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The domesticated silkworm, Bombyx mori, is an economically important insect that
synthesizes large amounts of silk proteins in its silk gland to make cocoons. In recent
years, germline transformation strategies advanced the bioengineering of the silk gland as
an ideal bioreactor for mass production of recombinant proteins. However, the yield of
exogenous proteins varied largely due to the random insertion and gene drift caused by
canonical transposon-based transformation, calling for site-specific and stable expression
systems. In the current study, we established a targeted in-fusion expression system by
using the transcription activator-like effector nuclease (TALEN)-mediated targeted
insertion to target genomic locus of sericin, one of the major silk proteins. We
successfully generated chimeric Sericin1-EGFP (Ser-2A-EGFP) transformant, producing
up to 3.1% (w/w) of EGFP protein in the cocoon shell. With this strategy, we further
expressed the medically important human epidermal growth factor (hEGF) and the protein
yield in both middle silk glands, and cocoon shells reached to more than 15-fold higher
than the canonical piggyBac-based transgenesis. This natural Sericin1 expression system
provides a new strategy for producing recombinant proteins by using the silkworm silk
gland as the bioreactor.
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INTRODUCTION

The lepidopteran model insect Bombyx mori is an important economic insect and possesses a highly
specialized larval tissue, the silk gland, to synthesize and secret massive silk proteins in a few days of
the late final larval instar. On average, each silkworm eats 20 g of mulberry leaves and produces about
0.5 g of pure silk protein, holding the great promise to be a cost-effective system for mass production
of recombinant proteins (Ma et al., 2014). This efficient protein production capacity has been
described as an important model for tissue-specific gene regulation and exogenous protein synthesis
(Tomita et al., 2003; Takasu et al., 2016).

Silkworm silk proteins, which are the major components of cocoon shells, contain the insoluble
fibroin protein and hydrophilic sericin protein (Iizuka et al., 2008). Fibroin protein is synthesized in
the posterior silk gland (PSG), assembled in the lumen of the middle silk gland (MSG) with sericin,
and then secreted into the anterior silk gland (ASG) to spin and form cocoon shells. Fibroin proteins
account for 70%–80% of the total silk proteins, being composed by the heavy chain protein (FibH),
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light chain protein (FibL), and fibrohexamerin protein (Fhx) in a
molar ratio of 6:6:1 (Inoue et al., 2005). In recent years, the
transposon-based, transgenic silk gland expression system has
been established to express recombinant proteins with the FibL
promoter and its 5′-flanking sequences. The exogenous proteins
were secreted into the lumen of PSG together with fibroin
proteins and reached up to 0.84% of the whole cocoon shell
weight (Tomita et al., 2003). Subsequently, another transgene-
based expression system using the FibH promoter was established
and promoted the recombinant protein amount to 15% (w/w) per
cocoon shell (Tomita et al., 2007; Zhao et al., 2010). Most
recently, a targeted expression of ampullate spidroin-1 gene
with FibH gene replacement was developed successfully, with
an unprecedented yield up to 35.2% wt/wt of cocoon shells (Xu
et al., 2018). These cases suggested that fibroin genes can achieve
high recombinant protein yield, however, extraction and
purification of the proteins were complicated since the fibroin
protein was insoluble and the exogenous proteins are tightly
combined with silk fibers.

Sericin proteins weigh to nearly 20% of the total cocoon
shell weight, while the extraction and purification processes
from a cocoon shell are more practical since they are soluble.
Sericin proteins are synthesized in the MSG and mainly consist
of Sericin1 (Serl), Sericin2 (Ser2), and Sericin 3 (Ser3) proteins,
in which Ser1 has the dominant expression (Takasu et al.,
2007). They function as the glue protein and majorly coat and
cement fibroin filaments to form the silk fibers (Xu et al., 2014;
Dong et al., 2016). The transposon-based transgenic sericin
expression system ectopically expressed exogenous protein
with Ser1 promoter has been established and a series of
modifications on the regulatory elements both at promoter
and 3′ untranslated region (UTR) were performed to increase
the transcriptional and translational level of exogenous
proteins (Tomita et al., 2007; Iizuka et al., 2008; Wang
et al., 2013; Wang, 2013). Additionally, exogenous protein
yield could be increased under the mutant genetic background,
which is deficient in fibroin secretion (Inoue et al., 2005).
Altogether, these evidences suggested that transgenic
production of exogenous proteins was largely depending on
the regulatory elements, inspiring us to establish an in situ
sericin expression system with the original regulatory
sequences.

