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Abstract

Transcriptome-wide association studies (TWAS) integrate gene expression prediction models

and genome-wide association studies (GWAS) to identify gene–trait associations. The power of

TWAS is determined by the sample size of GWAS and the accuracy of the expression predic-

tion model. Here, we present a new method, the Summary-level Unified Method for Modeling

Integrated Transcriptome using Functional Annotations (SUMMIT-FA), that improves the ac-

curacy of gene expression prediction by leveraging functional annotation resources and a large

expression quantitative trait loci (eQTL) summary-level dataset. We build gene expression pre-

diction models using SUMMIT-FA with a comprehensive functional database MACIE and the

eQTL summary-level data from the eQTLGen consortium. By applying the resulting models

to GWASs for 24 complex traits and exploring it through a simulation study, we show that

SUMMIT-FA improves the accuracy of gene expression prediction models in whole blood, iden-

tifies significantly more gene-trait associations, and improves predictive power for identifying

“silver standard” genes compared to several benchmark methods.
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1 Introduction

Genome-wide association studies (GWASs) have identified large lists of disease-associated vari-

ants [1]. Most of the identified associations reside in non-coding regions of the genome [2], which

has spurred the development of large-scale expression quantitative trait loci (eQTL) analyses [3–5]

and transcriptome-wide association studies (TWASs) [6–12]. TWASs seek to investigate the causal

molecular mechanisms underlying complex diseases through the integration of expression reference

panels and trait-specific GWASs in a two-step procedure. First, a regression of gene expression

on cis-eQTL genotypes is conducted to create expression prediction models for each gene. Second,

the relationship between predicted gene expressions and GWAS traits are determined through an

association test, elucidating putative causal effects of genes on traits of interest.

The power of TWAS is determined by the accuracy of the expression prediction model in Step 1

and the sample size of GWAS in Step 2 [6, 13]. As the sample size of GWAS continues to increase,

thanks to the extensive consortium efforts, the prediction accuracy of the expression prediction

model remains a limiting factor. To address this challenge, several methods have been proposed to

improve the prediction model accuracy by leveraging auxiliary information from other tissues [10,

12], functional annotations or atlases of regulatory elements [14, 15], and summary-level expression

reference panels (SUMMIT) [6]. As an example, by using the summary-level expression reference

panel with a much larger sample size, SUMMIT outperforms many benchmark methods in terms

of expression prediction model accuracy and subsequent TWAS power [6]. However, SUMMIT

only relies on the summary-level expression reference panel and ignores comprehensive functional

annotations that may be useful for improving expression prediction model accuracy. Functional

annotations [16–18] assess functional roles for both coding and non-coding variants, providing a

useful prior probability that a genetic variant causally affects the expression levels. We hypothesize

that the accuracy of SUMMIT models (which are constructed by using summary-level expression

reference panels) can be further improved by leveraging functional annotations, leading to higher

power of TWAS.

To test our hypothesis, we develop SUMMIT-FA (Summary-level Unified Method for Modeling

Integrated Transcriptome using Functional Annotations), an extension of the SUMMIT [6], that
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improves the accuracy of gene expression prediction models by leveraging annotation resources from

the Multi-dimensional Annotation-Class Integrative Estimation (MACIE) database [18] to priori-

tize functional variants. MACIE synthesizes multiple categories of annotations, such as evolutionary

conservation annotations and epigenetic annotations, and consistently provides the state-of-the-art

performance in discriminating between functional and non-functional variants [18]. Briefly, we craft

gene expression prediction models for whole-blood tissue using a summary-level eQTL database

provided by the eQTLGen consortium [5], the largest-to-date publicly available meta-analysis fea-

turing samples from 37 cohorts and 31,684 blood samples, and functional annotations provided by

MACIE [18]. These models are then combined with the previous set of SUMMIT [6] models to

significantly improve its performance. The elevated utility of SUMMIT-FA is thoroughly demon-

strated via simulation studies and application to GWAS summary statistics for 24 complex traits.

Notably, SUMMIT-FA increases expression prediction accuracy in whole-blood tissue, including

for genes with low expression heritability, enhances power to detect associations between genes

and phenotypes beyond preceding benchmark methods, and achieves higher predictive power for

identifying “silver standard” genes, where “silver standard” genes are curated from information

independent of GWAS results (see Methods section). A database of the SUMMIT-FA models and

results is available as a resource to the community.

2 Results

2.1 SUMMIT-FA overview

SUMMIT-FA extends SUMMIT [6], a recently developed TWAS framework that leverages large-

scale eQTL summary-level data to predict gene expression levels, to further improve accuracy in

expression prediction and subsequent power for association testing. Briefly, SUMMIT-FA follows

much the same scaffolding as SUMMIT: for each prospective gene, nine expression prediction models

are trained on eQTL summary-level data from 31,684 whole-blood sample provided by eQTLGen

[5]. Then, for each model with satisfactory imputation accuracy (R2 > 0.005), associations between

predicted gene expression levels and phenotypes are tested. Given the potential correlation of p-

values from the distinct models, the Cauchy combination test [19, 20] is applied to effectively and
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Figure 1: SUMMIT-FA Workflow. SUMMIT-FA proceeds in two steps. First, build gene
expression prediction models. Second, test associations between traits of interest and imputed
expression, aggregating the results from nine distinct prediction models.

efficiently aggregate the nine separate results into a single one. The major advantage of SUMMIT-

FA over its predecessor lies in four new gene expression prediction models that rely on MACIE

[18] functional annotations. In short, a variant with a high MACIE_anyclass score (the posterior

probability a variant is in some way functional, see [18] for details) will receive a lower penalty in

the regression, resulting in prioritization of those variants believed to be more likely causal a priori.

Additionally, each of the four models uses only SNPs with MACIE_anyclass greater than a given

cutoff. For more details, see the Methods section.

