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Abstract

Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS).
However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous
neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to
characterise the expression of NMDA receptors (NMDARs) in primary human astrocytes, and investigate their response to
physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid
(QUIN). Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using
RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed
using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH) activity in primary
cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits
(NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B) are expressed in astrocytes, but at different levels. Calcium influx studies
revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can
result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and
memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate
and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to
provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery
has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes
and pathological conditions.
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Introduction

N-methyl D-aspartate (NMDA) receptors (NMDARs) are

ligand-gated ion channels which form one group of ionotropic

glutamate receptors in the CNS. These receptors are known to be

expressed in neurons and are activated by neurotransmitters

including glutamate and NMDA [1] as well as endogenous

excitotoxins such as quinolinic acid [2]. NMDARs exist as

heterotetrameric complexes at the surface membrane. Currently,

seven known subunits have been identified: one NR1, four NR2

(A–D) and two NR3 (A–B) subunits. In neurons, NMDARs play

an important role in facilitating learning and memory [3].

However, recent studies have revealed that these membrane

proteins may also exist in other cell types [4,5,6,7].

Although research into astrocyte NMDARs is still controversial

and functional expression of these receptors in humans is yet to be

confirmed [8,9], there has been some evidence from animal models

suggesting the involvement of astrocytic glutamate receptors in glial

cell signalling [4,10,11,12,13]. This form of glial communication

involves the induction of an intracellular calcium wave, which was

first elicited through the stimulation of cultured astrocytes with

glutamate [14]. The study showed that astrocytes could in fact

respond to extracellular neurotransmitters such as those released by

neurons via a signalling pathway that could potentially be used for

physiological glial communication although more research is

required to elucidate the exact pathways of activity.

The astrocytic glutamatergic system has also been implicated in

several neuropathological conditions including amyotrophic lateral

sclerosis (ALS) [15] and Alzheimer’s disease (AD)[16]. We have

previously shown that extracellular levels of the NMDAR agonist and

neurotoxin quinolinic acid (QUIN) are significantly increased in both

AD and ALS [17,18]. QUIN is an endogenous metabolite of L-

tryptophan, which is produced via the kynurenine pathway [19]. In

the brain, the amino acid L-tryptophan is normally used in protein

synthesis and metabolised to compounds such as 5-hydroxytrypta-

mine and other indoleamines. However, during neuroinflammatory

conditions, increased activity of the enzyme, indoleamine-2,3-

dioxygenase (IDO-1) directs metabolism down the kynurenine

pathway and increases the formation of QUIN [20]. Following

immune activation in the brain, QUIN is produced by activated

microglia and invading macrophages, with high levels of this

neurotoxin associated with increased neuronal [21] and glial cell

death [19]. These changes are seen in a number of diseases including

AD [17] and AIDS dementia complex [22]. As QUIN is an
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NMDAR agonist, the activation of glutamatergic pathway is likely to

be responsible for the cytotoxic effects observed in astrocytes [23,24].

The aim of this study was to investigate the expression of NMDARs

in human primary astrocytes as well as characterise the response of

these receptors to physiological and excitotoxic concentrations of

known NMDAR agonists. Confirming whether NMDARs exist in

astrocytes and examining the function of these receptors in glial cells

will further enhance our understanding of the functional role

astrocytes play in normal, healthy environments, as well as their

potential involvement in neuropathological conditions [25,26].

Materials and Methods

Reagents and chemicals
Dulbecco’s phosphate buffered saline (PBS) 16, RPMI medium

1640 16, 0.5% Trypsin-EDTA 106, Glutamax-1 1006, Antibiotic-

Antimycotic (AA) 1006, Trizol were obtained from GIBCO

Invitrogen (Victoria, Australia). Glucose intravenous infusion BP

50% was from AstraZeneca (Sydney, Australia). Foetal calf serum

(FCS) was obtained from Bovogen Australia. Culture flasks and

plates were purchased from Becton Dickinson lab ware (New Jersey,

USA). QUIN and glutamate were obtained from Sigma Chemical

(Sydney, Australia). PCR reaction buffer 106, MgCl2, dNTP and

Taq DNA polymerase were obtained from Roche (Mannheim,

Germany). Permanox chamber-slides were obtained from Lab-Tek

(California, USA) and Fluoromount-G was obtained from Southern

Biotech (Alabama, USA.). The BD Calcium Assay Kit was obtained

from BD Biosciences (California, USA) and the Fluostar Optima

Fluorometer was obtained from BMG LABTECH (Victoria,

Australia). The Hepes-buffered Krebs solution, Fura-2 and pluronic

F-127, glutamate, QUIN, MK-801, and memantine were pur-

chased from Sigma-Aldrich (Missouri, USA). Trans-ACBD was

obtained from Tocris Biosciences (Bristol, UK). The Microplate

reader 680XR was obtained from Bio-Rad (California, USA).

