects of the task. The location of striatal activity in an

experiment therefore depends on the degree to which these

aspects/components are expressed. Thus, in the present experi-

ment interference suppression was the most prominent component

and the most significant activation was observed in the left

caudate. It therefore suggests that the dopamine system of left

caudate is involved in the processing associated with the inhibition

of unwanted response.

This suggestion is consistent with the observation of hyperac-

tivity, agitation and inattention (due to loss of inhibitory control)

following lesion, destruction or shrinkage of the caudate head [22].

In a recent study impaired executive function in patients with

temporal lobe epilepsy has been attributed to the atrophy of left

caudate in vicinity of the area where we found dopamine release

[23]. It appears that the caudate is able to exert inhibitory control

due to its functional connection with the dorsolateral prefrontal

cortex (DLPFC) and ACC [24]. In animals dorsal caudate receives

cortico-caudate projections from the dorsolateral frontal area and

the cingulate [25]. Functional connection between these areas in

the human brain has been recently demonstrated in an fMRI

experiment [26]. In this experiment simultaneous activation of

these areas (the left dorsal caudate, DLPFC and ACC) was

observed when attention was focused on a target. Since focused

Figure 1. t-maps and time-activity curves showing changes in the rate of ligand dissociation during task performance. The striatal
areas where rate of ligand displacement increased significantly in the Incongruent condition of the flanker task are shown on the t-maps. The most
significant increase was observed on the dorsal aspect of the body of left caudate. The time-activity curves show the ligand concentration (open
circles) and least square fit (solid lines) in a striatal area (upper curve) and in the reference region (lower curves). The data on the left of the vertical
lines were acquired in the Congruent condition and those on the right were obtained in the Incongruent condition. Significant reduction in the
ligand concentration in the Incongruent condition suggests that the rate of ligand displacement increased during task performance. The increase was
due to competitive displacement induced by endogenously released dopamine. There was no significant change in the rate of ligand displacement in
the reference region (cerebellum). The time-activity curves were drawn using the mean data acquired from the voxels where maximum changes were
observed in each area. This analysis used the linear extension of reference region tissue model (LE-SRRM).
doi:10.1371/journal.pone.0028075.g001
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attention is required to resolve interference, the DLPFC and ACC

are most consistently activated during resolution of interference

caused by multiple response options [27]. In addition to

interference suppression, the caudate and its functional connection

to the DLPFC are needed to inhibit irrelevant options. It appears

that the same frontal areas, located in different hemispheres are

activated when the emphasis of task is shifted from response

selection to inhibition. These activations are lateralized on the left

hemisphere when a task requires response selection and on the

right, when the emphasis shifts to inhibition [28]. Further, clinical

evidence suggests that the activations associated with inhibition are

dependent on dopamine neurotransmission. That is why unmed-

icated PD patients have difficulty ignoring non-essential stimuli

[29,30,31].

The neural mechanism that allows dopamine to control

inhibition in the human brain is not known but animal studies

suggest a possible cellular mechanism. For example, after

dopamine neurons are depleted in monkeys, the number of

inhibited neurons reduces and the number of nonspecifically

activated cells increases significantly [3]. As a result these monkeys

find it difficult to select an appropriate response and focus

attention on a stimulus. This dopaminergic effect on focused

attention is validated in hyper-dopaminergic psychiatric conditions

like schizophrenia. These patients are generally hyper-attentive

[32,33] and have difficulty in shifting attention away from

irrelevant stimuli. Thus, it appears the inhibitory system works

most efficiently when dopaminergic activity is optimal. Both high

and low levels disrupt inhibition. This effect is similar to the

dopaminergic effect on cognitive functions, which are impaired at

both high and low levels of dopaminergic activity [34].

The other striatal areas where changes in dopamine release

were relatively small, process aspects of the flanker task that were

inadequately expressed in the current experiment. These aspects

include selection of an appropriate response. The response

selection is an important aspect of not only flanker task but also

those of learning and reward systems. The dopamine system is

believed to facilitate learning of the outcome of a response and

therefore, help us select the most rewarding response [35].

Therefore, dopaminergic agents alter outcome-based selection in

PD patients and change their bias for learning from negative

outcomes in favor of positive outcome [36]. This observation is

consistent with the actor-critic model of reward and reinforce-

ment. The model assumes that the dopamine system learns to

select the action that is most rewarding [5].