Transposon, especially the PiggyBac-mediated
transgenesis advent the genomic era in the silkworm,
however, targeted genome editing was still challengeable
till the site-specific nuclease was engineered successfully
(Maeder et al., 2008; Edgell, 2009; Boch, 2011; Mulepati
et al., 2014). Along with the quick development and
adaption of the site-specific nucleases, homing
endonucleases, including ZFN (zinc-finger nuclease),
TALEN (transcription activator-like effector nuclease), and
CRISPR/Cas9 (clustered regularly interspaced short
palindromic repeats/RNA-guided Cas9 nucleases) have
been wildly applied into a large range of host organisms
and cells (Zhang et al., 2014). All these nucleases created
double-stranded breaks (DSBs)at the targeted genomic DNA,
which trigger and utilize the endogenous DSB repair

machinery especially for homologous-directed repair to
introduce designed modifications or insertions. Up to now,
only TALEN-mediated targeting insertion was achieved in
the silkworm successfully, which may be attributed to
different DSB repair pathways that were used by these
engineered nucleases (Wang et al., 2013; Xu et al., 2018;
Zhang et al., 2018). Here we report establishment of an in
situ Ser1 in-fusion expression system in B. mori by using the
TALEN-mediated targeted insertion. High production of
exogenous proteins of enhanced green fluorescent protein
(EGFP) and the medically important human epidermal
growth factor (hEGF) were successfully detected in both
MSGs and cocoon shells. Compared with the transposon-
based random insertion, our strategy promoted the hEGF
production up to 15-fold. In conclusion, the current study
established a natural Sericin1 bioreactor system in B. mori,
showing great potential for mass production of recombinant
proteins.

MATERIALS AND METHODS

Silkworm Strains and Cell Line
The multivoltine, nondiapausing silkworm strain, Nistari, was
used for genetic transformation. Larvae were reared on fresh
mulberry leaves under the standard condition at 25°C (Tan et al.,
2013). Mammalian HEK293T cell was maintained in DMEM
(Gibco) medium supplemented with 10% fetal bovine serum at
37°C under 5% CO2.

Construction of Tanscription Activator-Like
Effector Nuclease and Homologous
Recombination (HR)-Mediated Donor
Plasmids
Pairs of TALENs were designed and constructed by
ViewSolid Biotech using Golden-Gate assembly and ligated
into the VK006-06 vector, under the control of T7 in vitro
transcriptional promoter. The activity of the TALENs was
examined using an SSA assay in HEK293T cell line (Wang et
al., 2013). One TALEN targeting sites located around the stop
codons (C) of the Sericin1 gene was chosen with the sequence
listed as follows: 5′-TAAGAATATCGGTGTTTaatacaactaaac
acgaCTTGGAGTATTCCTTGTA-3′, with the capital letters
as the TALEN recognition sites and lowercase letters as the
spacers. The targeting sites were verified by amplification
from the genomic DNA to exclude the single nucleotide
polymorphisms. A homology-directed recombination
(HDR) donor plasmid was constructed based on the
pGEM-T vector. For facilitating the HR recombination, the
HR5-IE1-DsRed-SV40 cassette was cut from pXL-IE1-DsRed
silkworm transgenic plasmid using BamHI single restriction
enzyme, and subcloned into the pGEM-T easy vector
(Promega) to generate pGEM-Red plain plasmid. A 1,000-
bp 3′-HR arm amplified from the genomic DNA at the right
flanking of the TALEN site was inserted into the pGEM-Red
plasmid at the SpeI restriction enzyme site using in-fusion
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ClonExpress™ II One Step Cloning Kit (RA, Vazyme Biotech
Co. Ltd.). The 1,000-bp left HR arm was amplified from the
left of the TALEN site, which was then fused with the EGFP or
hEGF expressing cassette. To achieve the sericin in-fusion
expression, EGFP- or hEGF-coding sequences was inserted
into the downstream of the right homologous arm using 2A
self-cleavage sequence (GAGGGCAGAGGAAGTCTTCTA

ACATGCGGTGACGTGGAGGAGAATCCCGGCCCT) at the
SacII restriction enzyme site. To optimize the exogenous proteins
expression, the Sericin1 polyA (PA) sequence was cloned and ligated
into the downstream of EGFP or hEGF sequence. In order to
facilitate the integration, two TALENs targeting sequences were
added to each side of the donors, to linearize the circular donor
plasmids.