Cell culture
Human ethics approval. Human adult brain tissue and

human foetal brain tissue were obtained following informed written

consent. This has been respectively approved by the Human Ethics

Committees from St Vincent’s Hospital (HREC 08284) and from the

University of New South Wales (UNSW Ethic approval HREC 03187).

Isolation and culture of primary astrocytes. Human

brain tissue was obtained from adult donors post-surgery and

16- to 19-week-old foetuses. Astrocytes were prepared using a

previously described protocol [27]. Briefly, cerebral portions were

washed thoroughly with PBS and dissociated by repeated

pipettings. The suspension was centrifuged at 500 g for 5

minutes and the cell pellet resuspended in RPMI 1640 medium

containing 10% heat-inactivated FCS, 1% glutamax-1, 1%

antibiotic-antimicrobial liquid, 0.5% glucose, then plated onto

75 cm2 culture flasks and incubated at 37uC. Medium was

changed on the 3rd, 5th and 10th day. The cells became confluent

after 10–12 days. Microglia were detached from the cultures by

mechanically shaking the flasks for 2 hours at 220 rpm at room

temperature and aspirated. The astrocytes were trypsinized and

replated at least three times to further purify and isolate astrocytes

from contaminating microglia and neurons. Astrocytes were left to

recover for 3 days after each passage. The astrocytes were rinsed

twice with PBS and cultured as above in uncoated flasks with the

culture medium and maintained for up to 6 weeks. For the all the

following experiments, we have used cell cultures at 3–4 weeks.

The medium was changed twice a week. Culture purity was

determined by immunofluorescence analysis with antibodies

against GFAP and more than 95% of the cells stained positive

for GFAP (Figure S1). We did not detect any staining for CD68

(microglia) and for 5B5 (fibroblasts); data not shown [28].

Isolation and culture of primary neurons. Using the same

brain samples mentioned above, human primary neurons have

been isolated and grown as we have previously described [29].

End-point RT-PCR
RNA extraction was undertaken using the Invitrogen Trizol

protocol. The cDNA was subsequently quantified via spectropho-

tometry. Original primers for the seven NMDAR subunits were

designed using ‘Primer3’ primer design software, then tested and

optimized for the PCR. The individual primers were analysed via

the BLAST database to ensure specificity of binding. Refer to

Table 1 for list of primers. For each NMDAR subunit being tested,

Table 1. Summary of Primers and product size.

END-POINT PCR

Human Target cDNA Accession no. Forward Primer (59–39) Reverse Primer (59–39) Amplicon (bp)

NR1 NM000832 CAAGTATGCGGATGGGGTGA CAGTCTGGTGGACATCTGGTA 211

NR2A NM000833 CCCCAAACTCCTCAAATCAA CAGGCGACTCAGAAATGACA 206

NR2B NM000834 ATTGGTGGCAGAGTGGATTC GGCAAAAGAATCATGGCTGT 463

NR2C NM000835 GACGAGATCAGCAGGGTAGC ATGGCCAGGATTTCATGGTA 201

NR2D NM000836 AATAATTCGGTGCCCGTGGA CCCAGACACAGTATCCACGTA 153

NR3A NM133445 GCTTGGGCATCTTAGTGAGG TACCATGACAGCAGCCAAGT 353

NR3B NM138690 TCCTACTCCTCAGCCCTCAA ATGTCGGGGAAGCTCTTCTT 296

REAL-TIME PCR

NR2A NM000833.3 GGGCTGGGACATGCAGAAT CGTCTTTGGAACAGTAGAGCAA 116

NR2B NM000834.3 TTCCGTAATGCTCAACATCATGG TGCTGCGGATCTTGTTTACAAA 104

NR2C NM000835.3 GCTGGAAGAGCGGCCCTTTGT CGCTGCTGAAGGTGTGGTTGCTCT 110

NR2D NM000836.2 CTGCAGCCAGTGGACGACACG GGGTTCGGTTGAGCTGGCTCCG 142

NR3A NM133445.2 GCCACTCCACTGGACAATGTGGC TTCGCCCCTTGGGAGTCAAACCA 113

GAPDH NM002046 TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG 87

doi:10.1371/journal.pone.0014123.t001
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1 ml of cDNA sample (1 mg/ml) was added to a PCR reaction

mixture of 49 ml containing: 10 ml of PCR reaction buffer 106,

5 ml of 2.5 mM MgCl2, 2 ml of 10 mM dNTP, 1 ml of 25 mM

forward primer, 1 ml of 25 mM backward primer, 0.5 ml of 5 U/ml

Taq DNA polymerase and 29.5 ml of DEPC water. PCR was

subsequently run on samples for 40 cycles under the following

conditions: denaturation (94uC for 60 s), annealing (60uC for 60 s)

and extension (72uC for 90 s). Positive controls for primers of the

NMDAR subunits involved using reverse transcribed cDNA from

a mixture of neuronal and glial brain cells.

