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Abstract: Mahonia bealei (Fort.) Carr. (M. bealei) plays an important role in the treatment of many
diseases. In the present study, a comprehensive method combining supercritical fluid chromatography
(SFC) fingerprints and chemical pattern recognition (CPR) for quality evaluation of M. bealei was
developed. Similarity analysis, hierarchical cluster analysis (HCA), principal component analysis
(PCA) were applied to classify and evaluate the samples of wild M. bealei, cultivated M. bealei and
its substitutes according to the peak area of 11 components but an accurate classification could
not be achieved. PLS-DA was then adopted to select the characteristic variables based on variable
importance in projection (VIP) values that responsible for accurate classification. Six characteristics
peaks with higher VIP values (≥1) were selected for building the CPR model. Based on the six
variables, three types of samples were accurately classified into three related clusters. The model was
further validated by a testing set samples and predication set samples. The results indicated the model
was successfully established and predictive ability was also verified satisfactory. The established
model demonstrated that the developed SFC coupled with PLS-DA method showed a great potential
application for quality assessment of M. bealei.

Keywords: M. bealei; SFC fingerprint; chemical pattern recognition; quality evaluation

1. Introduction

Mahonia bealei (Fort.) Carr. (M. bealei) is a well-known traditional Chinese medicine (TCM) and
has been used for the treatment of acute dysentery, icteric hepatitis conjunctivitis, etc. [1]. Nowadays,
over 50 species of Mahonia plant grow in China. Several Mahonia plants such as Mahonia breviracema Y.
S. Wang et Hsiao (M. breviracema Y. S. Wang et Hsiao), Mahonia duclouxiana Gagnep (M. duclouxiana
Gagnep), Mahonia bodinieri Gagnep (M. bodinieri Gagnep), and Mahonia fordii Schneid (M. fordii Schneid)
were utilized as substitutes of M. bealei in Chinese folk medicine [2,3]. In addition, with increasing
medicinal use demand, the wild M. bealei has been overexploited. Therefore, cultivated M. bealei has
become the main source to satisfy the market demand. To our knowledge, the cultivation environment
might affect the chemical content compared to the wild growing environment, resulting in quality
differences [4]. As far as we know, little attention has been paid to the quality differences between wild
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and cultivated M. bealei. The current Chinese Pharmacopoeia describes several alkaloids, including
columbamine, jatrorrhizine, palmatine, and berberine, as the main bioactive compounds in M. bealei.
These compounds could be considered as chemical markers for the quality control of M. bealei [1].
However, it was revealed that many common components (i.e. berberine, jateorhizine, palmatine) [5]
have been reported in Mahonia species. Owing to the complex composition of Mahonia species, it is
insufficient to perform quality assessment using only several chemical markers. Therefore, a method
for comprehensive and effective evaluation of M. bealei is necessary based on their integral components.

Due to the typical complexity in composition of TCMs, fingerprint analysis have been accepted
as an effective tool for evaluating the quality of TCMs without sacrificing reference standards that
are usually highly expensive and far from need, such as high performance liquid chromatography
(HPLC) [6,7], gas chromatography (GC) [8], near infrared spectroscopy (NIR) [9], high performance
thin layer chromatography (HPTLC) [10], nuclear magnetic resonance (NMR) [11]. It also can offer
the possibility of evaluating the quality of TCMs following the overall principle [12,13]. Among these
techniques, HPLC has been the most widely used for fingerprint analysis. However, long analysis
times were usually required in TCMs analysis in order to obtain a holistic chemical profile for
HPLC fingerprints.

Supercritical fluid chromatography (SFC) using supercritical carbon dioxide as the major mobile
phase has been applied in TCM analysis as a green technique. SFC displays several advantageous
properties such as fast separation and high efficiency, as well as low consumption of organic
solvents [14,15]. These features are highly beneficial from a chromatographic point of view to
obtain a fast analysis and a good resolution, which can not only avoid the use of great amounts of
organic solvents that are both toxic and expensive, but also provide more useful chemical information
for SFC fingerprint analysis. However, SFC fingerprints of TCMs often contain highly complex
multivariate data that make their interpretation difficult. Therefore, chemical pattern recognition (CPR)
methods, such as hierarchical cluster analysis (HCA), principal component analysis (PCA) and partial
least squares discriminant analysis (PLS-DA) could be considered as reasonable methods to simplify
the complex data [8]. To our knowledge, there are no reports yet on the quality evaluation of M. bealei
using SFC fingerprints with CPR.