FIGURE 1 | Designing and construction of TALENs. (A) Structure of silkworm Sericin1 gene and the targeting sites of TALENs. The black arrows indicate the start
codons. The black line is the genome DNA sequence and brown boxes represent Sericin1 exons. Sequences of TALENs are also listed, with pink shaded letters
indicating the TALEN recognition sites and blue letters are the spacers. (B) Scheme of 2A self-cleavage peptide (purple box)-mediated sericin-EGFP in-fusion expression
on Sericin1 loci (Ser–2A–EGFP). (C) Schema of SSA assay for TALEN cutting efficiency. Green boxes are firefly luciferase coding sequences, yellow boxes indicate
the repeat fragment flanking the target site. The stop codon and target site are presented as red and blue boxes, respectively. (D) Luciferase activity of the TALENs used
for integration. The bars stand for mean ± S.E.M (n � 3).

TABLE 1 | Transformation efficiency of transcription activator-like effector nuclease (TALEN)-mediated transformation. Note. A total of 640 preblastoderm stage embryos
were injected for each strain of animals.

Plasmid No. of injections G1 batch Positive G1 batch Transformation efficiency (%)

Ser–2A–hEGF 640 65 4 6.2
Ser–2A–EGFP 640 47 5 10.6
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Preparation of Transcription Activator-Like
Effector Nuclease mRNA and
Microinjection
TALEN-expressing vector under the control of the T7 in vitro
expression promoter was linearized using the NotI restriction
enzyme, purified with phenol:chloroform:isoamyl alcohol
(25:24:1), and sent for in vitro mRNA synthesis using the
mMessage mMachine T7 Ultra Kit (Life Technologies).
Mixture of the TALEN mRNA (250 ng/μl) and donor
plasmid (300 ng/μl) was injected into silkworm embryos at
the preblastoderm stage (Li et al., 2018). The injected eggs
were incubated at 25°C for 10–12 days until hatched and
reared on fresh mulberry leaves. G0 moths were crossed
with wild-type (WT) animals and positive G1 embryos
were screened under red fluorescence.

Total RNA extraction, first strand cDNA synthesis, and
quantification of mRNA total RNA was extracted from the
middle silk gland of WT, Ser-2A-EGFP, Ser-2A-hEGF, and
Ser-T-hEGF animals during the whole fifth instar larvae. One
microgram of the purified RNA was used for the cDNA
synthesis using the ReverAid First Strand cDNA Synthesis
Kit (Vazyme Biotech Co. Ltd.). The relative transcriptional

levels of silkworm Sericin1, EGFP, and hEGF were examined
by quantitative real-time PCR (qRT-PCR) using SYBR Green
Real-time PCR Master Mix (TOYOBO) with the following
primers sets, BmSer1RTF: 5′- GGCGAGCTCTACCATCTA
CG -3′ and BmSer1RTR: 5′- TCAGATTTGCTGCGTTTGTC-
3, EGFPRTF: 5′- GGTGAACTTCAAGATCCGCC-3′ and
EGFPRTR:5′- CTTGTACAGCTCGTCCATGC-3′, and
hEGFRTF: 5′- TGTCCTCTCTCACATGACGG-3′ and
hEGFRTR: 5′- ATGATGGCGTAATTCCCACC-3’. The
primer set that amplified a 136-bp fragment of B. mori
ribosomal protein 49 (Bmrp49) was used as the internal
control (Li et al., 2018). Three independent biological
replicates were used for all the qRT-PCR.