Real-Time PCR
Human foetal astrocytes prepared from 17 to 20-week-old

foetuses (n = 4) were used for real-time PCR. Human foetal

neurons were used for primer optimisation and as a positive

control for target gene expression. Primer optimisation was

performed using a standard curve derived from serial dilutions

of human foetal neuron cDNA (0.5 pg–50 ng). Multiple primer

pairs for each gene were tested and the most suitable primer

candidates were chosen by assessing the specificity of the PCR

product and efficiency. Specificity was verified by a single peak in

melting curve analysis. The real-time PCR assay for unknown

samples was performed simultaneously with positive control

samples (neurons) in the same plate.

Total RNA was extracted using the PureLink RNA Mini Kit

according to the manufacturer’s protocol. RNA quantity was

evaluated spectrophotometrically. RNA integrity was confirmed

by the Agilent 2100 electrophoresis bioanalyzer. 1 ug of total RNA

in a final volume of 20 ul was used for the synthesis of cDNA using

the Superscript Vilo cDNA Synthesis Kit in accordance with the

manufacturer’s recommendations. cDNA was diluted to a

concentration of 2.5 ng/ml with water for real-time PCR.

The NR2A, NR2B, NR2C, NR2D, NR3A, and GAPDH

mRNA transcripts were quantified using the oligonucleotide

primers for real-time PCR amplification designed based on

sequences published in the Harvard Primer Bank and the NCBI

primer-designing tool where the sequences were blasted. GAPDH

was used as the housekeeping gene. The forward and reverse

primer sequences used in this study are given in Table 1.

Primers were used at 300 nM final concentration. Briefly, 5 ml of

the diluted synthesized cDNA together with the appropriate primers

was added to 10 ul Brilliant III UltraFast SYBR green QPCR Master

mix (Agilent Technologies) to a total volume of 20 ml. A PCR

reaction master mix was prepared for each primer before dispensing

into 966PCR plate cells. No-template control (NTC) reactions were

also prepared for each gene. Real-time PCR was carried out using a

Stratagene Mx3000P (Agilent Technologies). The cycling parameters

for all genes were the following: initial denaturation at 95uC for

3 min, then 40 cycles of 95uC for 20 s, and 60uC for 20 s. All 6

transcripts were measured in each unknown sample in duplicates.

Expression values were normalised to GAPDH and are reported in

units of 22DCt, where DCt is the difference in Ct values between the

target and GAPDH transcripts in the same sample.

Data are presented as fold differences of mean normalised

expression values 6 standard error of mean (SEM). Differences in

the relative expression of each gene in HFA were verified by

applying the one-way ANOVA Tukey’s multiple comparison test using

GraphPad Prism 5 (GraphPad software, San Diego, CA, USA)).

Statistical significance was accepted at P,0.05; n = 4.

Immunocytochemistry
The method is previously described [30,31]. Briefly, purified

foetal astrocytes were grown in Permanox chamber-slides until

around 70–75% confluence. Cells were then fixed with methanol-

acetone (1:1) solution. Membranous permeabilization was subse-

quently undertaken using 0.1% Triton-X in PBS for 10 minutes at

room temperature. The cells were then washed twice with PBS

and incubated in PBS 5% NGS overnight at 4uC. Dilutions of the

primary antibodies were made in PBS 5% NGS. Refer to Tables 2

for list of primary and secondary antibodies. Primary and

secondary antibody incubations were subsequently undertaken at

37uC for 1 hr each followed by nuclear staining using DAPI

(1 mg/ml) diluted 1/500 in water. Cover slips were mounted with

Fluoromount-G and the slides were then viewed under the

Olympus microscope BX60. Visualisation of the cells under

confocal microscopy was also undertaken using the same protocol

as immunocytochemistry. Slides were subsequently read under the

Olympus FV1000 Laser Scanning microscope.

Positive controls for immunocytochemistry involved primary

antibody staining of NMDARs in human primary neurons using

the same protocol. Negative controls were also employed via

incubations with only secondary antibodies, to detect any non-

specific secondary antibody binding as well as exclude the

presence of auto-fluorescent cells (data not shown).

