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A B S T R A C T

Cortical Bone Mechanics TechnologyTM (CBMT) comprises certain improvements over a previous method
known as Mechanical Response Tissue Analysis (MRTA). Both methods are dynamic 3-point bending tests
intended for measuring the mechanical properties of cortical bone in living people. MRTA presented a
theoretical potential for direct measurement of skeletal fragility, but it had acquired a reputation for error
and fallen into disuse. We found sources of error in both MRTA data collection and data analysis. We
describe here the fundamentals of MRTA, the major sources of error we found in MRTA, and our innovations for
avoiding them.

� Data collection at many sites across the mid-shaft of the ulna bone in the forearm.

� Parameter estimation by fitting analytical complex compliance and stiffness transfer functions to empirical
complex compliance and stiffness frequency response functions.

� Optimization by selecting results from frequency response functions with the smallest deviations between fits
to compliance and stiffness frequency response functions.
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Method details

Recently, we reported the excellent accuracy of a novel non-invasive, radiation-free method for
measuring the bending stiffness and estimating the bending strength of cortical bone in ulnas of living
people [1]. This method embodies certain improvements over a method known as Mechanical Response
Tissue Analysis (MRTA) that had fallen into disuse [2]. MRTA was a dynamic 3-point bending test for
measuring the mechanical properties of long bones in living people. It had been extensively utilized [3],
but had acquired a reputation for inaccuracy [4,5] and irreproducibility [6]. Because current clinical
methods do not predict fractures well [7–10], and because MRTA presented a theoretical potential for
directmeasurementofskeletal fragility,weundertooktodiscoverthemajorsourcesoferror inMRTA and,
if possible, to correct them. We describe here the major sources of error we found in MRTA and our
innovations for avoiding them. We distinguish these innovations from MRTA by the new name Cortical
Bone Mechanics TechnologyTM (CBMT). For those in the field of bone mechanics who are unfamiliar with
frequency response analysis, we begin by describing the fundamentals of MRTA.

Fundamentals of MRTA

MRTA solutions for limitations of quasistatic mechanical testing

Our interest in MRTA derived from the long-known observation that quasistatic measurements of
bone bending stiffness accuratelypredict quasistatic measurements of bone bending strength [4,11–13].
In QMT measurements of bone bending stiffness, a monotonically increasing bending displacement x is
imposed very slowly at the middle of a long bone or bone specimen of length L while the force F required
to impose the displacement is measured. Commonly, bending stiffness KB = F/x is defined as the slope in
the linear (i.e., elastic) range of the graphical relationship between force and displacement. To measure
bending strength, the displacement is increased until the beam finally breaks. The peak moment Mpeak=
FpeakL/4 prior to fracture is then defined as bending strength. QMTcannot be used clinically because the
first step in QMT measurements of bone stiffness and strength is to remove the bone from the body.

QMT is quasistatic, because bone is a visco-elastic material. That is, the relationship between force
and motion in bone depends strongly on the speed as well as the amount of displacement. Due to
inertial effects, the relationship also depends strongly on the acceleration of displacement. By
proceeding very slowly, QMT reduces the influences of these effects to negligible levels so that the
bone’s elastic behavior (i.e., its stiffness) can be measured in isolation.

MRTA was expected to overcome the clinical limitations of QMT by applying small, rapidly
oscillating forces spanning a range of audio frequencies to the skin overlying a long bone. Such
dynamic mechanical testing induces viscous and inertial as well as elastic effects in both the skin and
bone, and enables the mechanical properties causing those effects (i.e., damping, mass and stiffness,
respectively) to be quantified in the resulting frequency-dependent vibration response. Then, the
reasoning went, the bone’s strength could be accurately predicted from its stiffness.

Fig. 1 contrasts the mechanical models of QMT and MRTA tests. Those familiar with mechanical
dynamics will notice the presence in the MRTA model of two clusters of model parameters. One cluster
is comprised of the mass, stiffness and damping of the skin (MS, KS and DS) while the other is
comprised of the mass stiffness and damping of the underlying bone (MB, KB and DB).