Genotyping of G1 Animals
The G1 DsRed2-positive larvae were used for genomic DNA
extraction. Insertion sites were confirmed using 5′- and 3′-end
junction PCR using the primers as follows: DsRed5′F: 5′-CAG
AAGTCATCGTTCAGGCG-3′ andDsRed5′R: 5′-TCCCACAAC
GAGGACTACAC-3′ for 5′-junction PCR, DsRed3′F: 5′-CAG
TTCGGTTATGAGCCGTG-3′ and DsRed3′R: 5′-ATCACCCAG
ACGAAGAGCAA-3′ for 3′-junction PCR. Amplification

FIGURE 2 | Genotyping of the transformed animals. (A, B) Junction PCR amplicons of the right and left flanking fragments in the SKI–2A–EGFP (A), and
Ser–2A–hEGF (B) transformed silkworms. Three individual silkworms were used for detection. The green arrows indicate the correct amplicons, and their lengths are
listed. M, marker; WT, wild type. (C) Sanger sequencing results for amplicons from (B) and (C). Red letters stand for the sequences of homologous arms, green letters
are the partial sequences of EGFP or hEGF, and black letters are the sequences of donor backbones.
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products were cloned into the pJET1.0 cloning plasmid and sent
for sequencing.

Protein Extraction and SDS-PAGE Analysis
Silk proteins were extracted from the MSG of the wandering
stage (W) larvae using the phosphate saline buffer (PBS) and
silkworm cocoon shells were cut into small pieces for
extraction using 8 M urea at 4°C overnight. The crude
protein was quantified using BCA kit (Thermo) and sent for
10% SDS-PAGE. Separated proteins were treated with
Coomassie brilliant blue (CBB) staining or transferred into
the nitrocellulose membrane (GE Healthcare).

Paraffin Embedding and
Immunohistochemistry
Silkwormmiddle silk glands extracted from theWT or Ser-2A-EGFP
animals were prefixed with Qurnah’s fixative. A 5-μm cross section
was cut with a Leica RM2235 microtome and sent for staining
according to our previous publication (Li et al., 2018). The sections
were incubated with an anti-EGFP (1:2,000, ABclonal) primary
antibody for 48 h and then washed for three times with PBS,
followed by treatment with an FITC-conjugated goat-anti-rabbit
secondary antibody (1:100, YEASEN). The nuclei were stained with
Hoechst (1:1,000, Beyotime) for 10min. Samples were analyzed with
a fluorescence microscope (Olympus, BX53).

FIGURE 3 | High production of enhanced green fluorescent protein (EGFP) protein by 2A mediated Sericin–EGFP in-fusion expression. (A) Relative transcriptional
level of Sericin1 inWT and Ser–2A–EGFP silkworms. qRT-PCRwas used to quantify the transcriptional level of Sericin1 and EGFP in (A) and (B). The silkworm ribosome
protein 49 (Bmrp49) ortholog was used as the internal reference. Three individual replicates were used for qRT-PCR, and the error bars represent the mean ± S.E.M. (B)
Western blotting of EGFP and Sericin1 protein in the middle silk gland (MSG) of wild-type (WT) and Ser–2A–EGFP silkworms at the wandering stage. (C)
Fluorescence observation of the silk gland in the MSG ofWT and Ser–2A–EGFP silkworms. Silk glands were extracted from the day 3 of the fifth instar larvae. Error bars
stand for 2.5 mm.
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Statistics Analysis of Data
All data were analyzed using GraphPad Prism (version 5.01) with
two-way ANOVA and the Dunnett’s tests. The error bars are the
means ± S.E.M. A p-value < 0.05 was used to determine
significance in all cases.

RESULTS

Targeting Silkworm Sericin1 With
Sequence-Specific Transcription
Activator-Like Effector Nucleases
In the current study, we targeted the Ser1 gene in B. mori to
generate a Ser1-EGFP in-fusion expression transformant, as
the proof-of-principle of our idea about the in situ expression

of exogenous proteins in the silkworm silk gland. We used
one pair of TALENs targeting sequence around the stop
codons of Ser1 to generate an in-fusion gene expression
(Figure 1A). The donor template carried 1,000-bp length
left and right homologous fragments which matched exactly
to the sequences flanking the TALEN target, as well as the 2A
self-cleavage peptide followed by the EGFP coding sequence
and Ser1 ployA sequences in between (Ser-2A-EGFP,
Figure 1B). In theory, this scheme would express the
target protein in the same manner with Ser1 since the
common native regulatory elements were used. Given this
idea, we designed three pairs of TALENs targeting the
C-terminal of the Ser1 gene, and selected the one with the
highest cutting efficiency (31.5-fold to the control,
Figure 1D), which was determined by an in vitro SSA
assay to perform subsequent experiments (Figures 1C, D).