Calcium influx studies using fluorometry
Human foetal astrocytes were transferred into 96-well, flat-

bottom plates and allowed to proliferate until confluence was

reached. Astrocytic dye loading with calcium indicator was

subsequently undertaken using the BD Calcium Assay Kit

following the manufacturer’s technical data sheet. 4 mM Proben-

ecid was also added to the mixture followed by a 1 hr incubation

period at 37uC. The loading solution was then removed and

replaced with HBSS containing 50 mM glycine. Addition of

selective NMDAR antagonists was undertaken 5-minutes prior to

the experiment to ensure adequate diffusion time was provided to

attain equilibrium. The calcium influx experiments were subse-

quently performed using the Fluostar Optima Fluorometer. Filter

excitation and emission was set at 485 nm and 520 nm

wavelength respectively. For each well, fluorescence was measured

via orbital scanning of 10 locations at a 3 mm radius every 0.5

seconds. The average of these readings was recorded. Baseline

fluorescence was always measured during the first 10 seconds of

the experiment, which was followed by treatment with an

NMDAR agonist (prepared in HBSS solution) via automated

syringe injection at 100 mL/s. Fluorescent readings were subse-

quently taken for an additional 90 seconds. Negative controls

included the injection of only HBSS solution without any agonist.

Concerning the NMDAR agonists used in the experiment,

glutamate and QUIN were chosen as they are endogenous ligands

found commonly in the CNS. The synthetic compound, trans-

ACBD was also selected as a treatment option due to its chemical

properties of being a very potent and highly selective NMDAR-

specific agonist (Lanthorn et al; 1990).

Calcium influx imaging
Human foetal astrocytes were trypsinized and transferred into

50 mm glass-bottom micro well dishes. When confluence was

reached, the astrocytic growth media was removed and the cells

were incubated for 1 hr at 37uC in Hepes-buffered Krebs solution

containing 2 mM Fura-2 and 4 mM pluronic F-127. After dye

loading, cells were washed thoroughly with Hepes-buffered Krebs

solution. HBSS containing 50 mM glycine was used as the

incubation medium during the experiment. Fluorescent changes

caused by calcium influx were detected via a video-based imaging

system in conjunction with an Olympus IX81 inverted microscope

and a 206 Nikon Fluor objective lens. The emission at 520 nm

was measured following excitation at 340 nm and 380 nm.

NMDA Receptors and Astrocytes
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Fluorescent images were recorded using the ratio of excitation by

the two different wavelengths to index true changes in calcium

entry. Baseline fluorescence was taken every 15 seconds for 2

minutes prior to addition of the NMDAR agonist using a manual

micropipette. Fluorescent measurements were subsequently taken

every 5 seconds for an additional 2 minutes following treatment.

The negative control included detecting any changes in fluores-

cence when only HBSS solution was added.

Lactase dehydrogenase (LDH) cytotoxicity assay
Human foetal astrocytes were trypsinized and equal volumes of cell

suspension were plated into 24-well tissue culture plates. Cells were

monitored regularly and allowed to reach full confluence. Selective

NMDAR antagonists, MK-801, and memantine were then added in

triplicates to each well at varying concentrations, followed 5 minutes

later by the administration of the NMDAR agonists, QUIN and

glutamate at excitotoxic levels of 500 nM and 500 mM respectively.

The cells were then incubated at 37uC for 24 hours after which the

media was collected and analysed for levels of LDH release.

For the LDH analysis, samples were initially diluted 1/100 and

LDH activity was assayed using a standard spectrophotometric

technique described by Koh and Choi [32].

LDH levels were also adjusted to take into account variations in

cell number using the Bradford protein assay described by

Bradford [33]. Briefly, each well was filled with 200 ml of PBS

and sonication of the cells was undertaken at 20 kHz for 15

seconds in each well. These sonicated samples were collected and a

set of standard protein was prepared using varying amounts of

BSA. Next, 60 ml of Bradford reagent (0.01% Coomassie brilliant

blue G-250, 5% ethanol, 8.5% phosphoric acid) was added to

240 ml of each sample and standard. After incubating for 30

minutes at room temperature, the samples and standards were

measured for their absorbance at 595 nm using the Microplate

reader 680XR (Bio-Rad; California, USA).

Statistical analysis
Results obtained are presented as the means 6 the standard

error of measurement (SEM). Significant differences between

results were verified using the two-tailed t-test with equal variance.

Differences between treatment groups were considered significant

if p was less than 0.05 (p,0.05).

Results

Detection of mRNA expression for different NMDAR sub-
units using RT-PCR

End-point PCR results showed that both human foetal and

adult astrocytes express the mRNA of all known NMDAR

subunits including NR1, 2a, 2b, 2c, 2d, 3a, 3b (Figure 1A). Mixed

brain cell cultures (including neurons, astrocytes, microglia,

oligodendrocytes) were used as positive controls (first column).

Semi-quantitative studies using ANOVA analysis did not reveal a

significant overall difference between adult and foetal expression of

the seven sub-types of NMDARs (p = 0.13) (figure 1B).

Real-time PCR has been performed human foetal astrocytes

validating the above End-point PCR results and providing more

quantitative data. Target genes and the housekeeping gene show

high specificity as verified by a single peak in melting curve

analysis (Figures 1C). Target genes and the housekeeping gene

show high specificity as verified by a single peak in melting curve

Table 2. Summary of primary and secondary antibodies and dilutions used.