The amount of force required to bend an ulna bone into the linear portion of its range of motion
where KB is calculated by QMT is typically more than 100 N. In MRTA, the applied static force is
typically less than 20 N, and the applied oscillatory force is typically 1 N. This static force is similar to
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the force on one’s fingertip when pressing an elevator button, and the oscillating force is similar to the
force one feels holding an electric toothbrush or electric razor.

Fig. 2 shows typical QMT and MRTA data. As described above, the force and displacement data
measured in QMT appear on the Y and X axes, respectively. In MRTA, the oscillatory force
superimposed on the static force and the resulting acceleration of the force probe are measured, and
their ratio accelerance (i.e., oscillatory acceleration divided by oscillatory force) is plotted on the
Y-axis. Note that, as will be described below, this frequency-dependent response (i.e., frequency
response function, FRF) has two values at every frequency: the so-called “real” and “imaginary” parts
of the response.

Note, too, that the accelerance FRF in Fig. 2 varies strongly with the frequency of oscillation, which
appears on the X-axis. The imaginary part of accelerance displays two peaks while the real part
displays two sigmoidal curves centered near 200 and 600 Hz. The mechanical behavior at near 600 Hz
is determined primarily by the mass, stiffness and damping of the skin, while the behavior at near
200 Hz is determined primarily by the mass, stiffness and damping of the underlying bone. Hence, the
peaks in the imaginary part are referred to as the “skin peak” and “bone peak”, respectively. Moreover,
the frequency of the skin peak increases with the static force applied to the forearm. Thus, one purpose
of the static force is to separate the skin and bone peaks from one another.

Fig. 2. Typical QMT data (left) and MRTA data (right). Note the presence of two resonances in the MRTA data indicated by two
peaks in the imaginary part and two sigmoidal curves in the real part of accelerance.

Fig. 1. Mechanical models for QMT (left) and MRTA (right) tests. (F = force; x = displacement; M = mass, D = damping,
K = stiffness; S = skin, B = bone, P = peripheral soft tissue. In QMT, skin and peripheral soft tissue are absent, and F changes so
slowly that effects of MB and DB are negligible.
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Demystification of “real” and “imaginary” parts of a frequency response function

The off-putting terms “real” and “imaginary” are nothing more an artifact of the history of
mathematics when authorities in mathematics, including Rene Descartes, could not imagine how the
square root of minus 1 (

ffiffiffiffiffiffiffi
�1

p
) could possibly be useful for anything real [14]. So, such numbers were

dismissed as “imaginary”. With the passage of time,
ffiffiffiffiffiffiffi
�1

p
was found to have many useful applications,

one of which is in MRTA, but by then the derogatory name had stuck. In practice, the “real” and
“imaginary” parts of a complex FRF are simply a convenient notation for keeping track of two different
things.

To explain what these two things are, imagine I were to punch you in the nose. I would immediately
be interested in two things: how big your response was going to be, and when it was going to happen.
In effect, MRTA punches a person’s limb in the “nose” over and over and over again with every
oscillation of force, and the limb responds with [1] some magnitude of oscillatory motion [2] some
time later. In MRTA, a complex FRF contains information about the magnitudes and delays of
oscillatory motions in response to oscillatory forces at different frequencies. The simple relationships
between the magnitudes and times of responses, and the “real” and “imaginary” parts of those
responses are illustrated in Fig. 3.

In Fig. 3, the length of time (T) for one complete cycle of the oscillatory response at one particular
frequency f is defined as one period of the oscillation and illustrated by a circle of circumference T = 1/f.
The magnitude M of the response is indicated by the length of an arrow pointing in a particular
direction. That direction is determined by the time delay tD between the peak of oscillatory force and
the peak of oscillatory motion. The fraction of period T between the peak of the applied oscillatory
force and the peak of the resulting oscillatory motion is defined as the phase F = tD/T of the response.
Thus, the pair of numbers M and F quantify the response at this frequency f.

Now notice that projecting the arrow in Fig. 3 onto the X (“real”) and Y (“imaginary”) axes yields a
second pair of numbers (Real = M cos (F) and Imaginary = M sin(F)) that also quantify the response.
As it happens, some mathematical operations (i.e., multiplication and division) are easier to perform
with the magnitude and phase expression of a complex response, while other operations (i.e., addition
and subtraction) are easier to perform with the real and imaginary expression. Therefore, to facilitate
calculations, the two expressions are converted back and forth for convenience.