Striatal Dopamine and Executive Function
These results provide additional data to help us understand

dopaminergic processing of executive function. Previously, dopa-

mine release in the left and right caudate and the right putamen

was observed during set-shifting in Montreal card sorting task [37].

We observed dopamine release in the same areas in the current

experiment. The similarity is not surprising because set-shifts also

involve inhibition – inhibition of the current strategy. In addition

to inhibition, set-shift involves selection of a new strategy, which

(as discussed earlier) is not strongly expressed in the flanker task.

Probably because of this difference, there was a stronger activation

of the right caudate during set-shifting. Interestingly, dopamine

release in the right caudate is reported also in the spatial working

memory [38] and explicit motor memory tasks [10]. Since both of

these tasks required volunteers to select a response based on spatial

location of a stimulus, it appears that that the dopamine system of

right caudate is involved in the selection process. As discussed

earlier, dopamine of the left caudate is associated with inhibition.

Additionally, the evidence suggests that the dopamine of the right

putamen is also involved in inhibition. Therefore, increased

dopamine release in this area is observed in the flanker task

(current experiment), in the set-shifting experiment and during

processing of explicit motor memory task. All of these tasks involve

inhibition of unwanted response. These observations are consistent

with the BOLD activations observed in the right putamen in a go-

no-go task that involved inhibition without response selection [18].

However, we did not find dopamine release in this area in an

implicit motor memory task, which also required volunteers to

inhibit unwanted response but the inhibition in this experiment

was nonconscious [11]. The dopamine system of right putamen

therefore is involved in the processing of only voluntary inhibition.

It will therefore be interesting to see if dopamine is released in the

right putamen during processing of a task involving non-conscious

inhibition (e.g. negative priming).

The dopamine system of the left putamen is also involved in the

processing of executive function. It is activated in working memory

but not in set-shifting task. This system was activated in the current

Table 1. The rate of ligand displacement increased
significantly after task initiation (Incongruent condition) in
four striatal areas.

Region MNI (x,y,z) t-value of DU %DU %Dk2

L Caudate 210; 14; 8 2.58 384 142

R Putamen 24,4,2 2.10 230 157

L Putamen 222 4 26 2.04 269 143

R Caudate 16,16,14 2.04 308 119

The values were estimated using linear extension of simplified reference region
model (LE-SRRM).
MNI = Montreal Neurological Institute stereotactic coordinates; DU= change in
the rate of ligand displacement after task initiation; %DU and %Dk2 = %change
from the mean values measured in the striatum.
doi:10.1371/journal.pone.0028075.t001

Table 2. Receptor kinetic parameters measured before (Congruent condition) and after (Incongruent condition) task initiation.

Region MNI (x,y,z) BP0 (Cong) BP1 (Incong) DBP t-value DBP k2a (Cong) k2a (Incong) D k2a t-value D k2a

L Putamen 226,4, 26 3.85 2.84 26% 2.53 0.048 0.060 20% 1.62

L Caudate 212;8;10 3.38 2.44 28% 2.51 0.049 0.062 21% 2.07

R Putamen 24,8, 28 3.44 2.64 23% 2.21 0.049 0.059 17% 1.44

The values were estimated using extended simplified reference tissue model (E-SRTM).
MNI = Montreal Neurological Institute stereotactic coordinates; BP0 = ligand binding potential in the Congruent condition; BP1 = ligand binding potential in the
Incongruent condition; DBP = change in BP after task initiation; t-value DBP = t values of the difference in BP before and after task initiation; k2a = dissociation coefficient
of the specific binding (k2/k2-1); Cong = Congruent condition; Incong = Incongruent condition.
doi:10.1371/journal.pone.0028075.t002
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experiment also. In an earlier molecular imaging experiment we

found dopamine release in the posterior part of the left putamen

during planning and execution of motor responses [10,11,12].