PRIMARY ANTIBODIES

Category Antibody Brand Isotype Dilution

NMDAR Subunits NR1 Abcam Polyclonal 1/100

NR1* Chemicon Monoclonal (IgG) 1/400

NR2A/B* Chemicon Monoclonal (IgG) 1/400

NR2A Chemicon Monoclonal (IgG) 1/50

NR2B Chemicon Polyclonal 1/100

NR2C Novus Polyclonal 1/100

NR2D Chemicon Monoclonal (IgG) 1/50

NR3A Upstate Polyclonal 1/100

NR3B Upstate Polyclonal 1/100

Astrocytic Markers Vimentin BD Biosciences Monoclonal (IgG) 1/200

GFAP* Novocastra Monoclonal (IgG) 1/200

GFAP* Sigma Polyclonal 1/200

Neuronal Markers MAP1 Abcam Polyclonal 1/200

SECONDARY ANTIBODIES

Antibody Type Brand Fluorescence Antibody Target Dilution

Anti-mouse Invitrogen Green* Vimentin, GFAP* 1/200

Anti-rabbit Invitrogen Green GFAP, MAP1 1/200

Anti-mouse Invitrogen Red NR2A, NR2D 1/200

Anti-rabbit Invitrogen Red* NR1, NR2B, NR2C, NR3A, NR3B,
GFAP*

1/200

*Used for the double staining NMDAR-GFAP (figure 2C).
doi:10.1371/journal.pone.0014123.t002
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Figure 1. Detection of mRNA expression using PCR. End-point PCR - (1A) Agarose gel showing PCR bands for the various NMDAR subunits on
human foetal astrocytes (HFA) and human adult astrocytes (HAA). Mixed foetal glial and neuronal cultures were used as positive control. (1B) PCR
Semi-quantitative analysis of end-point PCR bands showing the relative mRNA expression levels of NMDAR subunits when compared to beta-actin in
human foetal astrocytes (HFA) and human adult astrocytes (HAA). Real-time PCR on HFA - (1C) Melting curves of NR2A, NR2B, NR2C, NR2D, and
NR3A transcripts. The temperature at which the rate of change of fluorescence is the greatest is defined as the melting temperature for the product.
Melting curve analysis of PCR product amplified from cDNA confirms specificity of the reaction as a single peak. (1D) Relative mRNA expression of 5

NMDA Receptors and Astrocytes
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analysis (Figure 1C). mRNA expression of NR2A, NR2B, NR2C,

NR2D, and NR3A was detected in HFA (Figure 1D). No more

than 10% difference in primer efficiency between the reference

gene and the target genes was obtained. NR3A mRNA expression

was significantly lower compared to NR2D mRNA expression

(p,0.05). GAPDH expression did not differ between all samples

(data not shown).

Detection of membranous expression of NMDAR
subunits in astrocytes and neurons using
immunocytochemistry and confocal microscopy

Immunocytochemistry confirmed our RT-PCR data showing

that all NMDAR subunits are also expressed in human foetal

astrocytes at the protein level (Figures 2B and 2C). Staining of

human foetal neurons were used as positive control and revealed

the presence of NMDAR expression as expected (Figure 2A).

Negative controls were performed using incubations with just the

secondary antibodies (Figures 2A, 2B and 2C). The presence of

only blue nuclei fluorescence excludes any non-specific secondary

antibody binding and also rules out the presence of auto-

fluorescent cells. Incubations with an IgG irrelevant antibody as

well as incubations with normal rabbit serum were also

undertaken and revealed no non-specific staining. Three images

were taken for each NMDAR subunit and the best image has been

displayed. In addition, single staining for MAP-2 (Figure 1A) and

GFAP (Figures 2A and 2C) was also undertaken to show the cells

were of neuronal and astrocytic origin respectively (see also Figure

S1). We then performed a double staining for GFAP and NR1 and

NR2A/B. We observed a characteristic fibrous staining of a

structural protein for GFAP and fine-pigmented immunolabelling

for the NMDAR subunits (Figure 2C). This double staining

confirms the cells expressing NMDARs are human primary

astrocytes.

Confocal microscopy revealed that the majority of NR1 and

NR2A subunits are located on the surface membrane of human

foetal astrocytes (Figure 2C). In addition, a rim of cytoplasm

mostly devoid of fluorescence can be seen separating the plasma

membrane from the central lying blue-stained nucleus. From the

confocal microscopy results, the detection of NMDARs on the

surface membrane suggests a much higher likelihood that these ion

channels are functional in astrocytes.