2.2 SUMMIT-FA constructs more analyzable expression models

To demonstrate the elevated utility of SUMMIT-FA, we compared the model accuracy for gene

expression prediction in whole blood tissue for SUMMIT-FA, SUMMIT (its predecessor) [6], and

five benchmark methods: PrediXcan [8], TWAS-FUSION [7], UTMOST [10], MR-JTI [12], and

Lassosum [21]. In an effort to make comparisons fair, we focused only on genes with estimated

R2 ≥ 0.01 for SUMMIT-FA and SUMMIT (to match the other methods) that exist in eQTLGen
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data. PrediXcan, TWAS-FUSION, UTMOST, and MR-JTI were trained using GTEx data, and

the prediction accuracies (R2) were based on a cross-validation procedure and provided by the

authors. SUMMIT-FA, SUMMIT, and Lassosum were trained using summary-level eQTL data

from the eQTLGen, and prediction accuracies were determined in an independent test dataset

drawn from GTEx version 8 that was not included in the eQTLGen meta-analysis. Notably,

SUMMIT-FA constructed satisfactory (in this case, R2 > 0.01) expression prediction models for

more genes than the preceding methods: 12, 132 for SUMMIT-FA vs. 9, 749 for SUMMIT, 7, 512

for PrediXcan, 5, 411 for TWAS-FUSION, 7, 236 for UTMOST, 9, 576 for MR-JTI, and 8, 249

for Lassosum. Crucially, SUMMIT-FA successfully developed models for the majority of genes

that SUMMIT and the benchmark methods did, 10, 018 (81.9%) out of the 12, 230 (unique genes

across all other methods). Furthermore, SUMMIT-FA built satisfactory prediction models (with

R2 ≥ 0.01) for an additional 950 genes beyond what was accomplished by SUMMIT or any of the five

benchmark methods. Compared with SUMMIT alone, SUMMIT-FA built satisfactory prediction

models (with R2 > 0.01) for additional 2,383 genes (24.4% improvement). These improvements

demonstrate the marked utility of MACIE functional annotations in TWAS methods. The direct

impact of their inclusion is seen as SUMMIT-FA achieved significantly higher prediction accuracy

across the eQTLGen gene set than SUMMIT (p < 2.2 × 10−16 per the paired Wilcoxon rank-

sum test) and other competing methods (PrediXcan, TWAS-FUSION, UTMOST, MR-JTI, and

Lassosum; all p < 2.2× 10−16 per the paired Wilcoxon rank-sum test).

2.3 SUMMIT-FA pinpoints significantly more associations

We explored the downstream performance of SUMMIT-FA in identifying significant associations

by applying it to GWAS summary statistics of 24 complex phenotypes (see Supplementary Table

1 for a list of phenotypes, Supplementary Data 1 for full SUMMIT-FA association scan results).

We then compared results from SUMMIT-FA to SUMMIT and the five aforementioned benchmark

methods (PrediXcan, TWAS-FUSION, UTMOST, MR-JTI, and Lassosum). While both SUMMIT-

FA and SUMMIT successfully analyze all genes with genetic heritability (i.e. prediction R2) > 0.5%,

we first focused on all genes with heritability > 1% for fair comparison with other benchmark

methods (Figure 2b). Across all traits, SUMMIT-FA identified 4,049 significant gene-phenotype
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associations, which is a 21.3% increase over SUMMIT (p = 7.2× 10−5 via the one-sided Wilcoxon

signed-rank test), a 161.4% increase over PrediXcan (p = 4.8 × 10−5), a 183.7% increase over

TWAS-FUSION (p = 4.7 × 10−5), a 124.2% increase over UTMOST (p = 5.6 × 10−5), a 132.3%

increase over MR-JTI (p = 9.5× 10−7), and a 102.6% increase over Lassosum (p = 4.7× 10−5).

We further compared each method on a common set of 3, 948 genes that could be analyzed

by each (Figure 2c). For the common set of 3, 948 genes, both SUMMIT and SUMMIT-FA built

expression prediction models with high prediction accuracy. The average R2 values for SUMMIT

and SUMMIT-FA were 0.161 and 0.167, respectively. As a result, SUMMIT-FA and SUMMIT

performed similarly and identified 1, 473 and 1, 445 significant associations, respectively, though the

improvement of SUMMIT-FA over other benchmark methods is still quite large (a 32% increase in

significant associations over the next highest-performing method, Lassosum). This result is aligned

with our simulation study: including MACIE functional annotations is quite impactful for genes

with lower expression heritability but significantly less so for genes with high expression heritability.

Lastly, recalling that SUMMIT provided a step forward in the field given the ability to analyze

genes with lower heritability (0.005 ≤ R2 < 0.01), we examined these genes in more detail for

SUMMIT-FA. For SUMMIT-FA, 14, 309 genes possess R2 ≥ 0.005; of these, 2, 177 have 0.005 ≤

R2 < 0.01. The 2, 177 lower heritability genes produce 642 significant gene-trait associations, a

relatively similar ratio to that of genes with R2 ≥ 0.01: 12, 132 genes and 4, 049 significant gene-

trait associations. This gives further credence to the notion that lower heritability genes have

notably larger causal effect sizes on complex phenotypes [6, 22].

2.4 SUMMIT-FA improves predictive power for identifying “silver standard”

genes

We applied SUMMIT-FA and the benchmark methods to a set of “silver standard” genes, which

are curated from information independent of GWAS results and considered highly likely to be causal

in mediating associations between phenotypes and GWAS loci. As per Barbeira et al. [23], the silver

standard gene set consists of 1, 258 gene-phenotype pairs from the Online Mendelian Inheritance in

Man (OMIM) database [24] and an additional 29 pairs crafted from rare-variant results in exome-

wide association studies. All silver standard gene-phenotype pairs are in Supplementary Data
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2.