The main aim of this study was to establish a reliable method using SFC fingerprints and CPR
methods for the quality evaluation of M. bealei. For this purpose, wild M. bealei, cultivated M. bealei and
four other M. bealei substitutes were chosen as study objects (Figure 1). Unsupervised (HCA and PCA)
and supervised (PLS-DA) pattern recognition methods were both applied to analyze the obtained
data in order to establish an accurate classification model. Thereafter, the established model was
further validated by testing set samples. The predictive ability of the model was also evaluated by the
statistical parameters of a prediction set. Interestingly, the method could not just provide an effective
and comprehensive way to evaluate the quality of M. bealei, but could also allow their differentiation at
the chemistry level.
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Figure 1. Appearance characters of M. bealei samples and its substitutes. A: cultivated M. bealei; B: wild
M. bealei; C: M. breviracema Y. S. Wang et Hsiao; D: M. duclouxiana Gagnep; E: M. bodinieri Gagnep; F:
M. fordii Schneid.

2. Results and Discussion

2.1. Optimization of the Chromatographic Conditions

Four stationary phases, namely NH2, XAmide, Pyridine, and PFP were compared in order to
obtain adequate selectivity using appropriate gradient elution (Table S1). As can be seen in Figure S1,
the best selectivity was observed for the NH2 column. Thereafter, the detection wavelength was also
optimized to obtain as much chemical information as possible. In terms of the number of peaks and
peak intensity, 230 nm was selected as the optimal wavelength (Figure S2).

M. bealei was reported as rich being in alkaloids [16]. Considering the properties of alkaloids,
different concentrations of diethylamine (0–0.8%, v/v) were added to improve the peak shape and
selectivity. Finally, the best separation performance, with a resolution (Rs) of 1.64 for the critical pair
(peaks 6 and 7, Figure S3) was obtained using 0.4% (v/v) diethylamine. In order to improve the retention
of analytes, the use of a second additive (water) was investigated. It was found that retention was
decreased when the amount of this additive was increased from 0 to 8% (v/v) water, the Rs value for
peak 6 and 7 was increased from 1.31 to 2.55. However, the baseline drifted when a concentration of
8% (v/v) water was used (Figure S4), therefore, 5% (v/v) water was considered as the best compromise
for the separation of analytes.

Backpressure (100–160 bar) and temperature (20–40 ◦C) were also investigated in order to further
enhance the separation performance. It was found that the best Rs of the peaks 6 and 7 were obtained
when the temperature and backpressure were set at 28 ◦C and 140 bar (Figures S5 and S6), respectively.
Finally, these optimal conditions were applied to the analysis of extracts of wild M. bealei, cultivated
M. bealei and its substitutes.

2.2. Repeatability and Stability Evaluation

The developed SFC fingerprint method was validated for repeatability, and stability. For the
evaluation of repeatability six independent samples were prepared in parallel, according to Section 3.3.
The relative standard deviations (RSDs) of peak area and retention time (RT) of 11 common peaks
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were less than 2.3% and 0.24%. The stability was assessed by repeatedly analyzing the same solution
after being placed at room temperature for 0, 2, 4, 8, 12, and 24 h. The RSDs of peak area and RT of 11
common peaks were below 2.56% and 0.25%, respectively. These results indicated that the established
SFC fingerprint method of M. bealei was stable and reliable.

2.3. SFC Fingerprint Analysis and Similarity Evaluation

Thirty seven SFC fingerprints of M. bealei (wild and cultivated) and its substitutes from the
training set were established under the optimized conditions and then imported into the similarity
evaluation system. Sample fingerprints were compared with fingerprint R to generate the similarity
values. As a result, 11 common peaks were observed in SFC fingerprints (Figure 2). The similarity
values between the generated fingerprint R and analyzed samples were in the range of 0.830 to 0.982
(Table 1). These results indicated that no significant difference was observed between these various
samples. However, the contents of 11 common peaks were quite different, that might result in quality
differences. Furthermore, CPR methods were employed to assess the variation in quality.
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Figure 2. SFC fingerprints of different M. bealei samples and its substitutes. Experimental condition:
NH2 (4.6 mm × 250 mm, 5 µm); mobile phase: (A) sCO2; (B) MeOH containing 0.4% (v/v) diethylamine
and 8% (v/v) water; gradient: 015 min/18%–25% B, 15–20 min/25%–35% B. 20.1–25 min/18% B; injection
volume: 5 µL; flow rate: 3.0 mL/min; column temperature: 28 ◦C; backpressure: 140 bar; detection
wavelength: 230 nm; samples: S1–S27, S31, S34, S36, S39–S41, S46–S47, S49.

Table 1. SA results of 37 batches of M. bealei samples and its substitutes.

