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High thresholds encouraging 
the evolution of cooperation in 
threshold public-good games
Kris De Jaegher

For a well-mixed population, we consider a threshold public good game where group members only 
obtain benefits from a public good if a sufficiently large number of them cooperates. We investigate 
the effect of an increase in the threshold on the level of cooperation that evolves. It is shown that for 
sufficiently large participation costs, the level of cooperation is higher for low and for high thresholds, 
than it is for intermediate thresholds – where in the latter case cooperation may not evolve at all. 
The counterintuitive effect where an increase in the threshold from an intermediate to a high one 
decreases the probability of cooperation, is related to the so-called common-enemy hypothesis of the 
evolution of cooperation. We further apply our analysis to assess the relative weight of different game 
types across the parameter space, and show that game types where either a small, or a large fraction 
of the population evolves as cooperators, receive more weight compared to game types where an 
intermediate fraction of cooperators evolves.

Cooperative behavior is characterized both by social diversity, namely the fact that some organisms have high lev-
els of cooperation and others do not1, and by phenotypic plasticity, where individual organisms cooperate in some 
contexts but not in others2. At the same time, key examples of cooperation between organisms can be modeled as 
so-called threshold public-good games3–9 (also known as participation games10,11, discrete public-good games12,13, 
or step-level public good games14,15), where a public good is produced as soon as at least a threshold of players 
in a group cooperates. For instance, in cooperative hunting16,17, a minimal number of encircling predators may 
be needed to successfully catch a prey. Similarly, in the collective defense of a common territory18–20, a minimal 
number of cooperating individuals may be needed to successfully defend the territory.

The explanation for social diversity and for the phenotypic plasticity of cooperative behavior then seems 
straightforward: cooperative behavior is less likely to evolve when the threshold is higher. Simply, one would 
expect that cooperation is less likely to evolve the more challenging is the production of the public good. E.g., 
when predators face a larger prey and a higher threshold of cooperating predators is therefore needed to success-
fully catch the prey, the evolution of cooperative hunting would be less likely; when the threat of intrusion is 
larger and more participation is thus needed to successfully defend a common territory, the defense of the com-
mon territory would be less likely to evolve. This paper shows that this intuition may not always be correct. It may 
be because producing a public good is challenging and requires a large number of cooperating players that coop-
eration can evolve. The reason is the following. If in any group of n players a threshold k of cooperators is needed 
to produce the public good, then from the perspective of a focal player the probability of this focal player’s partic-
ipation ensuring that the threshold is exactly met (or: pivot probability), is maximal when a fraction 
k n( 1)/( 1)− −  of the population cooperates (such that the probability of the focal player being matched to 

exactly −k( 1) cooperators among n( 1)−  other players is maximized). Yet, this maximal pivot probability itself 
is highest when the threshold is either low, or is high. In the same way, when drawing with replacement −n( 1) 
balls from an urn containing white and black balls, both the probability of drawing few white balls when the urn 
contains few white balls, and the probability of drawing many white balls when the urn contains many white balls, 
are large compared to the probability of drawing exactly n( 1)/2−  white balls if the urn contains 50% white balls. 
For this reason, it may only be for the lowest and the highest thresholds that the gain in fitness of cooperating 
rather than defecting exceeds the participation costs, and that cooperation can evolve. Taking now participation 
costs sufficiently large such that cooperation cannot evolve with an intermediate threshold, lowering the thresh-
old thus enables the evolution of cooperation, fitting the initial intuition. Yet, taking the same starting point, 
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increasing the threshold and thus apparently making the evolution of cooperation more challenging, 
counter-intuitively encourages the evolution of cooperation.

From a broader perspective, this paper fits into a theoretical literature that explains the evolution of coopera-
tion by considering non-linear as well as linear impact functions21–28 (where the impact function relates the level 
of the public good produced to the number of cooperating players in a group); for an overview, see29. In this way, 
cooperative games can not only take the form of an n-person version of the Prisoner’s Dilemma7,30 (where joint 
defection is the only stable fixed point), but can also be characterized by polymorphism (a stable fixed point exists 
where cooperators and defectors coexist), bistability (both a cooperative stable fixed point and a joint-defection 
stable fixed point exists), or a combination of both. Moreover, in this literature such game types are not studied in 
isolation, but it is explained how the shape of the impact function affects what game type is played. Yet, missing in 
this literature are predictions on how often we may expect cooperative situations to take on the form of individual 
game types. How often do we expect a combination of polymorphism and bistability, compared to situations with 
only polymorphism, only bistability, or situations that fit the Prisoner’s Dilemma? Our analysis answers this ques-
tion by assessing the relative frequency of several game types across the parameter space, where the parameters 
we vary are the threshold and the participation costs. Because of the described effect where at any cooperative 
stable fixed point the probability of being pivotal is largest for the lowest and for the highest thresholds, across the 
parameter space, games where either few or many of the players cooperate are predicted to occur more frequently 
than games where an intermediate fraction of the players cooperates.