So, what does this have to do with
ffiffiffiffiffiffiffi
�1

p
? Because it is annoying to keep writing “real” and

“imaginary” over and over again, the “real” and “imaginary” parts a and b are written as a + b
ffiffiffiffiffiffiffi
�1

p
.

And, because it is annoying to keep writing
ffiffiffiffiffiffiffi
�1

p
over and over again, the letter “i” or “j” is commonly

Fig. 3. The real and imaginary parts of an oscillatory response at a single frequency f = 1/T.
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used as an abbreviation for
ffiffiffiffiffiffiffi
�1

p
. Then the “real” and “imaginary” parts of a response can be written

more compactly as a + ib or as a + jb. The MRTA accelerance FRF shown in Fig. 2 is simply a compact
illustration of a and b at all frequencies of oscillation at once.

MRTA data analysis

MRTA data such as those shown in Fig. 2 are analyzed by a procedure called parameter estimation.
The procedure begins by writing and solving the differential equations of motion for the mechanical
model of the skin-bone system shown in Fig. 1. The solution is conveniently derived as the complex
stiffness transfer function (TF) H(s) = F(s)/x(s) of the skin-bone system in the form of a 4th order
rational polynomial in which MS is the mass of the skin [2]:

F sð Þ
x sð Þ ¼ MS

s4 þ A3s3 þ A2s2 þ A1s þ A0

s2 þ C1s þ C0
ð1Þ

Substituting the complex frequency s = jv (where v = 2pf and j =
ffiffiffiffiffiffiffi
�1

p
) into Eq. (1) yields the real

and imaginary parts of the complex stiffness TF: F/x = Real{F/x} + j Imag{F/x}, where (2)

Real
F vð Þ
x vð Þ

� �
¼ Ms

C0 � v2
� �

v4 � A2v2 þ A0
� �� C1v A3v3 � A1v

� �� �
C0 � v2ð Þ2 þ C1vð Þ2

ð2aÞ

Imag
F vð Þ
x vð Þ

� �
¼ Ms

C1v v4 � A2v2 þ A0
� �þ C0 � v2

� �
A3v3 � A1v
� �� �

C0 � v2ð Þ2 þ C1vð Þ2
ð2bÞ

and the six coefficients in Eqs. (1) and (2) are algebraic functions of the seven parameters of the
mechanical model of the skin-bone system shown in Fig. 1: (2)

A0 ¼ KSKB

MSMB
  A1 ¼ KB DS þ DPð Þ þ KS DB þ DPð Þ

MSMB
  A2 ¼ KSþKB

MB
þ KS

MS
þ DS DB þ DPð Þ þ DBDP

MSMB
  

 A3 ¼ DSþDB

MB
þ DS þ DP

MS
ð3a�dÞ

C0 ¼ KSþKB

MB
 C1 ¼ DSþDB

MB
ð3e; fÞ

These relationships enable the values of the parameters of the mechanical model in Fig. 1 to be
obtained from the complex accelerance FRF in Fig. 2 in four steps:

(1) The complex accelerance FRF (a/F) is integrated twice to obtain the complex compliance FRF (x/F);
(2) The complex compliance FRF is inverted to obtain the complex stiffness FRF (F/x);
(3) the polynomical coefficients are obtained by fitting Eq. (1) to the complex stiffness FRF; and
(4) the parameter values are then obtained by solving the simultaneous equations in Eq. (3).

Alternatively, the parameter values can be obtained in three steps by skipping Step 2 and fitting the
inverse of Eq. (1) to the complex compliance FRF. Fig. 4 shows fits of complex compliance and stiffness
transfer functions to typical MRTA complex compliance and stiffness FRFs collected from a forearm.

Major sources of error in MRTA

Sources of error in MRTA data collection

Fig. 5 illustrates three sources of error in MRTA data collection. First, the test subject is controlling
the static force applied to the leg as she presses her leg against the force probe. Second, by the
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placement of her leg the subject also controls the location in the transverse direction at which the
probe applies the static and oscillatory forces to the leg. As will be shown below, the resulting FRF is
acutely sensitive to the placement of the probe, and it is impossible for either the subject or the operator
to know where to put it. Third, the bone being tested in Fig. 5 is the tibia. Bending tests are highly
sensitive to end conditions, and the tibia is not well supported by a mechanical ground at either end.