Since both, working memory and flanker task (used in the current

experiment) involve planning and execution, this activation is

consistent with our earlier observations. The anterior left putamen

however may have a different function. A significant increase in

dopamine release in this area was recently observed following

rTMS (repetitive transcranial magnetic stimulation) induced

suppression of DLPFC during performance of Montreal card

sorting task [39]. This is an intriguing finding because it was

observed only when DLPFC activity is suppressed. It indicates that

the DLPFC controls dopamine release in the anterior left putamen

and that this area takes over some of the functions of DLPFC. It

also indicates that the dopamine systems of the structures located

inside and outside the striatum interact during processing of the

executive function. It is therefore important to study the role of

extrastriatal dopamine in executive processing. Unfortunately, in

the current experiment we were able to study only striatal

dopamine because the ligand 11C-raclopride does not bind in

detectable amount in the low receptor density areas outside the

striatum [13]. Dopamine released in these areas can however be

detected using a high affinity dopamine receptor ligands such as
18F-fallypride. We recently used this ligand to detect and map

dopamine released outside the striatum during emotional

processing [9]. Since a number of extrastriatal brain areas are

involved in the processing of executive function [4,18,27], our

understanding of the neurochemical control of human executive

function will remain incomplete until dopamine released in

extrastriatal areas is characterized.

Thus, the current experiment demonstrates that dopamine is

released in a number of striatal areas during processing of a flanker

task, which involves inhibition of irrelevant response options. The

most significant increase in dopamine release was observed on the

dorsal aspect of the body of left caudate. By providing evidence of

dopaminergic processing of an important executive function, the

results of this experiment will help us define dopaminergic control

of the human executive function. Additionally, the study

demonstrates that the neurochemical change associated with

cognitive processing can be detected and mapped using a single-

scan dynamic molecular imaging technique.

Materials and Methods

Ethics Statement
This study was approved by Partner’s Human Research

Committee, Boston, MA 02116. The IRB approved procedure

for obtaining written informed consent from each participant was

used in the study.

The study was conducted on right-handed healthy young

volunteers (n = 10) of either sex (mean age 33.1 years; male 4).

None of the volunteers or their first-degree relatives had current or

past history of a psychiatric or neurological disorder. Additionally,

volunteers had no history of chemical dependency, or use of a

dopamine-modifying drug in past 12 months. Pregnant women

were not included because of uncertain adverse effect of ionizing

radiation on developing fetus. After obtaining IRB approved

written informed consent volunteers were positioned on the bed of

a positron emission tomography (PET) camera and administered

intravenous bolus of a dopamine receptor ligand 11C-raclopride

(mean dose 13.6 mCi) at a high specific activity (mean specific

activity 1159 mCi/micromole). Immediately after the injection

volunteers performed a modified version of Eriksen’s flanker task

[2]. The PET data acquisition also started at the same time. The

data were acquired at 30 sec frames during the first 5 min and at

60 sec frames thereafter for the next 40 min, using an ECAT

EXACT HR+ PET camera operating in 3D mode.

In the flanker task volunteers were shown a series of 7

arrowheads and asked to press a key using the right index and

middle fingers to indicate the direction the arrowhead located in

the center (target) was pointing. They were asked to respond as

quickly and as accurately as possible. The task had a Congruent

and an Incongruent condition. The Congruent condition was

started immediately after the ligand injection and in this condition

all arrowheads pointed to the same direction (e.g., .......

or ,,,,,,,). After 25 min, unbeknownst to volunteers, this

condition was terminated and the Incongruent condition started.

In this condition direction of the target arrowhead was changed so

that the flanker and target arrowheads pointed to opposite

directions (e.g., ...,... or ,,,.,,,). The Incongru-

ent condition was administered for 20 min and in each trial the

stimulus was presented for 800 msec. It was followed by a cross

mark for 1900 msec (Figure 3). There was a 15 sec break after

every 4 min. The response time and accuracy of responses were

recorded in each trial and the ligand concentration was

dynamically measured during entire scan session.

The PET data were analyzed using methods used in our earlier

experiments [8,9,10,11,12]. The analysis involved measurement of

receptor kinetic parameters using modified versions of the

simplified reference tissue model or SRTM [40]. Based on these

Figure 2. t-maps of DBP showing reduction in the ligand
binding potential during task performance. The t-maps generat-
ed using extended reference region tissue model (E-SRTM) show striatal
areas where the ligand binding potential decreased significantly in the
Incongruent condition in comparison with the Congruent condition. It
was most significant in the left caudate and putamen. These areas are
located in close proximity to the locations where increased rate of
ligand displacement was observed (Figure 1). An agreement in the data
computed using two different receptor kinetic models significantly
enhances the reliability of results.
doi:10.1371/journal.pone.0028075.g002
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parameter values, the rate of ligand displacement (from receptor

sites) was estimated dynamically through out the experiment to

locate striatal areas where dopamine was released during task

performance. We also estimated the ligand binding potential (BP)

in the Congruent and Incongruent condition. These estimates

(along with the other receptor kinetic parameters) were used to

detect and map dopamine released during task performance.