Sample Similarity Sample Similarity

S1 0.942 S20 0.936
S2 0.942 S21 0.870
S3 0.955 S22 0.871
S4 0.952 S23 0.898
S5 0.957 S24 0.861
S6 0.964 S25 0.862
S7 0.976 S26 0.875
S8 0.862 S27 0.850
S9 0.909 S31 0.912

S10 0.910 S34 0.913
S11 0.941 S36 0.841
S12 0.968 S38 0.912
S13 0.830 S39 0.896
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Table 1. Cont.

Sample Similarity Sample Similarity

S14 0.913 S40 0.952
S15 0.956 S41 0.980
S16 0.973 S46 0.954
S17 0.982 S47 0.973
S18 0.928 S49 0.955
S19 0.929

2.4. CPR Analysis

2.4.1. HCA and PCA Analysis

To evaluate the difference of the components in wild M. bealei, cultivated M. bealei and its three
types of substitutes, unsupervised HCA and PCA were performed. Thirty seven samples were selected
as observations while the peak areas of 11 compounds were selected as variables forming a 37 × 11 data
matrix. The corresponding HCA dendrogram and PCA score plot are shown in Figures 3 and 4, where
it can be seen that these samples were sorted into three clusters reflecting the quality differences of the
three types of samples. Among them, samples 31 and 34 were misclassified into the wild M. bealei
group, whereas samples 4, 11, 18, 19, and 20 were misclassified into the substitutes. This demonstrated
that the 11 characteristic peaks were unable to accurately classify the three clusters.
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Subsequently, PCA was employed to investigate if the three types of sample could be differentiated.
The 3D score PCA plot is shown in Figure 4.Molecules 2019, 24, x FOR PEER REVIEW 6 of 12 
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Figure 4. 3D score plot of PCA on the first three PCs for training set samples.

The first three principal components (PCs) were extracted and explained 54.3%, 14.2%, and 11.5%
of the total variability, respectively. All three PCs could accumulate 80.0% of the data variance.
However, appropriate visualization and differentiation could not be observed especially for cultivated
M. bealei and the substitutes. The results of HCA and PCA indicated that the 11 characteristic peaks
were not representative and not specific for satisfactory classification. Consequently, a supervised
method is needed to find out the specific variation to classify the three clusters accurately.

2.4.2. PLS-DA Analysis

As a supervised recognition pattern, PLS-DA can maximize the difference among the groups
and screen out key markers responsible for sample variation [7]. The profile of variable importance
in projection (VIP) could usually reflect the contribution levels of some key markers for categories
differentiation. The variables with VIP values greater than 1 were considered to be more relevant
for sample classification [17]. As shown in Figure 5, the VIP plot was constructed to measure the
important variables on sample discrimination. After T-tests for these important variables using SPSS
16.0 software, six significantly correlated chemical markers (red histogram) including peak 5, peak 9,
peak 8, peak 4, peak 11, and peak 2 were screened out for classification.
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Figure 5. VIP plot for training set samples based on PLS-DA method.

Among them, peaks 5, 9, 11 were successfully identified by reference standards as tetrandrine,
columbamine, and berbamine with comparison of the RT (Figure S7) and DAD spectrum (data not
shown) while the others were unknown compounds from M. bealei. The selected optimal chemical
markers were further evaluated by a PLS-DA model. A new data of 37 × 6 matrix was formed to
reconstruct the classification model. The 2D PLS-DA score plot was shown in Figure 6, the values of
R2X, R2Y, and Q2 were 0.685, 0.776, and 0.746 at a confidence level of 95%, respectively. The results
indicated that the established model showed a good fitting and predictive ability. The training set
samples were accurately sorted into three related clusters: cluster 1 (cultivated M. bealei), cluster 2
(wild M. bealei) and cluster 3 (substitutes), demonstrating a remarkable difference among the three
types. To validate the accuracy of the PLS-DA model, 200 permutation tests were carried out and the
vertical intercept values of R2 and Q2 were 0.0103 and −0.271 (Figure S8), respectively, indicating that
the established model avoided an over-fitting problem and showed a good prediction [18].Molecules 2019, 24, x FOR PEER REVIEW 8 of 12 
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Moreover, 26 batches of samples chosen as testing set containing all these three categories were
validated. As shown in Figure 7, the values of R2X, R2Y, and Q2 were 0.648, 0.692, and 0.655 at
a confidence level of 95%. The testing set samples were also accurately separated into the three
related clusters that further verified the success of PLS-DA model. Eventually, PLS-DA model could
successfully provide a distinct classification of samples on the basis of the six characteristic peaks
compared to HCA and PCA.
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In order to prove the predictive ability of PLS-DA model, 26 samples containing 18 cultivated
M. bealei, two wild M. bealei and six substitutes were selected as investigation. As shown in Table 2,
the results of the entire data set indicated that the three types of samples were successfully classified
with a Fisher’s probability test of 5.6 × 10−6. It showed that the prediction results were accurate and
the established PLS-DA model could be effectively applied for quality evaluation of M. bealei as well as
its quality prediction.