The property of a long bone that accurately predicts it’s bending strength is flexural rigidity (EI = KB

L3/48, where E = the elastic modulus of bone material, I = the cross-sectional moment of inertia of the
bone’s geometry at the mid-span, and L = length of the bone). Fig. 6 shows the real parts of complex
stiffness FRFs collected in the manner illustrated in Fig. 5 [6]. The nine repeated measurements were
collected within a few minutes from a single leg. The resulting estimates of tibia EI calculated from
tibial length and MRTA measurements of tibia KB ranged from 143 to 653 Nm2with a mean of 320 Nm2

and a standard deviation of 199 Nm2 for a coefficient of variation CV of 62%.
To understand why it is impossible for a patient or operator to know where to place the force probe

during MRTA data collection, consider first that the data analysis described in Eqs. (1)–(3) above
implicitly assumes that the line of oscillatory force shown in the mechanical model illustrated in Fig. 1
passes through the centroid of the bone, i.e., the point around which the mass of the bone is uniformly
distributed. Fig. 7 shows the wide variations in geometric form and patterns of internal osteoporotic
destruction of cortical bone tissue at the mid-shaft of the ulna bone. Indeed, Fig. 7 understates this
variation as ulnas also vary longitudinally in their axial curvature and diameter. Of course, all of this
geometric variation is also obscured by overlying soft tissue.

Misplacing the force probe induces modes of vibration other than the pure antero-posterior
bending (e.g., medio-lateral bending and torsion) assumed in the derivation of Eq. (1). Introducing
additional modes of vibration not included in the seven-parameter model of Eq. (1) has the effect of

Fig. 4. Fits of complex compliance (left) and stiffness (right) transfer functions to typical complex compliance and stiffness
frequency response functions measured in MRTA tests of a forearm. Note: the X-axis begins at 40 Hz.

Fig. 5. MRTA data collection from a tibia of a living human subject [15].
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biasing estimates of the seven parameters, just as an outlying data point biases estimates of the
Y-intercept and slope in a linear regression analysis. Fig. 8 illustrates this source of error with two
forearm FRFs collected and fitted to TFs 3 min apart. A 4 mm lateral misplacement of the force
probe induced an extraneous mode of vibration at 121 Hz that biased the estimate of ulna KB and EI
low by 15%.

Sources of error in MRTA data analysis

The first source of error we encountered in MRTA data analysis related to fits of compliance and
stiffness TFs to corresponding compliance and stiffness FRFs. Theoretically, the information in a

Fig. 7. Cross-sectional microtomographic images at the mid-shaft of selected ulna bones [1].

Fig. 6. Real parts of tibia stiffness FRFs collected in the manner illustrated in Fig. 5 [6].
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rational function (y = numerator/denominator) and its inverse (1/y = denominator/numerator) should
be the same. However, contrary to theoretical expectation, we observed that estimates of parameter
values derived from fits of the complex compliance TF and its inverse (the corresponding complex
stiffness TF) to a complex compliance FRF and its inverse (the corresponding complex stiffness FRF)
often differed widely from each other. The values of EI calculated from fitting the complex compliance
FRF with an extraneous peak in Fig. 7 and its inverse were 32.7 and 27.5 Nm2. In our experience, such
differences from averages of the paired estimates have ranged up to almost �200%.

The second source of error we encountered was that estimates of parameter values varied greatly
with the frequency range over which the TF was fitted. Fig. 9 illustrates how estimates of ulna bending
stiffness varied with the frequency range over which one FRF was fitted.

The third source of error we encountered lay in the selection by previous practitioners of the
coefficient of determination (R2) to judge the goodness of fit of a TF to a FRF. MRTA practitioners
commonly rejected fits to FRFs with R2 < 0.90 [16,17]. We found that this threshold and, indeed, this
statistic do not discriminate well between widely divergent estimates of parameter values. For

Fig. 8. Complex compliance FRFs with (left) and without (right) an extraneous mode of vibration at 121 Hz. Blue = real part of
FRF; black = imaginary part of FRF; red = real part of TF; pink = imaginary part of TF; dashed = TF fitted to complex compliance
FRF; solid = inverted TF fitted to complex stiffness FRF. Note: the X-axis begins at 40 Hz.