Molecular Imaging and PET Data Analysis: The

dynamic molecular imaging technique exploits the competition

between an injected radioligand and endogenously released

neurotransmitter for occupancy of receptor binding sites [7].

Because of this competition dopamine released during task

performance displaces the ligand from receptor sites and reduces

its BP. Using receptor kinetic models, the displacement rate, BP

and other receptor kinetic parameters are dynamically measured

in this technique to detect and map dopamine released during task

performance. In previous experiments we used this method to

study dopamine release during performance of a number of

cognitive, emotional and behavioral tasks [8,9,10,11,12].

To measure receptor kinetic parameters, the PET data were

analyzed using the following steps: First, images were reconstruct-

ed as 1286128663 element volumes using a standard three-

dimensional filtered back projection algorithm with corrections for

photon attenuation, random coincidences, scatter, and dead time.

To minimize residual effects of head movement, images were

registered to align each frame to a common orientation. This was

accomplished by realigning all frames to a reference frame (the

frame acquired at 25 min). Thereafter, a mean image of the first

25 minutes’ acquisition was created and used as the source image

for spatial normalization, employing a raclopride template (which

matched the MNI template) developed in our laboratory. All

frames were then smoothed using a 5 mm FWHM Gaussian filter.

The routines of statistical parametric mapping software (SPM8;

Wellcome Department of Imaging Neuroscience, London) were

used for realignment, spatial normalization, and smoothing.

Thereafter, voxel-wise analyses were carried out on realigned,

normalized and smoothed images to estimate receptor kinetic

parameters in each subject. The analysis used receptor kinetic

models designed to detect transient change in kinetic parameters.

These models are described in earlier publications [12,13,14] and

explained briefly in the following paragraphs. Parameter values

were computed in each voxel at each time point to locate the areas

where values changed significantly after task initiation (i.e. in the

Incongruent condition). Additionally, time-activity curves were

drawn for the voxels showing maximum ligand displacement.

These computations used the cerebellum as a reference region and

assumed negligible density of dopamine receptors in this region. A

time-activity curve for the cerebellum was also drawn to estimate

clearance rate of the free and nonspecifically bound ligand.

Thereafter, the kinetic parameters (including the ligand BP) were

measured in each condition separately in each volunteer.

Individual values were then pooled to acquire cohort mean of

each parameter value in each condition. By comparing values

measured in the Congruent and Incongruent conditions, we

located voxels where the values (and ligand BP) changed

significantly after task initiation (Incongruent condition). Thus

multiple receptor kinetic parameters were used to detect and map

dopamine released during task performance.

Kinetic Models
We used the linear extension of simplified reference region

model or LE-SRRM [12,13], and the extended simplified

reference tissue model or E-SRTM [14] to measure receptor

kinetic parameters. Both models are modified forms of the SRTM

[40], which was developed to measure time dependent changes in

receptor kinetic parameters. There was a need to modify the

SRTM because it assumes steady physiological state throughout

the experiment. This assumption is not consistent with the design

of the single-scan method used in this study. Since task condition

was changed from Congruent to Incongruent in the current

experiment, the steady state was not maintained. The assumption

of steady state was eliminated in the LE-SRRM and the E-SRTM

using different approaches. The LE-SRRM allows the dissociation

rate of ligand to change in response to an altered synaptic level of

neurotransmitter by introducing a term c � exp({t(t{T))�
v(t{T) in the dissociation parameter of SRTM. In this term, c
represents the rate of change in ligand displacement, t allows

gradual recovery of kinetic parameters after initial rapid release of

dopamine, t denotes the measurement time, T is the time of

change in neurotransmitter level, and n is the unit step function.