Calcium influx experiments
Stimulation of astrocytes using glutamate (Figure 3A) and

QUIN (Figure 3B) results in calcium influx into the cells, with the

intensity of the response increasing as the concentration of the

NMDAR-agonist increases. The intracellular movement of

calcium was significantly inhibited by pre-incubating the astrocytes

with NMDAR-specific antagonists, memantine 20 mM or MK-

801 20 mM for 5 min prior to stimulation. The inhibitory activity

of these NMDAR-specific antagonists on glutamate and QUIN

are shown in Figures 3C and 3D respectively. The glutamate

concentration of 500 mM used in the experiment is well within the

normal levels reached at the synaptic junction following neuronal

depolarisation. QUIN 1 mM is a pathophysiological concentration

found in the CNS of patients with neuroinflammatory conditions

[34]. ANOVA analysis on the quantified amplitudes of astrocytic

response showed that treatment with both glutamate and QUIN in

the presence of specific NMDA antagonists resulted in a calcium

influx response that was statistically lower than the control

(p,0.05) (Figure 3).

Real-time fluorescent imaging of astrocytes showed similar

results, with calcium influx and subsequent cell fluorescence being

detected after stimulation with trans-ACBD, which is a highly

selective NMDAR agonist (Figure 4 and avi movie Video S1). One

interesting observation when the experiments were being per-

formed was that not all astrocytes responded with calcium entry

following treatment with trans-ACBD. In the images taken using

real-time microscopy, the cell on the bottom left did not fluoresce

even after stimulation with an NMDAR agonist. This finding may

reflect the heterogeneity in astrocytic NMDAR expression

observed by immunocytochemistry.

Neurotoxicity LDH assays
Significantly higher levels of LDH were detected in the culture

supernatant following astrocyte stimulation with QUIN and

glutamate (Figure 5A), reflecting increased cell death. Linear

regression analysis showed that increasing concentrations of both

NMDAR agonists resulted in higher levels of LDH release;

glutamate (p,0.05), QUIN (p,0.05). A two-tailed t-test also

revealed that the different levels of LDH release were statistically

significant when treatment with glutamate (50 mM) and QUIN

(200 nM) was compared to control. The data were also analysed to

determine the agonist concentrations that would be most suitable

for subsequent experiments involving the addition of selective

NMDAR antagonists. The criteria for an appropriate excitotoxic

agonist concentration included ensuring sufficient amount of cell

death would occur whilst trying to maintain at least some viable

astrocytes after treatment. Using the above graphs as well as

observations of cell morphology after the excitotoxic incubation

period, the QUIN concentration of 500 nM and glutamate

concentration of 500 mM were chosen.

Pre-incubation of the astrocytes with MK-801 and memantine

prior to incubation with NMDAR agonists was able to reduce

LDH release, suggesting that the excitotoxic effects of both QUIN

and glutamate act at least partially via the NMDAR pathway

(Figure 5B). Linear regression analysis showed that both

antagonists were individually effective at reducing astrocyte

LDH release when added in the presence of excitotoxic

concentrations of glutamate (MK-801 p,0.05; memantine

p,0.01) and QUIN (MK-801 p,0.01; memantine p,0.01).

Linear regression analysis with dummy variables did not show any

statistical difference in the inhibitory activities of MK-801 or

memantine under either conditions of excitotoxic glutamate or

QUIN.

Discussion

Astrocyte ionotropic glutamate receptors (iGluRs) and in

particular NMDARs may play an important role in facilitating

glial signalling in the CNS. We have shown that adult and foetal

human primary astrocytes express all known NMDAR subunits

including NR1. NR2A, 2B, 2C, 2D and NR3A, 3B. These results

are in accordance with previous immunohistochemical studies

showing that NR1 and NR2A/B are expressed by the rodent [4]

and human astrocytic processes [8].

We also found that astrocyte calcium concentrations can be

significantly increased when stimulated with glutamate (p,0.05)

and that the mechanism of calcium elevation is at least partially

NMDAR subunits in HFA: Histogram indicating the mRNA expression of NR2A, NR2B, NR2C, NR2D and NR3A NMDAR subunits normalised to GAPDH
mRNA expression; *p,0.05 compared to NR2D and NR3A; n = 4.
doi:10.1371/journal.pone.0014123.g001
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attributable to activation of the NMDAR pathway. These results

are supported by the real-time fluorescent microscopy data,

revealing the presence of calcium entry following astrocyte

stimulation with a selective NMDAR agonist (Figure 3 and 4).

Results from the fluorometry studies (Figure 3) also substantiate

this by showing the inhibition of calcium influx following the

addition of selective NMDAR antagonists (p,0.05). Furthermore,

the similar NMDAR expression profiles between adult and foetal

specimens suggest that studies on foetal astrocytes may be applied

to adult models. We previously compared simian adult astrocytes

and human foetal astrocytes for the ability to produce chemokines

and chemokines receptors and we did not found any differences

between adult and foetal cells [35]. However further research is

required to assess any potential differences between adult and

foetal NMDARs functions of individual NMDAR subunits.