Fig. 9. Variation of estimates of ulna bending stiffness from fits of the complex stiffness TF to the complex stiffness FRF (kbS,
left), and from fits of the complex compliance TF to the complex compliance FRF (kbC, right), with the frequency range over
which fits were performed. Note: fmin = minimum frequency of the fitting frequency range; fmax = maximum frequency in the
fitting frequency range.
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example, R2 > 0.90 accepted all the FRFs shown in Fig. 6. The values of R2 for the fits of TFs to the
complex compliance FRFs shown in Fig. 8 were 0.9651 (left) and 0.9960 (right). For the fits of the
inverse TFs to the corresponding inverse complex stiffness FRFs, the values of R2were 0.9988 (left) and
0.9996 (right). In our experience testing forearms, we have rarely seen R2 as low as 0.95.

In summary, we found that MRTA estimates of model parameter values vary substantially [1]
between FRFs collected at closely placed locations, [2] between fits of TFs to stiffness and compliance
expressions of a single FRF, and [3] between sub-ranges of frequency in either expression of a single
FRF. Complicating this problem, we found that R2 does not discriminate well between widely
divergent estimates of parameter values.

Corrections for major sources of error in MRTA

Corrections for sources of error in MRTA data collection

We avoided one major source of error in MRTA data collection by deferring all effort to measure the
mechanical properties of the tibia until after we had mastered measurement of the mechanical
properties of the biomechanically much simpler ulna. We avoided another major source of error by
removing from the subject all responsibility for positioning the forearm.

We avoided a third major source of error by not asking the operator to try to identify the correct
position to place the force probe. Instead, the force probe is initially placed in a known incorrect
position maximally eccentric at the mid-shaft. Excitation of the forearm at this position induces an FRF
with a large extraneous peak like that shown in Fig. 8. Then FRF data are collected and analyzed at
1 mm increments across the diameter of the ulna, almost all of which positions are also eccentric to
some degree. Among them, however, is the position at which the force passes closest to the centroid of
the ulna. This procedure exchanged an intractable a priori data collection problem for a soluble post
hoc data analysis problem: recognizing data collected in antero-posterior bending at the centered
position. This exchange of problems required the development of an algorithm for recognizing FRF
data from the correct site. Before such an algorithm could be developed, however, it required the
adoption of certain decision rules for the preference of one estimate of parameter values over many
others.

Corrections for sources of error in MRTA data analysis

Decision rules
In order for decision rules for preferring one estimate of model parameter values over others to be

widely accepted, they needed to have certain self-evident properties. First, they needed to be generally
applicable to all arms. Second, they needed to be non-arbitrary. Third, they needed to yield estimates
of parameter values that are physically realizable. Because all of the parameters of the mechanical
model illustrated in Fig. 1 are positive, for example, decision rules needed to exclude fits to FRFs that
yield negative estimates of parameter values. They also needed to exclude FRFs yielding impossibly
high estimates of parameter values. The fourth property of widely acceptable decision rules was that
they needed to be objective. Fifth, they needed to be quantitative so that they could be applied by a
computer algorithm. Finally, the decision rules needed to yield estimates of ulna bending stiffness
similar to estimates obtained by QMT, since QMT is the Gold Standard (i.e., widely accepted) method
for measuring bone stiffness. Because the first step in QMT is to remove a bone from the body, this last
property required the testing of cadaveric human arms to obtain data with which to discover these
decision rules.

A more discriminating goodness-of-Fit statistic
It took a long time for the right question to come to mind about the discrepancies between

estimates of parameter values from fits of the complex compliance and stiffness TFs to the complex
compliance and stiffness FRFs. The right question was, “How big would these discrepancies be in an
FRF with perfect 7-parameter data instead of empirically measured data.” To find out, we substituted a
plausible set of parameter values into Eq. (3) to calculate the coefficients that would normally be
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obtained by fitting Eq. (2) to an empirical FRF. We then substituted those coefficients and values of
frequency at 1 Hz intervals from 40 to 1200 Hz into Eq. (2) to obtain a synthetic complex stiffness FRF
of the same size as an empirical FRF. We then inverted this perfect complex stiffness FRF to obtain the
corresponding perfect complex compliance FRF. Then we fitted compliance and stiffness TFs to these
perfect FRFs just as we would fit empirical compliance and stiffness FRFs. We found the estimated
parameter values from the two fits to be identical and equal to the initial values substituted into Eq.
(3). After confirming this with other sets of initial values, we concluded that the discrepancies are a
measure of the extent to which an FRF deviates from the 7 parameter model shown in Fig. 1.