Construction of Ser1-Targeted Transgenic
Silkworms
In vitro synthesized TALENs mRNA and HR donors were
coinjected into 640 silkworm preblastoderm eggs in each
group to generate Ser–2A–EGFP transgenic line. In the G1
animals, five independent fluorescence-positive silkworm
broods were obtained, achieving a 10.6% homologous
recombination efficiency (Table 1). Genotype of the
transformed animals were examined by through 5′- and 3′-
junction PCR followed by Sanger sequencing using three
animals from each G1 transformed silkworm broods. The
results indicated that the integration events were precise and
seamless (Figure 2A).

Concordance of Enhanced Green
Fluorescent Protein With Sericin1
Expression
In order to make sure that the EGFP insertion did not affect
native Ser1 gene expression, we first examined the
transcription of Ser1 by using qRT-PCR. In the
heterozygous animals, Ser1 presented relative low
expression at the early stages of the final instar larvae,
increased dramatically at the third day of larvae, and
reached the peak at the wandering stage, being consistent
with the WT animals (Figure 3A, Li et al., 2014). We observed
that the expression level of Ser1 in the Ser–2A–EGFP animals
was significantly decreased at L5D3 and L5D4, being
comparable with the wild type at the late larval stages
(Figure 3A). This result indicated that the integration of
EGFP coding sequence had some degree of impact to the
native Ser1 transcription (Figure 3A). We also detected EGFP
proteins in the MSG of the Ser–2A–EGFP animals by Western
blotting (Figure 3B). Observation of the bright EGFP
fluorescence further confirmed the significant production
of EGFP in Ser–2A–EGFP silkworm MSGs specifically
(Figure 3C).

In the Ser–2A–EGFP silkworms, we assumed EGFP
protein colocalized with endogenous Ser1 in the surface

FIGURE 4 | Immunohistochemistry of EGFP in the MSG of
Ser–2A–EGFP animals. EGFP protein distributes in the sericin layer of the
MSGs as indicated by the anti-EGFP primary antibody. The yellow bracket
indicates the cellular layer and green bracket indicates the lumen of
MSGs. MSGs were dissected from the WT or Ser–2A–EGFP animals at the
third day of the fifth instar larvae (L5D3). Hoechst was used to stain the
nucleus. Scale bars stand for 100 μm.
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of the middle silk gland, since they shared the same
regulatory elements. In fact, EGFP proteins were
exclusively detected in the cell layer of MSGs by using
anti-EGFP primary antibody at day 3 of the final larval
instar, which coated the inner fibers constructed majorly

with fibroin proteins (Figure 4). Furthermore, a
cytoplasmic distribution of EGFP was detected by staining
the nucleus with Hoechst. These results confirmed the
exogenous EGFP protein expressed in the MSG efficiently
and specifically.

FIGURE 5 |Quantification of EGFP protein in Ser–2A–EGFP cocoon shells. (A) Fluorescence observation of Ser–2A–EGFP cocoon shells. The upper row is theWT
cocoon shells, and the lower row is the Ser–2A–EGFP cocoon shells. Both bright and GFP field are shown. Scale bars stand for 1 cm. (B) Quantification of the EGFP
protein in the Ser–2A–EGFP cocoon shells. Proteins were diluted in a twofold series dilution manner and sent for analysis. The maximum amount for crude silk proteins
and EGFP standard were 120 μg and 200 ng, respectively.

TABLE 2 | Comparison of the silkworm economic traits.

Genotype Female Male

Whole cocoon
weight (g)

Cocoon shell
weight (g)

Cocoon shell
rate (%)

Whole cocoon
weight (g)

Cocoon shell
weight (g)

Cocoon shell
rate (%)

WT 1.127 ± 0.046 0.118 ± 0.008 10.45 ± 0.003 0.890 ± 0.030 0.113 ± 0.011 12.65 ± 0.005
Ser-2A-hEGF 1.062 ± 0.049a 0.105 ± 0.007a 9.91 ± 0.004a 0.825 ± 0.047a 0.097 ± 0.011a 11.66 ± 0.007a

Ser-T-hEGF 1.023 ± 0.047a 0.107 ± 0.012a 10.42 ± 0.011a 0.754 ± 0.046a 0.097 ± 0.013a 12.95 ± 0.016a