The finding that NMDAR agonists such as glutamate can cause

a rise in intracellular calcium levels within astrocytes may help to

explain the mechanism of glial signalling within the CNS. Whilst

in neurons, sodium channels are the main receptors for initiating

depolarisation, it is now known that a different form of signalling

occurs in glial cells, which involves the generation of calcium

waves. Astrocytic a-amino-3-hydroxy-5-methyl-4-isoxazolepropio-

nic acid receptors (AMPARs) and metabotropic glutamate

receptors (mGluRs) have been suggested to fulfil this role of

facilitating rises in intracellular calcium, however the results of this

study reveal that NMDAR activation may also be an important

mechanism for initiating calcium influx given that these ion

channels traditionally have much higher calcium permeability

when compared to AMPARs [10].

The glial signalling pathways triggered by this rise in

intracellular calcium are uncertain. Glutamate release has been

shown to occur following an increase of cytosolic calcium in

astrocytes [36]. Previously supported mechanisms of astrocytic

neurotransmitter efflux were centred upon cytosolic calcium

release from internal stores through the IP3 pathway following

the activation of G-protein coupled mGluRs [36]. This study

however, suggests an alternative pathway involving NMDAR

activation to achieve astrocyte intracellular calcium elevation,

Figure 2. Immunocytochemical detection of NMDARs. (Scale
bars = 10 mm). (2A) Positive controls for immunocytochemistry showing
the expression of NMDARs in human foetal neurons. Immunocyto-
chemistry results showing the presence of NR1, NR2A, NR2B, NR2C,
NR2D, NR3A, NR3B in human foetal neurons at the protein level. In
addition, fibrillar staining for MAP2was also undertaken to confirm that
the cells were neurons. The blue DAPI staining is nuclei and the red
fluorescence indicates primary antibody binding to the various NMDAR
subunits. These results demonstrate that the primary antibodies for the
NMDAR subunits are functional. Negative control involved incubating
neurons with only secondary antibodies. (2B) Immunocytochemistry
results showing the presence of NR1, NR2A, NR2B, NR2C, NR2D, NR3A,
NR3B in human foetal astrocytes at the protein level. The blue DAPI
staining marks the location of the nuclei whilst the red fluorescence
shows the binding of the primary antibodies to individual NMDAR
subunits. The images reveal that all NMDAR subunits are expressed in
human astrocytes. Staining for GFAP was also undertaken to
demonstrate the cells were of astrocytic origin. Negative control
involved incubating astrocytes with only secondary antibodies (top
left). (2C) Double staining for GFAP and NR1 and NR2A/B was
performed and results show a characteristic fibrous staining of a
structural protein for GFAP and fine-pigmented immunolabelling for
the NMDAR subunits. (2D) Confocal microscopy results showing the
expression of NR1 and NR2A on the surface membrane of human foetal
astrocytes. The blue DAPI stain indicates the location of the nuclei
whilst the red fluorescence shows binding of primary antibodies to the
NMDAR subunits.
doi:10.1371/journal.pone.0014123.g002
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subsequently facilitating extracellular glutamate release. Nonethe-

less, it is likely that both mGluRs and iGluRs are involved in glial

signalling and further research would be required to determine

any unique roles of each subtype.

Whilst physiological concentrations of glutamatergic neuro-

transmitters may be involved in glial communication in the CNS,

pathological conditions can also result from prolonged exposure to

excitotoxic levels of glutamate and other NMDAR agonists such as

QUIN. Concerning AD, b-amyloid (Ab) plaques are characteristic

of this condition and their presence during diseased states has been

well documented [37]. These neurotoxic lesions are often found

surrounded by extensive areas of cellular necrosis. The mechanism

by which glial excitotoxicity is caused by Ab aggregation in the

brain is still unclear [17]. One study by Guillemin [38] showed

that Ab plaques induced the expression of IDO-1 in surrounding

macrophages and microglia, resulting in the increased production

of QUIN from these cells [38]. This finding was supported by

subsequent studies revealing that the concentration of QUIN was

raised in brain sections from AD patients [17]. QUIN is also able

to increase tau phosphorylation leading to the formation of

neurofibrillary tangles. Memantine is able to reverse this effects

and [39].

From the results of the LDH cytotoxicity experiments, the ability

of selective NMDAR antagonists to reduce the level of astrocyte cell

death in the presence of high concentrations of QUIN suggests that

the excitotoxic effects of QUIN are at least partially mediated

through their actions on glial NMDARs (Figure 3). Although it is

known that QUIN is an agonist of neuronal NMDARs, this study

also postulates that the neurotoxin acts via a similar mechanism in

astrocytes to cause glial cell death. Furthermore, it has been shown

that QUIN not only over-activates NMDARs but it can also inhibit

astrocytic glutamate uptake and glutamine synthetase expression,

compounding the excitotoxic environment in the CNS during

neuroinflammatory conditions [24,40]. Therefore, the results of this

study suggest that astrocytic NMDARs may be responsible for the

glial pathology found in AD and other neurological diseases due to

their involvement in facilitating glutamate and quinolinic acid

excitotoxicity.