Accordingly, we defined the root mean square of the pairwise deviations between the seven
parameters normalized to their pairwise means (RMS7) as a candidate goodness-of-fit statistic. We
found that RMS7 varied widely (from 0.2% to 90.5%) for FRFs that varied widely in measures of KB but
hardly at all in values of R [2] crowded near 1. For example, values of RMS7 for the FRFs shown on
the left and right of Fig. 8, were 13.9% and 5.1%, respectively. Fig. 10 shows how values of RMS7 and
KB estimated from the complex stiffness FRF (K_B,S in Fig. 10) and from the complex compliance FRF
(K_B,C) varied in one transit across a forearm. Note that the smallest discrepancy between estimates of
KB alone occurred at site 4, whereas RMS7 was minimized at site 7.

Fig. 11 shows how values of RMS7 varied across subranges of frequency in complex compliance and
stiffness FRFs collected at the same site shown in Fig. 9. Note that RMS7 was minimized when complex
compliance and stiffness TFs were fitted to the complex compliance and stiffness FRFs over a particular
subrange of frequency.

Fig. 10. Variation in RMS7 and KB in a transit across a forearm.

Fig. 11. Variation in RMS7 across subranges of frequency in a single FRF.
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Two clarifications should be made at this point. First, the values of KB at particular sites such as those
plotted in Fig. 10 are those determined in the particular subrange of frequency with the lowest value of
RMS7 as shown in Fig.11. Second, bounds on sub-ranges of frequencyare data-driven. The lower bound on
the lower end of sub-ranges is the minimum shaker excitation frequency. The type of electromagnetic
shaker utilized in the CBMT system applies a constant acceleration to the armature to which the force
probe is attached. As a result, the armature’s amplitude of motion is inversely proportional to the square of
frequency. Below 40 Hz the amplitude exceeds the physical range of motion provided for the armature
within the shaker. The upper bound on the lower end of sub-ranges is the resonant frequency of the bone
peak, which,ofcourse,varies fromFRFto FRF. Meanwhile, theupperboundontheupperend ofsub-ranges
is the maximum shaker excitation frequency, which is well above that of the skin peak. For fitting skin
peaks with resonant frequencies below about 800 Hz, additional asymptotic data above 1000 Hz are not
useful. Thelowerboundontheupperend ofsub-rangesisthe resonant frequencyof the skinpeak. Thus,all
sub-ranges of frequency for fitting TFs to FRFs include the range between the bone and skin peaks, and
thereby capture the influences of model parameters on the locations and shapes of those resonances.
Whether low values of RMS7 indicate correct values of KB remained to be determined, however.

Validation of CBMT by QMT

As reported [1] in the companion to this article, the correctness of the above innovations was
validated by comparing noninvasive CBMT measurements of KB in 35 cadaveric human arms to
measurements by QMT in the ulnas excised from those arms. Male and female arm donors ranged
widely in age (17 to 99 years) and body mass index (13–40 kg/m2). Because QMT force-displacement
curves were typically nonlinear, QMT measurements of bending stiffness were recorded as the peak
tangent stiffness. Discrepancies between CBMT and QMT measurements over all 35 arms were
minimized by requiring RMS7 � 9% in fits of TFs to FRFs. After correcting for a fixed bias thought to be
due to ligamentous binding of the ulna to the radius in the intact arm, the linear relationship between
CBMT and QMT measurements of ulna EI approximated the identity line (CBMT = 1.00 QMT, R2 = 0.99).
Linear relationships (y = b0 + b1x) between ulna bending strength measured by QMT and ulna EI
measured by CBMT (adjusted) and QMT (both R2 = 0.99) were indistinguishable from one another
(b0 = 0, both p � 0.24; b1 = 1.29 � 0.02 (QMT) vs 1.28 � 0.03 (CBMT), p � 0.80).
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