Ser-2A-EGFP 0.913 ± 0.038a 0.107 ± 0.008a 10.17 ± 0.005a 0.766 ± 0.041a 0.092 ± 0.010a 12.49 ± 0.006a

Note. Female and male animals were separated and used for statistics. The data shown are mean ± S.D. (n � 30). The asterisks stand for significance with p < 0.05.
aSignificance between WT and transformed lines.
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Expression of Enhanced Green Fluorescent
Protein in the Ser–2a–EGFP Cocoon Shells
Being secreted together with Sericin1 protein, the EGFP protein
was detected in the cocoon shells (Figure 5A). Nevertheless, the
chimeric cocoon shells of Ser–2A–EGFP heterozygous animals
were thinner and softer than the WT as we observed (Figure 5A).
We measured the average weight of Ser–2A–EGFP silkworm
cocoon shell, and found that it was decreased to 90.7%
(0.107 ± 0.008 g) and 81.4% (0.092 ± 0.010 g) of the WT
females and males, respectively (Table 2).

To quantify the production of EGFP protein in the cocoon
shells of Ser–2A–EGFP animals, we extracted the crude proteins
from the cocoon shells by using 8 M urea at 4°C overnight and

performed Western blotting analysis. The experiment was
conducted using both the extracted crude proteins and EGFP
standard protein with a twofold series dilution (Figure 5B). In the
heterozygous animals, the yield of EGFP protein reached to 1.05%
(w/w) of the cocoon shell weight, which was higher than the
existing transgenic-mediated production as reported previously
(Figure 5B).

Expression of the Short Peptide hEGFUsing
Sericin1 In-Fusion System
Since silkworm sericin protein is hydrophilic and does not cause
allergic reactions, it has been widely used as a new medical

FIGURE 6 | Expression of human epidermal growth factor (hEGF) protein in the Ser–2A–hEGF animals. (A) Comparison of hEGF transcriptional levels between
Ser–T–hEGF and Ser–2A–hEGF animals. (B) Detection of Sericin1 inWT, Ser–T–hEGF, and Ser–2A–hEGF silkworms. qRT-PCRwas used to quantify the transcriptional
levels of Sericin1 and hEGF in A and B. The silkworm ribosome protein 49 (Bmrp49) ortholog was used as the internal reference gene. Three individual replicates were
used for qRT-PCR, and the error bars represent the mean ± S.E.M. (C, D)Coomassie brilliant blue staining for the proteins extracted from theMSG (D) and cocoon
(D) of Ser–T–hEGF and Ser–2A–hEGF silkworms. The black arrows indicate hEGF protein. M, protein marker; T, Ser–T–hEGF; 2A-hEGF, Ser–2A–hEGF. Size of protein
marker bands are listed.
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material, including in wound healing (Aramwit et al., 2012).
Here, we applied our sericin in-fusion expression system to
produce the hEGF protein, the substrate of EGFR signaling
which involves in re-epithelialization of epidermal wound
healing and keratinocyte stem cell proliferation, in
silkworm cocoons (Nanba et al., 2013). The hEGF gene was
183 bp and encoded a 7.2 KD short peptide. Here, we injected
640 WT eggs with the mixture of TALEN mRNA and donor
plasmid, and four fluorescence-positive silkworm broods were
obtained from a total of 65 G1 broods, the transformation
efficiency reached 6.2% (Table 1). At the same time,
transposon-based, transgenic silkworm expressing the
hEGF driven by Ser1 promoter (Ser–T–hEGF) was also
constructed as the control to compare protein yields with
the Ser–2A–hEGF animals.

We first examined the expression level of Sericin1 gene, and
no significant difference was observed when comparing both
transformed lines to the WT silkworms (Figure 6A).
However, the transcriptional level of hEGF was increased
to 18-fold of that in Ser-T-hEGF animals at the W stage
(Figure 6B), suggesting the native Ser1 regulatory elements
or the local genomic DNA context were also important for
target gene expression. Significant increase on the hEGF
protein expression was detected in both the MSG and
cocoon of Ser–2A–hEGF when compared with the
Ser–T–hEGF animals, respectively (Figures 6C, D).
Altogether, we successfully adapted the Ser1 in-fusion
system to express the therapeutically important factor
hEGF, which is promising for being used as a new
biomedical substrate.