Figure 4. Visualization of calcium flux using fluorescent microscopy. (A) Fluorescent image taken before trans-ACBD treatment showing
non-fluorescent astrocytes when the cells were incubating in HBSS containing 50 mM glycine. Fluorescent image taken 5 seconds (B) and 10 seconds
(C) after stimulation with 1 mM trans-ACBD showing fluorescent astrocytes following treatment with a selective NMDAR agonist.
doi:10.1371/journal.pone.0014123.g004

Figure 3. Quantification of calcium flux using fluorometry. (A: left) Astrocytic response to injection of different concentrations of glutamate.
All results have been normalised and are representative of triplicate readings taken for each treatment. (A: right) Quantified amplitude of astrocytic
response to glutamate by taking the average of fluorescent readings after the treatment injection at 10 seconds. Linear regression analysis shows that
increasing the concentration of glutamate results in higher levels of intracellular calcium fluorescence being detected (p,0.01). (B: left) Astrocytic
response to injection of different concentrations of quinolinic acid. The majority of intracellular calcium increase occurred within 30 seconds of
agonist injection. All results have been normalised and are representative of triplicate readings taken for each treatment. (B: right) Quantified
amplitude of astrocytic response to quinolinic acid by taking the average of fluorescent readings after the treatment injection at 10 seconds. Linear
regression analysis shows that increasing the concentration of quinolinic acid results in higher levels of intracellular calcium fluorescence being
detected (p,0.01). (C: left) Calcium influx response to glutamate when astrocytes were pre-incubated with different antagonists. In the legend, the
black data set shows the level of fluorescence when only glutamate was added whilst all the other data sets show fluorescent readings when
astrocytes were pre-incubated with antagonists followed by glutamate stimulation at 10 seconds. (C: right) Quantified amplitude of astrocytic
response to glutamate when pre-incubated with NMDAR antagonists. ANOVA analysis with Dunnett’s post-test shows that both treatment groups
caused a calcium influx response that was statistically lower than the control (p,0.05). (D: left) Calcium influx response to quinolinic acid when
astrocytes were pre-incubated with different antagonists. In the legend, the black data set shows the level of fluorescence when only quinolinic acid
was added whilst all the other data sets show fluorescent readings when astrocytes were pre-incubated with antagonists followed by quinolinic acid
stimulation at 10 seconds. (D: right) Quantified amplitude of astrocytic response to quinolinic acid when pre-incubated with NMDAR antagonists.
ANOVA analysis with Dunnett’s post test shows that both treatment groups caused a calcium influx response that was statistically lower than the
control (p,0.05).
doi:10.1371/journal.pone.0014123.g003
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In conclusion, the present study is the first to conclusively show

the functional expression of NMDARs in human primary

astrocytes. This discovery has far-reaching implications, particu-

larly in redefining the role of astrocytes in both physiological

progresses and pathological conditions.

Supporting Information

Video S1. Real-time imaging of astrocytes showed similar

results, with calcium influx and subsequent cell fluorescence being

detected after stimulation with trans-ACBD.

Found at: doi:10.1371/journal.pone.0014123.s001 (2.80 MB

MOV)

Figure S1. Purity of primary cultures of human fetal astrocytes.

GFAP immunocytochemical staining of purified human foetal

primary astrocyte cultures (6400). GFAP IgG1 mAb (Novocastra)

was used for this staining.

Found at: doi:10.1371/journal.pone.0014123.s002 (1.35 MB

TIF)
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Figure 5. Neurotoxicity and neuroprotection assays. Different concentrations of glutamate (A: top) and quinolinic acid (A: bottom) were
used to induce excitotoxic cell death in astrocytes, which were quantified by measuring LDH release after 24 hours. Protein levels were also
calculated using the Bradford assay to standardise the cell numbers within each well. Significance *p,0.05 compared to control (n = 3 for each
treatment group). (B: top) Level of LDH release after 24 hrs when astrocytes were incubated with 500 mM of glutamate and varying concentrations of
different selective NMDAR antagonists. Employing two-tailed t-test analyses showed that all treatment groups of MK-801 and memantine, even at
concentrations of 0.1 mM resulted in reduced LDH levels in the supernatant. Significance */0 p,0.05 compared to control (n = 3 for each treatment
group). (B: bottom) Level of LDH release after 24 hrs when astrocytes were incubated with 500 nM of QUIN and varying concentrations of different
selective NMDAR antagonists. Using two-tailed t-test analyses revealed that all MK-801 treatment groups resulted in reduced LDH production but
only memantine concentrations above 0.5 mM were statistically significant in decreasing LDH levels. Significance */0 p,0.05 compared to control
(n = 3 for each treatment group).
doi:10.1371/journal.pone.0014123.g005
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