Table 2. Prediction results for 26 batches of samples.

Members Correct Cultivated
M. bealei Wild M. bealei Substitutes

Cultivated
M. bealei

18 100% 18 0 0

Wild
M. bealei

2 100% 0 2 0

Substitutes 6 100% 0 0 6
No class 0 / 0 0 0

Total 26 100% 18 2 6
Fisher’s

probability
5.6 × 10−6
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3. Materials and Methods

3.1. Chemicals and Materials

HPLC-grade methanol (MeOH) was purchased from Merck (Darmstadt, Germany). Diethylamine
and hydrochloric acid (HCl) were obtained from Guangzhou Chemical Reagent Factory (Guangzhou,
China). Three reference standards (tetrandrine, columbamine, berbamine) and reference extract of
M. bealei were supplied by National Institutes for Food and Drug Control (Beijing, China). Purified
water was from a Milli-Q water purification device (Millipore, Billerica, MA, USA). The detailed sample
information is listed in Table 3.

Table 3. Detailed information of samples.

Sample No. Species Origin Specification

1–12 M. bealei (Fort.) Carr. Guangxi Crude drugs (cultivated)
13 M. bealei (Fort.) Carr. Yunnan Crude drugs (cultivated)
14 M. bealei (Fort.) Carr. Anhui Crude drugs (cultivated)
15 M. bealei (Fort.) Carr. Zhejiang Crude drugs (cultivated)
16 M. bealei (Fort.) Carr. Jiangxi Crude drugs (cultivated)
17 M. bealei (Fort.) Carr. Sichuan Crude drugs (cultivated)

18–20 M. bealei (Fort.) Carr. Guizhou Crude drugs (cultivated)
21–29 M. bealei (Fort.) Carr. Guangxi Crude drugs (wild)
30–34 M. breviracema Y. S. Wang et Hsiao Guangxi Crude drugs (wild)
35–39 M. duclouxiana Gagnep Guangxi Crude drugs (wild)
40–45 M. bodinieri Gagnep Guangxi Crude drugs (wild)
46–50 M. fordii Schneid Guangxi Crude drugs (wild)
51–58 M. bealei (Fort.) Carr. Guangdong Crude drugs (wild)
59–65 M. bealei (Fort.) Carr. Anhui Crude drugs (cultivated)

66–72, 74–75, 79 M. bealei (Fort.) Carr. Jiangxi Crude drugs (cultivated)
73 M. bealei (Fort.) Carr. Anhui Crude drugs (cultivated)

76–78, 80–83 M. bealei (Fort.) Carr. Guangdong Crude drugs (cultivated)
84 M. bealei (Fort.) Carr. Jiangxi Crude drugs (cultivated)

85–86 M. bealei (Fort.) Carr. Anhui Crude drugs (cultivated)
87–89 M. bealei (Fort.) Carr. Guangxi Crude drugs (cultivated)

All cultivated M. bealei samples were authenticated by TCM testing department (Shenzhen
Institute for Drug Control, Guangdong, China) and wild M. bealei were authenticated by Prof. Weixian
Deng (Shaoguan University, Guangdong, China). All the samples were randomly divided into training
set, validation set and predication set. As a result, the training set consisted of 37 samples including
S1–S27, S31, S34, S36, S39–S42, S46–S47 and S49 to establish a classification model. 26 samples
including S33, S35, S37–S38, S48, S51–S71 were used as testing set for model validation while another
26 samples including S28–S30, S32, S43–S45, S50, S72–S89 were applied as prediction set to verify the
prediction ability.

3.2. Instrumentation

SFC experiments were performed on an 1260 Infinity Hybrid SFC/UHPLC Analytical System
consisting of a SFC binary pump, a modified 1260 Infinity LC system, a degasser, a SFC autosampler
with 5 µL loop, a SFC FusionTM A5 module, a thermostatted column compartment and a diode array
detector (DAD) with a high pressure SFC flow cell (Agilent Technologies, Santa Clara, CA, USA).
Instrument and data collection were performed on Agilent OpenLab ChemStation Edition C.01.05
software. The following columns were applied in this research: Unitary XAmide (150 mm × 4.6 mm,
5 µm) was obtained from Acchrom Technologies (Beijing, China); Sepax SFC-Pyridine column (250 mm
× 4.6 mm, 5 µm) was purchased from Sepax Technologies Inc (Delaware, DE, USA); Platisil NH2

column (250 mm × 4.6 mm, 5 µm) and Inspire PFP column (250 mm × 4.6 mm, 5 µm) were from Dikma
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Technologies Inc. (Guangzhou, China). A pulverizer (Fenghang, Shanghai, China) and an ultrasonic
water bath (Kun Shan, Jiangsu, China) were used for the extraction process.