We used the silver standard gene set to compare sensitivity and specificity among the methods

(Figure 2d). Notably, SUMMIT-FA produced the highest AUC (0.809), though the six benchmark

methods (AUCs ∈ [0.685, 0.777]) still performed reasonably well, reinforcing the notion that TWAS

methods can successfully identify putative causal genes. We further conducted a one-sided Delong

test for the difference in AUC for the receiver-operator curves, resulting in a significant difference

between SUMMIT-FA and TWAS-FUSION (p = 0.015), MR-JTI (p = 0.012), and UTMOST

(p = 0.002). Potentially significant differences were found between SUMMIT-FA and SUMMIT

(p = 0.056), PrediXcan (p = 0.080), and Lassosum (p = 0.058). Notably, the TWAS framework,

including SUMMIT-FA, can be considered a type of Mendelian randomization or instrumental

variable regression [25, 26]. The optimal instrument in this context is the prediction model with

the highest accuracy [27]. As SUMMIT-FA increased the accuracy of its gene expression prediction

models, it outperformed its contemporaries in identifying “silver standard” genes.

2.5 Simulation results

We conducted a simulation study to evaluate the accuracy and subsequent downstream power

to detect associations of models produced by SUMMIT-FA using the gene CHURC1. We com-

pared with its predecessor SUMMIT and three additional benchmark methods: Lassosum, TWAS-

FUSION, and PrediXcan. We began by examining the accuracy, or R2, of gene expression pre-

diction models built from the five methods (Figure 3a). SUMMIT-FA drastically outperforms the

two methods that rely on individual-level expression reference panels (and thus have a significantly

smaller sample size), TWAS-FUSION and PrediXcan. This is expected, as increasing the sample

size of the reference has been shown to increase accuracy in gene expression imputation [6]. The

two other methods that rely on larger, summary-level reference panels, SUMMIT and Lassosum,

are significantly more accurate, though SUMMIT-FA still outperforms both. As an example, when

h2p = 0.1, h2e = 0.01, and pcausal = 0.05, the median prediction R2 for 1, 000 replicates for SUMMIT-

FA is 0.81%, higher than the 0.75% for SUMMIT and 0.61% for Lassosum. We next demonstrated

the elevated power of the downstream association tests for SUMMIT-FA (Figure 2b). Across dif-

ferent values for sparsity level (pcausal) and expression heritability (h2e), only SUMMIT approaches
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Figure 2: Method Comparison a) UpSet plot on common gene set for which R2 ≥ 0.01. b)
Number of significant gene-trait associations for all methods and genes across 24 GWASs. c)
Number of significant gene-trait associations for all methods on a common set of genes across 24
GWASs. d) ROC plot for identifying silver standard genes.
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SUMMIT-FA’s power. For example, when h2p = 0.1, h2e = 0.005, and pcausal = 0.05, the power for

SUMMIT-FA is 0.798, 0.723 for SUMMIT, 0.282 for Lassosum, 0.002 for TWAS-FUSION, and 0.0

for PrediXcan.

It has been shown that genes with lower expression heritability (i.e. prediction R2 ∈ [0.005, 0.01))

generally have larger effect sizes on complex phenotypes [22] and thus are important to be tested in

TWAS [6]. As such, it is paramount that SUMMIT-FA retains SUMMIT’s ability to achieve satis-

factory performance for genes with low expression heritability. We simulated data with h2e = 0.005

to examine this, which is shown in Figure 3a. SUMMIT-FA consistently achieves satisfactory re-

sults; as an example, when h2e = 0.005, and pcausal = 0.05, SUMMIT-FA’s median prediction R2 is

0.36%, 14.6% higher than SUMMIT’s 0.31%.

We demonstrated consistent results for an additional randomly selected gene, KRIT1, to ensure

that genetic architecture is not the driving force of the simulation results (Supplementary Figures

4-5). We further ran 20, 000 simulation replicates under the null hypothesis to evaluate Type

1 error rates. Every method controlled Type 1 error rates well (Supplementary Figure 3). To

summarize, the simulation results demonstrate the viability of SUMMIT-FA models for use in

predicting gene expression and subsequent downstream association tests. Importantly, SUMMIT-

FA’s elevated performance beyond its predecessor SUMMIT, in particular in the low expression

heritability setting, demonstrated the advantages of including MACIE functional annotations in

the model construction.

3 Discussion

By including functional annotations provided by MACIE [18], models built by the new method

SUMMIT-FA achieve increased gene expression prediction accuracy beyond those of its predecessor

SUMMIT [6], which subsequently increased the downstream power to detect risk genes for complex

phenotypes. Given its performance in the analyses of 24 distinct GWAS and a simulation study,

SUMMIT-FA marks a substantial step forward from preceding methods. Specifically, SUMMIT-

FA improved gene expression prediction accuracy, pinpointed more gene-trait associations, was

better powered to detect silver standard genes, and, importantly, maintained and improved upon
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(a) Imputation R2

(b) Statistical Power

Figure 3: Simulation performance comparison based on gene CHURC1 a) Plots of impu-
tation R2 in test samples by SUMMIT-FA, SUMMIT, Lassosum, TWAS-FUSION, and PrediXcan
for varied proportion of causal SNPs pcausal and DNAm heritability h2e, with phenotypic heritabil-
ity h2p = 0.1. b) Subsequent power measurements for each method with phenotypic heritability
h2p = 0.1. Empirical power was determined by the proportion of p-values < 2.5× 10−6.

its predecessor’s ability to analyze genes with low heritability of expression (i.e. R2 ∈ [0.005, 0.01)).

These genes generally have larger effect sizes on complex phenotypes [6, 22], and as such new TWAS

methods ought to ensure they remain analyzable.