DISCUSSION

In the current study, we successfully established a Ser1 in-
fusion expression system by using the TALEN-mediated,
targeted gene integration in B. mori. This strategy was then
used to express recombinant proteins specifically in the
middle silk gland driven by the natural Ser1 regulatory
elements.

The silkworm silk gland has been developed as an efficient
bioreactor for a long period based on transposon-based
transgenesis (Royer et al., 2005; Mori et al., 2014). Two
systems, fibroin and sericin, have been developed for
recombinant protein expression (Zhao et al., 2010; Wang
et al., 2015; Xu et al., 2018). However, transposon-based
transgenic production of the exogenous proteins was
limited for several reasons. First, piggyBac-mediated
transgene introduces the exogenous fragments into the
undefined genome locus. Therefore, the genetic background
and production of recombinant protein varied largely between
different transgenic lines (Tomita et al., 2007; Wang et al.,
2013). In addition, transposon-mediated transgene is instable
and often causes gene drift. Besides, integrated fragments
introduced by transgenesis are out of strict control and
ubiquitously expressed, causing toxicity for the host and
leading to high mortality (Tomita et al., 2007).

Here we performed a 2A-mediated Ser1 in-fusion
expression by creating double-stranded breaks at the
C-terminal of the Ser1 genomic loci, and integrated either
EGFP or hEGF at the downstream seamlessly. High
production of EGFP was detected in Ser–2A–EGFP animals
in both the middle silk glands and cocoon shells. It was
attributed to this system that uses the whole Ser1 promoter,
which may optimize the promoter activity. Another benefit is
that the in-fusion expression system did not disrupt the
expression of the natural Ser1 gene and has less effect on
that according to our results, loading few fitness costs on the
host animals compared with the transgene strategy. However,
we still observed that the overexpression of EGFP with this
strategy produced a thinner cocoon shell (Figure 5A), which
had the similar phenotype with the fibroin-deficient line Nd-
sD, implying that the native Fibroin gene expression may be
affected, which mechanism needs further exploration. In
regard to the comparison between Ser–2A–EGFP and
Ser–2A–hEGF lines, we also observed some degree of effect
on the Ser1 expression with the smaller peptide (hEGF)
integration (Figure 6A), we assumed that was caused by the
toxicity by the high expression of hEGF in the MSG. It also
should be noticed that the protein size-dependent effect on the
fitness cost, since larger proteins being fused with sericin, the
higher the possibility for deformed configuration on Sericin1
protein itself. Overall, this in-fusion expression strategy holds
the great potential for recombinant protein expression in the
silk gland.

In addition, the 2A-mediated in-fusion expression for hEGF
increased to more than 15-fold than that in the transgenesis
animals (Ser–T–hEGF, Figure 5A). In Ser–2A–hEGF animals, the
completely native promoter and other upstream regulatory
elements of Ser1 gene were subjected, rather than only the
seed sequence of the promoter was used in the Ser–T–hEGF
animals, which excludes the possibility that some potential
enhancers existed in the upstream of the Sericin1 promoter.
We also cloned a 404-bp 3′ UTR sequences of Ser1 and
inserted it into the downstream of EGFP or hEGF, further
mimicking the native Ser1 expression. Furthermore, we used
the Thosea asigna virus-derived T2A self-cleavage peptides to
achieve the in-fusion expression (Diao and White, 2012). T2A
peptide forces the ribosome skip between the glycine and proline
amino acids, without the peptide bond during translation,
therefore the native Ser1 and linked EGFP or hEGF are
transcribed together with Sericin1 but translated independently.

Actually, the Ser–2A system has wide usage on both genetics
and biochemistry other than the application for single protein
expression. One example is expressing tandem linkage of more
than one copy of hEGF or other proteins in MSG, which may
further increase the expression efficiency. In addition, 2A peptide
can be used to link multiple protein-coding sequences tandemly
and to be controlled by a single promoter, simplifying the
construction aim to expression multiple factors. In addition to
in-fusion with sericin, the exogenous proteins or sequences can be
inserted into any site desired including the exon, intron, and even
the untranslated regions, reducing the side effect on the targeted
gene itself, and it also can be used for protein tagging or
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manipulation. In conclusion, the current work established a natural
Ser1 expression system, providing us a new genetic strategy for the
mass production of exogenous proteins and further promote the
silk gland to be an excellent bioreactor system.
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