The analysis using the LE-SRRM involved measurement of the

values of receptor kinetic parameters and c on a voxel-by-voxel

basis using the least squares fitting procedures. The null hypothesis

assumed that the task did not elicit dopamine release and there

was no change in the rate of ligand displacement after task

initiation. This hypothesis was tested in each subject and values of

the displacement parameter c were pooled across subjects to

acquire a cohort mean and variance. Additionally, parameters that

describe ligand transport and binding, and the time dependent

effects elicited by the task were also estimated. The differential

Figure 3. Schematic diagram of the sequence of events.
doi:10.1371/journal.pone.0028075.g003
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equation describing the model for the instantaneous concentration

history of the ligand can be expressed as:

PET tð Þ~R � CR(t)zK2 �
ði

0

CR(u)du{k2a

ði

0

PET(u)du{c

ðt

0

v(u{T)e{t(u{T)PET(u)du

where, CR is the concentration of radioligand in a region devoid of

specific binding (reference), PET is the concentration of radioli-

gand in a voxel with specific binding, R is the ratio of transport

rates in the tissue and reference regions, k2 describes clearance of

nonspecifically bound tracer from the voxel, and k2a includes

information on dissociation from the receptor, t denotes

measurement time, t allows gradual recovery of kinetic param-

eters, T is the task initiation time and n(u-T) is the unit step

function.

The E-SRTM [14] uses a different approach to account for a

change in physiological state induced by switching task conditions.

It assumes that the two conditions (i.e., Congruent and

Incongruent) are two separate datasets: one acquired before

(Congruent condition) and the other after (Incongruent condition)

an intervention. Since steady state was maintained within each

condition, the SRTM could be applied to each of these datasets.

This assumption allows measurement of receptor kinetic param-

eters in each condition. By comparing parameter values measured

in the two conditions in each voxel, dopamine released during task

performance was detected and mapped.

We used differential equations and solutions of the E-SRTM

[14] to measure the ligand BP and other kinetic parameters in the

Congruent and Incongruent conditions. These values were

measured at the voxel level to allow accurate mapping of

endogenously released dopamine. For these computations we

modified the original E-SRTM and included a bounded non-

linear optimizer routine [41] instead of a non-bounded routine,

the Marquardt algorithm [42]. This modification allowed us to

limit non-physiological solutions. For instance, we bound the

solution values of BP between 0 and 6 to prevent the possibility of

finding a solution that is outside the physiological range. To ensure

reliability of this modification we ran a computer simulation in

which tissue and reference region time activity curves were drawn

using bounded and non-bounded routines. We found essentially

identical values for all 4 kinetic parameters: R1, k2, BP0 (BP in the

Congruent condition) and BP1 (BP in the Incongruent condition).

The values of R1, k2, BP0 and BP1 were 0.95; 0.25; 2.31 and 2.19

respectively using non-bounded routine and 0.95; 0.26; 2.31 and

2.20 respectively with the bounded routine.

The LE-SRRM and E-SRTM differ not only in methods used

to eliminate the assumption of steady state, but also in approach

for detection of dopamine released during task performance.

While LE-SRRM assumes that a change in dissociation coefficient

(k2a) of the ligand is a sensitive indicator of endogenously released

dopamine, the E-SRTM assumes that dopamine release can be

detected more accurately by measuring changes in the ligand BP.

Furthermore, whereas the LE-SRRM assumes that the receptor

kinetic parameters return to the original state in about 10 minutes

if task remains unchanged, the E-SRTM makes no such

assumption. Since the two models use different approaches to

detect dopamine, we used both models to enhance reliability of

data analysis. To reconcile findings of the two models, we

identified blobs (.5 contiguous voxels) that were ‘activated’ after

task initiation in each model analysis. A blob was considered

‘activated’ if a) there was a significant change (p,0.05) in values of

c (estimated using LE-SRRM) after task initiation; b) the ligand BP

(measured using E-SRTM) was significantly lower (p,0.05) in the

Incongruent condition; c) there was at least 15% increase in

dissociation coefficient (k2) measured using E-SRTM in the

Incongruent condition; and d) maxima of the blobs were located

within 6 mm (in all three directions) of each other (to account for

Gaussian smoothing in the processing). Thus, we used multiple

kinetic parameters and approach to ensure validity of results.

Software to implement these models was developed using Matlab

(MathWorks, Natick, MA) utilizing the constrained minimization

routine of its optimization toolbox.

The LE-SRRM was used as the primary kinetic model because

validity of this model has been extensively studied [11,13].

Further, we used simulations to examine effect of task-induced

increase in regional cerebral blood flow (rCBF) on estimated

values of the receptor kinetic parameters. These simulations

indicated that changes in rCBF do not significantly affect

parameter values that were used to estimate dopamine release,

unless it is more than 120% of the original rCBF [13]. Since rCBF

changes during cognitive task performance are much smaller [43],

these changes are not likely to have significant effect on reported

results. During performance of a flanker task we observed less than

0.3% change in the MR signal intensity in a previous experiment

[4].
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