As a TWAS method, SUMMIT-FA may be viewed as one type of Mendelian randomization

(MR) [25, 26]. Thus, it can allow for valid causal interpretations, but only when every genetic

variant included in the gene expression prediction models is a valid instrument variable (IV) [26,

28, 29]. Given that horizontal pleiotropy is widespread [30], it is likely that IV assumptions are

violated, and we in turn recommend that those who wish to make use of this resource do so along

with other complementary methods, such as fine-mapping [31, 32] or colocalization [33], both of

which can prioritize putatively causal genes in different aspects.
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Naturally, SUMMIT-FA is largely motivated by our previous method SUMMIT [6] and the

recent development of the MACIE functional annotations [18], which, unlike preceding annotation

sets, cover the entirety of the genome. While some TWAS methods integrate additional datasets

beyond GWASs and gene expression panels [10, 12, 34], so far as we are aware, none incorporate

comprehensive functional annotation databases like MACIE (which has been shown to outperform

other such annotations [18]) in the same manner as SUMMIT-FA. As demonstrated in this work,

making use of MACIE can improve overall TWAS performance.

We conclude with a discussion of limitations for the present study. Primarily, the summary-

level expression reference from eQTLGen comes from subjects of European ancestry in whole blood

tissue, and thus SUMMIT-FA models (as presently built) can only be applied successfully to such

data. In theory, SUMMIT-FA can be applied to summary-level eQTL data from any tissue and

ancestry, but these datasets do not yet exist in any appreciable size. Additionally, we focused on cis-

eQTLs in the gene expression prediction models and did not consider trans-eQTLs. Furthermore,

as demonstrated in one recent study [15], 3D genomic and epigenomic data provide additional

information and can be used to further improve the accuracy of expression prediction models.

We expect that incorporating trans-acting elements or leveraging auxilary information from other

tissues, ancestry groups, and 3D genomic and epigenomic can further improve performance, though

substantial additional work would be necessary. Lastly, as discussed above, causal arguments based

on SUMMIT-FA (as with any TWAS method) bear scrutiny only when IV assumptions are not

violated. Thus, caution and complementary methodology are suggested with regard to arguing

causality. We leave these exciting topics for future studies.

4 Methods

4.1 Predicting gene expression with penalized regression models

We create nine gene expression predictions models through penalized regression. Begin with

the following model:

Y =

p∑
i=1

wiXi + ϵ,
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where Y is the N -dimensional vector of gene expression levels for a particular gene corrected for

age, sex, and genetic principal components, X = (X ′
1, ..., X

′
p)

′ is the standardized genotype matrix

of cis-SNPs around the gene, w = (w1, ..., wp)
′ is the eQTL effect size (i.e. the weights), and ϵ is

mean-zero random noise. We then estimate w with a penalized regression framework.

SUMMIT-FA inherits many of the advantages of SUMMIT, including five gene expression pre-

diction models with distinct penalties, stability from using a shrinkage estimator of the LD matrix,

and the ability to combine results across models by the use of the Cauchy combination test [20].

Briefly, the five inherited models estimate eQTL effect sizes w by optimizing the objective function:

f(w) =
1

N
(Y −Xw)′(Y −Xw) + Jλ(w).

Through simplification and recognizing that X′Y
N = r, the standardized marginal effect sizes for the

cis-SNPs (the correlation between gene expression levels and these SNPs), and X′X
N = R, the LD

matrix, we arrive at the following objective function:

f(w) =
Y ′Y

N
+ w′Rw − 2w′r + Jλ(w).

Following the SUMMIT [6], we then estimate the LD matrix R by a shrinkage estimator of a

reference panel, such as from the 1000 Genomes project [35] denoted R̃, and we estimate the

standardized marginal effects r with r̃, which come from the z-scores provided by the summary-

level statistics in the eQTLGen database. We note that Y ′Y
N is not a function of w and can thus

be safely ignored in the optimization procedure. Thus, the final objective function is:

f̃(w) = w′R̂w − 2w′r̂ + θw′w + Jλ(w), (1)

where Jλ(·) is the main penalty term. Five penalties are employed here, LASSO [36], elastic net

[37], the minimax concave penalty (MCP) [38], the smoothly clipped absolute deviation (SCAD)

[39], and MNet [40]. θw′w, θ ≥ 0 is an additional L2 penalty designed to ensure a unique solution

for ŵ. We then optimize f̃ via the coordinate descent algorithm [41], which is further discussed in

the following section.
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4.1.1 Incorporating MACIE functional annotations into penalized regression frame-

work

MACIE (Multi-dimensional Annotation-Class Integrative Estimation) [18] annotations are a

vector of length four of joint posterior functional probabilities of functional roles for variants.

MACIE_anyclass is the sum of these four probabilities, and represents a prior (with respect to

SUMMIT-FA’s gene expression prediction models) estimate of the functional probability according

to at least one class of annotations of variants; a higher value indicates a higer chance to be

functional. We incorporate MACIE_anyclass in two distinct ways to the model. First, we restrict

the eQTL set to include variants with a likelihood greater than some threshold c of functional

behavior, so the variant set becomes {Xi : MACIE_anyclassi ≥ c}, with c ∈ {0.0, 0.1, 0.5, 0.9}.

The four thresholds lead to the four new models in SUMMIT-FA, each of which uses an elastic net

penalized regression.

Second, we employ MACIE_anyclass in the elastic net penalty. From equation (1), we define

the penalty for SNP i Jλ(wi) = λ(|wi| + w2
i )Mi, which is the typical elastic net penalty with

α = 0.5 multiplied by Mi, where Mi is one minus MACIE_anyclass value for SNP i. Thus, we

reduce the penalty for SNPs that have, a priori, a higher likelihood of functionality. These SNPs

are considered more likely to be causal, and are therefore included in the gene expression models

with greater frequency under this method.

The solution to the optimization, ŵ, is then constructed via the coordinate descent algorithm

[41]. Denote by (ŵ
(t)
1 , ..., ŵ

(t)
p ) the t-th realization of the coordinate descent process, and let z

(t)
i =

r̂i −
∑

j ̸=i R̂ijŵ
(t)
i . Then the (t+ 1)th update of ŵi is

ŵ
(t+1)
i =

S
(
z
(t)
i , 12λMi

)
1 + θ + λMi

,

for i = 1, ..., p and t = 0, 1, 2, ..., where S(V, ω) is the soft-thresholding operator

S(V, ω) =


V − ω, V > ω;

V + ω, V < −ω;

0, else.
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The coordinate descent algorithm then converges to a local minimum for ŵ [41]. Tuning param-

eters θ, which is restricted to the set {0.1, 0.2, ..., 0.9}, and λ, which has a solution path generated

by the warm start algorithm, are chosen to maximize R2 in the training data.