3.3. Preparation of Sample Solutions

The sample preparation method was carried out following the Chinese Pharmacopoeia protocol
(2015 edition) [1]. Dry raw material of M. bealei was firstly grounded into powder and then filtered by
30 mesh sieves. All M. bealei (0.25 g per each) were then transferred to a 150 mL conical flask with
stopper, and 50 mL MeOH/HCl (100/1, v/v) was added. After ultrasonication at room temperature for
45 min, MeOH/HCl (100/1, v/v) was added to compensate the weight loss during extraction. All the
solutions were filtered through a 0.22 µm membrane and then stored at 4 ◦C prior to analysis.

3.4. Chromatographic Conditions

The final SFC experiment was performed on Platisil NH2 (4.6 mm × 250 mm, 5 µm) at a flow rate
of 3 mL/min. The mobile phase consisted of supercritical carbon dioxide (sCO2, component A) and
MeOH containing 0.4% (v/v) diethylamine and 8% (v/v) water (component B). The gradient elution was
as follows: 0–15 min/18%–25% B, 15–20 min/25%–35% B. 20.1–25 min/18% B. The column temperature
and backpressure were set at 28 ◦C and 140 bar, respectively. The injection volume was 5 µL while the
detection wavelength was set at 230 nm.

3.5. Data Analysis

3.5.1. Similarity Analysis (SA)

The raw SFC chromatographic data of the 37 tested samples were integrated automatically
and exported as *.AIA format file. SA was performed using the software “Similarity Evaluation
System for Chromatographic Fingerprint of Traditional Chinese Medicine” (Version 2004 A, Chinese
Pharmacopoeia Committee) with these exported files. The reference extract of M. bealei as control
(fingerprint R) was generated and the similarity values of these samples were then calculated.

3.5.2. CPR Analysis

Before performing CPR analysis, the data were normalized using Z-score transformation method
(SPSS 16.0 software, IBM Inc., Chicago, IL, USA). Afterwards, CPR analysis was performed using HCA,
PCA, and PLS-DA, which were carried out by SIMCA-P 14.0 software (Umetrics AB, Umea, Sweden).
In HCA, a dendrogram was obtained to characterize the classification result of the samples by Ward’s
linkage as cluster method. The sample variation could be assessed by PCA while PLS-DA was used to
screen out the main markers that were responsible for discrimination. The parameters of the modeling
(R2 and Q2 values) explain the quality of the fitting model. R2 estimates the fitness of the model while
Q2 estimates the ability of prediction. Large R2 and Q2 (>0.5) indicate a model with satisfying fitness
and predictivity [19]. When PLS-DA is used as a CPR method, the samples are usually divided into a
training set, testing set and prediction set [20]. The classification model is obtained by training set and
the model is validated by testing set and prediction set.

4. Conclusions

A comprehensive method was developed combining SFC fingerprints and CPR to evaluate the
quality of M. bealei. The fingerprints were established and 11 common peaks were obtained among 37
samples. Three types of sample (wild, cultivated and substitutes) presented quite similar chemical
composition through SA study which made their classification difficult. Therefore, CPR methods
(HCA, PCA and PLS-DA) were applied to evaluate the quality based on the 11 chemical compounds.
Results revealed that HCA and PCA were not able to provide an accurate classification for the three
selected types of sample which indicated that the 11 compounds were not representative and specific
for accurate classification. PLS-DA was then applied for feature extraction from 11 compounds in order
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to find some important variables that are responsible for the accurate classification. Six characteristic
peaks (5, 9, 8, 4, 11, 2) with VIP values greater than 1 were screened. Among them, peaks 5, 9 and 11
were successfully identified as tetrandrine, columbamine, and berbamine. Moreover, the three types of
sample were accurately divided into three categories representing wild M. bealei, cultivated M. bealei
and its substitutes. The established model was then successfully validated by testing set samples and
predication set samples. The results indicated that the accurate discrimination of the three types of
samples could be obtained using PLS-DA model. In conclusion, the developed SFC fingerprint method
coupled with PLS-DA can be considered as a promising approach for the quality evaluation of M. bealei.
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