4.2 Training and Evaluating Model

Gene expression predictions models were trained on eQTL summary data from eQTLGen [5],

which includes effect sizes of more than 11 million SNPs derived from 31, 684 blood samples. We

employed only cis-SNPs, those within 1 Mbp of gene transcription start and end sites. We further

filtered out any SNPs that were nonbiallelic, ambiguous, not included in the HapMap3 SNP set [8],

or had minor allele frequency (MAF) < 0.01.

To choose tuning parameters, we used genotype and gene expression references from the GTEx

project (version V7, dbGaP Accession number phs000424.v7.p2, https://www.gtexportal.org/

home/datasets) [42]. The whole blood gene expression levels (N = 369) were processed by stan-

dardizing and normalizing RPKMs in each sample then adjusting for sex, genotyping platform, 35

PEER factors and three genotype-based principal components. Residuals were then used as the

processed gene expression levels, which downloaded from the GTEX website. We then selected op-

timal tuning parameters based on the R2 (i.e. squared correlation between predicted and observed

expression levels. We note that subjects in GTEx v6 (N = 336; 1.1%) were included in eQTLGen’s

meta analysis [5], which may result in suboptimal tuning decisions.

We conducted an external validation with a fully independent set of subjects (N = 309) in GTEx

v8 that were not included in GTEx v7 nor in the eQTLGen meta-analysis. Following SUMMIT [6],

genes with estimated expression heritability (R2) of at least 0.5% in the validation dataset were

included in downstream association analysis, as genes with low heritability have larger causal effect

sizes on complex traits [22].

4.3 Conducting Association Analyses

With individual-level GWAS data, we employ a generalized linear regression

f(E
[
Ynew|Xnew, Cnew

]
= αCnew + βXnewŵ,
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where Xnew is the genotype data, Ynew is the phenotype data, and Cnew is the covariant matrix, f

is a link function, and Xnewŵ is the predicted gene expression levels. We then test H0 : β = 0 for

gene-trait associations.

With summary-level GWAS data, we apply a burden-style test

Ẑ =
Zŵ√
ŵ′V ŵ

,

where Z is a vector of z-scores for all cis-SNPs and V is the LD matrix for all SNPs included in the

analysis. V is typically estimated with an LD reference panel (such as the 1000 Genomes Project

[35]).

Note that the above descriptions for conducting association analysis assumes only a single

expression prediction model, but SUMMIT-FA includes up to nine distinct models. In the case of

multiple methods building satisfactory models at a gene (i.e. gene expression prediction R2 > 0.005

for that gene), each follows the aforementioned procedure to conduct an association test. Then,

results are amalgamated on the gene-level via the Cauchy combination test [30], which has been

widely used in the field [6, 34]. Briefly, assume K satisfactory models and consider the test statistic:

T =

K∑
i=1

R̃i
2
tan

[
(0.5− pi)π

]
,

where R̃i
2
= R2

i /
∑K

j=1R
2
j and pi is the p-value for the ith model. T approximately follows the

standard Cauchy distribution, and the overall p-value is calculated by p = 0.5− arctan(T )/π. We

note that the test statistic is a sum weighted by R̃i
2, which follows logically from the notion that

larger values of R̃i
2 come from better fitting gene expression prediction models.

4.4 Simulation setup

We demonstrated the elevated performance SUMMIT-FA through a set of comprehensive sim-

ulation studies. Both gene expression prediction accuracy and downstream TWAS power were

evaluated, and, additionally, SUMMIT-FA was shown to successfully build gene expression predic-

tion models using summary-level eQTL data. We used genotype data from 31, 684 (to was shown
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match the sample size of the eQTLGen data) white British subjects from the UK Biobank as train-

ing data, genotype data from 369 (to match the sample size of the GTEx v7 data) independent

white British subjects from the UK Biobank as tuning data, and genotype data from 10, 000 more

independent white British subjects from the UK Biobank as testing data. Imputed data from 877

cis-SNPs (with MAF > 1%, Hardy-Weinberg p-value > 10−6, and imputation ”info” score > 0.4)

of the randomly selected gene CHURC1 were in primary simulations. Another randomly selected

gene KRIT1 is considered in Supplementary Figures 3, 4.

We compare SUMMIT-FA to SUMMIT [6], PrediXcan [8], TWAS-fusion [7], and Lassosum

[21] in terms of gene expression prediction accuracy and downstream power for TWAS. Simu-

lation settings varied the phenotypic heritability h2p (0.1, 0.2, 0.5, 0.8), expression heritability h2e

(0.005, 0.01, 0.1), and proportion of causal SNPs pcausal (0.01, 0.05, 0.1, 0.2). We considered scenar-

ios that varied the proportion of causal SNPs pcausal (0.01, 0.05, 0.1, 0.2), expression heritability

h2e (0.005, 0.01, 0.1), and phenotypic heritability h2p (0.1, 0.2, 0.5, 0.8). For each scenario, we re-

peated the simulations 1,000 times. The statistical power was determined by the proportion of

1,000 repeated simulations with association p-value less than the genome-wide significance thresh-

old 0.05/20, 000 = 2.5× 10−6.

Gene expression levels are simulated according to Eg = Xw + ϵe, and phenotypes by Y =

βEg+ϵp, where X is the standardized genotype matrix, w the effect size, Eg gene expression levels,

β the association coefficient, ϵe ∼ N(0, 1 − h2e), and ϵe ∼ N(0, 1 − h2e). h2e is the expression heri-

tability, the proportion of variance in gene expression explained by SNPs, and h2p is the phenotype

heritability, the proportion of variance in gene expression explained by gene expression. Given M

SNPs potentially included in the model, l are selected to have nonzero effect size in order to achieve

the desired pcausal. The l SNPs are sampled from the M total SNPs with probabilities proportional

to their MACIE_anyclass scores. The effect sizes w and β were then rescaled to achieve the correct

values for h2e and h2p.

With regard to the other methods involved in the simulation, PrediXcan and TWAS-fusion were

trained on individual-level genotype data from 670 white British samples (matching the sample size

of blood tissue in the GTEx v8 data). Lassosum and SUMMIT, which can employ summary-level

data, were trained on the same summary-level data as that used for SUMMIT-FA. All models were
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compared on single-tissue eQTL information, as cross-tissue information was not our focus here.

As such, we chose not to include UTMOST [10] and MR-JTI [12], as it would be disingenuous to

compare them without making use of further tissues, the main contribution of these two methods.

This topic is left to further research.

4.5 Comparison with existing methods

To further demonstrate the added utility provided by SUMMIT-FA, we compared it to six

previous TWAS methods in whole blood tissue: SUMMIT [6], PrediXcan [8], TWAS-fusion [7],

UTMOST [10], MR-JTI [12], and Lassosum [21]. To briefly describe each, SUMMIT is the prede-

cessor to SUMMIT-FA; it features five gene expression prediction models that are combined with

the Cauchy combination test, though it does not include functional annotations. PrediXcan uses the

Elastic Net to create expression prediction models. TWAS-Fusion applies BLUP, BSLMM, Elastic

Net, LASSO, and TOP1 in building models for expression prediction. MR-JTI and UTMOST

leverage cross-tissue eQTLs when building gene expression prediction models. Lastly, Lassosum is

actually a method to create polygenic risk scores, though it can be used to build gene expression

prediction models from summary-level eQTL reference panels, which are then applied to the TWAS

setup. SUMMIT-FA, SUMMIT, and Lassosum utilize summary-level reference datasets, while the

other four TWAS models require individual-level reference panels.

We begin by examining the gene expression prediction accuracy (i.e. R2) produced by the

distinct methods. We note that while R2 is estimated in a test dataset for SUMMIT-FA, SUM-

MIT, and Lassosum, it is determined by cross-validation for the others, which may marginally

favor PrediXcan, TWAS-Fusion, UTMOST, and MR-JTI. To demonstrate the utility of functional

annotations provided by the MACIE, we tested the difference between estimated expression pre-

diction accuracy for SUMMIT-FA and SUMMIT with a paired Wilcoxon rank-sum test, which is

a nonparametric test that compares two matched samples to test whether population mean ranks

differ.

We then applied the methods to analyses of 24 sets of GWAS summary statistics for complex

phenotypes (the traits are detailed in Supplementary Data 1). We applied the Bonferroni correction

to each method with distinct thresholds, as each method analyzed a different number of genes. In
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the interest of fairness, we also used a common set of genes for which all models could analyze

and identical Bonferroni-generated significance cutoffs. We then applied a one-sided Wilcoxon

signed-rank test to the numbers of significant genes identified by the different methods.

Lastly, we compared the methods ability to pinpoint causal genes that mediate associations

between phenotypes and GWAS loci. We created a set of likely causal gene-trait pairs by following

Barbeira et al. [23] that was independent of the GWAS results. We obtained 1, 287 gene-trait

pairs using OMIM [24] and rare variant results from exome-wide association studies [43–45]. We

employed LDetect to partition the genome into presumably independent LD blocks [46], and only

included gene-trait pairs living in LD blocks with genome-wide significant variants. This resulted

in 148 putatively causal pairs across 24 traits. We finally compared the methods by measuring the

area under the receiver operator curve (ROC) and tested whether the area under the curve (AUC)

differences were significant using a one-sided Delong test. Parametric bootstrap is also used for

assessing the AUC differences and the results were similar (not shown).

Data availability

The GWAS summary data used in this study are summarized in Supplementary Data 1 (with the

download link). The eQTL summary data are available at https://www.eqtlgen.org/cis-eqtls.

html The UK Biobank is an open-access resource requiring registration, available at https://www.

ukbiobank.ac.uk/researchers/. The genotype and RNA sequencing data for the GTEx project

may be found at the database of Genotypes and Phenotypes (accession number phs000424.v8.p2,

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.

p2). The processed gene expression data from the GTEx project is available from the GTEx portal

(https://gtexportal.org). The MR-JTI, PrediXcan, and UTMOST models may be downloaded

from https://doi.org/10.5281/zenodo.3842289. The TWAS-FUSION models may be down-

loaded from http://gusevlab.org/projects/fusion/. The 1000 Genomes Project data may

be downloaded from https://www.internationalgenome.org/data. The genetic distance data

for 1000 Genomes Project may be downloaded from https://github.com/joepickrell/1000-

genomes-genetic-maps. The SUMMIT-FA models generated for this study will be available at
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OSF.IO at . The raw data and code to replicate figures and tables in the manuscript will also be

available at OSF.IO at .

Code availability

Code to use the SUMMIT-FA modles will be available at GitHub (https://github.com/

ChongWuLab/SUMMIT) and Zenodo. The codes and corresponding data for reproducing the results

described in this study will be available on OSF.IO.

Acknowledgements

National Institutes of Health (R03 AG070669) supported Z.Z., J.B., and C.W.. This study

was conducted using the UK Biobank recourse under Application Number 48240 (https://www.

ukbiobank.ac.uk/researchers/). The content is solely the responsibility of the authors and does

not necessarily represent the official views of the National Institutes of Health. The Genotype-

Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Direc-

tor of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS.

The authors would like to thank all of the individuals for their participation in the GWASs and

UK Biobank and all the researchers, clinicians, technicians and administrative staff for their con-

tribution to the studies and for making their GWAS summary results publicly available.

Author contributions statement

C.W. conceived and designed the study. H.M and Z.Z developed the computational algorithms

and wrote the SUMMIT-FA program. H.M performed the real data analysis and simulations. Z.Z.

created the website that curated the results. H.M tested the program and drew the workflow

diagram of SUMMIT-FA. All authors wrote and proofread the manuscript.

Competing interests statement

The authors declare no competing interests.

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.02.23285208doi: medRxiv preprint 

https://github.com/ChongWuLab/SUMMIT
https://github.com/ChongWuLab/SUMMIT
https://www.ukbiobank.ac.uk/researchers/
https://www.ukbiobank.ac.uk/researchers/
https://doi.org/10.1101/2023.02.02.23285208
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

[1] Annalisa Buniello et al. “The NHGRI-EBI GWAS Catalog of published genome-wide asso-

ciation studies, targeted arrays and summary statistics 2019”. In: Nucleic Acids Research 47

(D1 Jan. 2019), pp. D1005–D1012. issn: 0305-1048.

[2] Matthew T. Maurano et al. “Systematic localization of common disease-associated variation

in regulatory DNA”. In: Science 337 (6099 Sept. 2012), pp. 1190–1195. issn: 10959203.

[3] GTEx Consortium. “The GTEx Consortium atlas of genetic regulatory effects across human

tissues”. In: Science 369 (6509 2020), pp. 1318–1330.

[4] Yi Yang, Kar Fu Yeung, and Jin Liu. “CoMM-S4: A Collaborative Mixed Model Using

Summary-Level eQTL and GWAS Datasets in Transcriptome-Wide Association Studies”. In:

Frontiers in Genetics 12 (Sept. 2021), p. 1820. issn: 16648021.

[5] Urmo VÃµsa et al. “Large-scale cis- and trans-eQTL analyses identify thousands of genetic

loci and polygenic scores that regulate blood gene expression”. In: Nature Genetics 2021 53:9

53 (9 Sept. 2021), pp. 1300–1310. issn: 1546-1718.

[6] Zichen Zhang et al. “SUMMIT: An integrative approach for better transcriptomic data im-

putation improves causal gene identification”. In: Nature Communications 2022 13:1 13 (1

Oct. 2022), pp. 1–12. issn: 2041-1723.

[7] Alexander Gusev et al. “Integrative approaches for large-scale transcriptome-wide association

studies”. In: Nature Genetics (2016). issn: 15461718.

[8] Eric R. Gamazon et al. “A gene-based association method for mapping traits using reference

transcriptome data”. In: Nature Genetics 47 (9 2015), pp. 1091–1098. issn: 15461718.

[9] Zhiyuan Xu et al. “A powerful framework for integrating eqtl and gwas summary data”. In:

Genetics 207 (3 Nov. 2017), pp. 893–902. issn: 19432631.

[10] Yiming Hu et al. “A statistical framework for cross-tissue transcriptome-wide association

analysis”. In: Nature Genetics 2019 51:3 51 (3 Feb. 2019), pp. 568–576. issn: 1546-1718.

20

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.02.23285208doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285208
http://creativecommons.org/licenses/by-nc-nd/4.0/


[11] Sini Nagpal et al. “TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation

Enhances Gene Mapping of Complex Traits”. In: American Journal of Human Genetics 105

(2 Aug. 2019), pp. 258–266. issn: 15376605.

[12] Dan Zhou et al. “A unified framework for joint-tissue transcriptome-wide association and

Mendelian randomization analysis”. In: Nature Genetics 2020 52:11 52 (11 Oct. 2020), pp. 1239–

1246. issn: 1546-1718.

[13] Ruoyu He, Haoran Xue, and Wei Pan. “Statistical power of transcriptome-wide association

studies”. In: Genetic Epidemiology 46 (8 Dec. 2022), pp. 572–588. issn: 1098-2272.

[14] Wen Zhang et al. “Integrative transcriptome imputation reveals tissue-specific and shared

biological mechanisms mediating susceptibility to complex traits”. In: Nature Communications

2019 10:1 10 (1 Aug. 2019), pp. 1–13. issn: 2041-1723.

[15] Chachrit Khunsriraksakul et al. “Integrating 3D genomic and epigenomic data to enhance

target gene discovery and drug repurposing in transcriptome-wide association studies”. In:

Nature Communications 2022 13:1 13 (1 June 2022), pp. 1–15. issn: 2041-1723.

[16] Mark F. Rogers et al. “FATHMM-XF: accurate prediction of pathogenic point mutations via

extended features”. In: Bioinformatics 34 (3 Feb. 2018), p. 511. issn: 14602059.

[17] Xihao Li et al. “Dynamic incorporation of multiple in silico functional annotations empowers

rare variant association analysis of large whole-genome sequencing studies at scale”. In: Nature

Genetics 52 (9 2020), pp. 969–983. issn: 15461718.

[18] Xihao Li et al. “A multi-dimensional integrative scoring framework for predicting functional

variants in the human genome”. In: American journal of human genetics 109 (3 Mar. 2022),

pp. 446–456. issn: 1537-6605.

[19] Yaowu Liu and Jun Xie. “Cauchy Combination Test: A Powerful Test With Analytic p-Value

Calculation Under Arbitrary Dependency Structures”. In: https://doi.org/10.1080/01621459.2018.1554485

115 (529 Jan. 2019), pp. 393–402. issn: 1537274X.

21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.02.23285208doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285208
http://creativecommons.org/licenses/by-nc-nd/4.0/


[20] Yaowu Liu et al. “ACAT: A Fast and Powerful p Value Combination Method for Rare-Variant

Analysis in Sequencing Studies”. In: American Journal of Human Genetics 104 (3 Mar. 2019),

p. 410. issn: 15376605.

[21] Timothy Shin Heng Mak et al. “Polygenic scores via penalized regression on summary statis-

tics”. In: Genetic Epidemiology 41 (6 Sept. 2017), pp. 469–480. issn: 1098-2272.

[22] Douglas W. Yao et al. “Quantifying genetic effects on disease mediated by assayed gene

expression levels”. In: Nature Genetics 2020 52:6 52 (6 May 2020), pp. 626–633. issn: 1546-

1718.

[23] Alvaro N. Barbeira et al. “Exploiting the GTEx resources to decipher the mechanisms at

GWAS loci”. In: Genome Biology 22 (1 Dec. 2021), pp. 1–24. issn: 1474760X.

[24] Ada Hamosh et al. “Online Mendelian Inheritance in Man (OMIM), a knowledgebase of

human genes and genetic disorders”. In: Nucleic Acids Research 33 (suppl_1 Jan. 2005),

pp. D514–D517. issn: 0305-1048.

[25] Brandon L. Pierce and Stephen Burgess. “Efficient Design for Mendelian Randomization

Studies: Subsample and 2-Sample Instrumental Variable Estimators”. In: American Journal

of Epidemiology 178 (7 Oct. 2013), pp. 1177–1184. issn: 0002-9262.

[26] Stephen Burgess and Simon G. Thompson. “Use of allele scores as instrumental variables

for Mendelian randomization”. In: International Journal of Epidemiology 42 (4 Aug. 2013),

pp. 1134–1144. issn: 0300-5771.

[27] A. Belloni et al. “Sparse Models and Methods for Optimal Instruments With an Application

to Eminent Domain”. In: Econometrica 80 (6 Nov. 2012), pp. 2369–2429. issn: 1468-0262.

[28] Zhongshang Yuan et al. “Testing and controlling for horizontal pleiotropy with probabilistic

Mendelian randomization in transcriptome-wide association studies”. In: Nature Communi-

cations 2020 11:1 11 (1 July 2020), pp. 1–14. issn: 2041-1723.

[29] Haoran Xue and Wei Pan. “Some statistical consideration in transcriptome-wide association

studies”. In: Genetic Epidemiology 44 (3 Apr. 2020), pp. 221–232. issn: 1098-2272.

22

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.02.23285208doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285208
http://creativecommons.org/licenses/by-nc-nd/4.0/


[30] Xuanyao Liu, Yang I. Li, and Jonathan K. Pritchard. “Trans Effects on Gene Expression Can

Drive Omnigenic Inheritance”. In: Cell 177 (4 May 2019), 1022–1034.e6. issn: 1097-4172.

[31] Nicholas Mancuso et al. “Probabilistic fine-mapping of transcriptome-wide association stud-

ies”. In: Nature Genetics (2019). issn: 15461718.

[32] Chong Wu and Wei Pan. “A powerful fine-mapping method for transcriptome-wide association

studies”. In: Human genetics 139 (2 Feb. 2020), p. 199. issn: 14321203.

[33] Claudia Giambartolomei et al. “Bayesian Test for Colocalisation between Pairs of Genetic

Association Studies Using Summary Statistics”. In: PLOS Genetics 10 (5 2014), e1004383.

issn: 1553-7404.

[34] Chong Wu et al. “A gene-level methylome-wide association analysis identifies novel Alzheimer’s

disease genes”. In: Bioinformatics 37 (14 July 2021), p. 1933. issn: 14602059.

[35] 1000 Genomes Project Consortium. “A global reference for human genetic variation”. In:

Nature 2015 526:7571 526 (7571 Sept. 2015), pp. 68–74. issn: 1476-4687.

[36] Robert Tibshirani. “Regression Shrinkage and Selection Via the Lasso”. In: Journal of the

Royal Statistical Society: Series B (Methodological) 58 (1 Jan. 1996), pp. 267–288. issn: 2517-

6161.

[37] Hui Zou and Trevor Hastie. “Regularization and variable selection via the elastic net”. In:

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67 (2 Apr. 2005),

pp. 301–320. issn: 1467-9868.

[38] Cun-Hui Zhang. “Nearly unbiased variable selection under minimax concave penalty”. In: The

Annals of Statistics 38 (2 2010), pp. 894–942.

[39] Jianqing Fan and Runze Li. “Variable Selection via Nonconcave Penalized Likelihood and its

Oracle Properties”. In: Journal of the American Statistical Association 96 (456 Dec. 2001),

pp. 1348–1360. issn: 0162-1459.

[40] Jian Huang et al. “The Mnet method for variable selection”. In: Statistica Sinica 26 (3 July

2016), pp. 903–923. issn: 10170405.

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.02.23285208doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285208
http://creativecommons.org/licenses/by-nc-nd/4.0/


[41] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. “Regularization Paths for Generalized

Linear Models via Coordinate Descent”. In: Journal of statistical software 33 (1 2010), p. 1.

issn: 15487660.

[42] GTEx Consortium. “Genetic effects on gene expression across human tissues”. In: Nature

2017 550:7675 550 (7675 Oct. 2017), pp. 204–213. issn: 1476-4687.

[43] Dajiang J. Liu et al. “Exome-wide association study of plasma lipids in >300,000 individuals”.

In: Nature Genetics 2017 49:12 49 (12 Oct. 2017), pp. 1758–1766. issn: 1546-1718.

[44] Eirini Marouli et al. “Rare and low-frequency coding variants alter human adult height”. In:

Nature 2017 542:7640 542 (7640 Feb. 2017), pp. 186–190. issn: 1476-4687.

[45] Adam E. Locke et al. “Exome sequencing of Finnish isolates enhances rare-variant association

power”. In: Nature 2019 572:7769 572 (7769 July 2019), pp. 323–328. issn: 1476-4687.

[46] Tomaz Berisa and Joseph K. Pickrell. “Approximately independent linkage disequilibrium

blocks in human populations”. In: Bioinformatics 32 (2 Jan. 2016), pp. 283–285. issn: 1367-

4803.

24

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.02.23285208doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.02.23285208doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.02.23285208doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.02.23285208doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.02.23285208doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.02.23285208
http://creativecommons.org/licenses/by-nc-nd/4.0/