Within the literature on non-linear impact functions, most closely related to our analysis are models that 
vary the shape of the impact function by varying the degree of complementarity between the players’ cooperative 
efforts26–28. Figure 1 compares impact functions for several threshold levels (Fig. 1(b)), with impact functions 
for several degrees of complementarity (Fig. 1(a)). As is clear by comparing Fig. 1(b) to Fig. 1(a), the impact 
functions have the same shape with a minimal degree of complementarity as with the minimal threshold, and 
with a maximal degree of complementarity as with the maximal threshold. The difference is that for intermediate 
degrees of complementarity the impact function is closer to being linear, whereas for intermediate thresholds the 
impact function continues to take the form of a step function. This characteristic of the threshold impact function 
has two main advantages. First, it is realistic that impact functions are S-shaped, or so-called sigmoid functions7, 
where starting from a group with only defectors, the first cooperators in the group lead to increasingly large 
added benefits (accelerating part of the impact function), but the last cooperators add fewer and fewer benefits 
(decelerating part of the impact function). This contrasts with the impact functions depending on the degree of 
complementarity, which are either accelerating or decelerating, but never both. Threshold impact functions pro-
vide a good approximation for sigmoid functions, which are analytically hard to handle7. Moreover, the impact 
function may only approach continuous sigmoid functions for large groups, whereas for small groups a stepwise 
impact function is more realistic. A second advantage of threshold impact functions is that they account for a 
wider range of game types, in allowing for games that are characterized by both polymorphism and bistability7,9. 
This contrasts with impact functions with the degree of complementarity as a parameter, which for higher degrees 
of complementarity (accelerating impact functions) allow only for bistability but not for polymorphism (cooper-
ation need not evolve, but if it does the entire population cooperates), and for lower degrees of complementarity 
(decelerating impact functions) allow only for polymorphism but not for bistability (cooperation always evolves, 
but the stable fixed point includes defectors as well as cooperators)27,28. In the threshold model, polymorphism 
without bistability is only allowed for the minimal threshold31,32, and bistability without polymorphism is only 
allowed for the maximal threshold5.

As pointed out by one of the referees, the effect of threshold increases we analyze is visible in numerical 
examples by Archetti and Scheuring7 (specifically their Fig. 2), both for threshold and for sigmoid impact func-
tions, though the authors do not describe this effect in the text. The main message of this reference is to stress the 
existence of intermediate cooperative games where cooperators and defectors coexist, on top of more familiar 
extreme games where the population evolves to contain only defectors, or evolves to contain few cooperators. The 
contribution of our paper is twofold. First, for threshold public good games, we systematically analyze the effect 

Figure 1.  In part (a,b), each curve represents the impact function, i.e. production of the public good 


b  as a 
function of the number of cooperating players  ranging from 0 cooperators to n cooperators, where n is the 
group size. Part (a) represents impact functions for several levels of the degree of complementarity w (with 
w w w w w w w1 2 3 4 5 6 7< < < < < < ), and (b) for several levels of threshold levels k (ranging from 1 to 7).
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of threshold increases on the level of cooperation that evolves. Second, we show that the level of cooperation may 
be low in the mentioned intermediate cooperative games, and that cooperation may even not evolve at all for 
intermediate thresholds, giving more weight across the parameter space to the extreme games.

Methods
We consider a well-mixed, infinitely large population of players that reproduces asexually. Players face the binary 
choice of cooperating or defecting. At any given moment, a fraction p of the population cooperates, and a fraction 

− p(1 ) defects. Groups of n players are randomly and repeatedly formed. Denote by f p( )C  the average fitness of 
cooperating, and by f p( )D  the average fitness of defecting. Assuming that the fraction of cooperating players is 
determined by the continuous replicator dynamics33, the change over time of the fraction of cooperating players 
p  equals:

p p p f p f p(1 )[ ( ) ( )] (2 1)C D= − − .
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In (2.2) and (2.3), c denotes the participation costs (=costs of cooperating rather than defecting), and bx 
denotes the benefit the focal player obtains when exactly x players in her group (including herself) cooperate. The 
focal player’s fitness when cooperating or defecting is determined by the number  that cooperates among the 
n( 1)−  other players in her group. Given the fraction p of cooperating players in the population, the number of 

other cooperators in a group follows the binomial distribution, with the binomial coefficient 
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In order to specify the model as a threshold model, we follow existing notation in the literature9. Denote k as 

the threshold, where ∈ …k n{1, 2, , }. For the threshold public good game, we assume that b 1x =  when ≥x k 
(meaning that the maximal value of the public good that can be produced is normalized to 1), and b 0x =  when 

<x k. Furthermore, we assume that c0 1< < , meaning that a single player whose cooperation allows the group 
to meet the threshold, is better off cooperating. (2.2) and (2.3) can now be rewritten as
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where =f p( ) 0D  when k n= . It follows that the gains from switching from cooperating to defecting equal:
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Figure 2.  Phase portraits for cases where the threshold public-good game is a Volunteer’s Dilemma ( =k 1), a 
Stag Hunt k n( )= , and a Hybrid Game ( k n1 < < ) (where meant are n-player versions of these game types). A 
filled dot indicates a stable fixed point, a non-filled dot an unstable fixed point; the arrows on the axes indicate 
the direction in which the population evolves. pk

II denotes the fraction of cooperators in a stable interior fixed 
point, pk

I the fraction of cooperators in an unstable interior fixed point (with − p1 k
I equal to the size of the basin 

of attraction of a stable fixed point where at least a fraction of the players cooperates).
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Given the threshold nature of the game, when the focal player ends up in a group with either fewer than 
−k( 1) cooperators or more than k( 1)−  cooperators, the benefit part of the gains from switching equals zero. 

The benefit part of the gains from switching therefore equals the probability of being pivotal in one’s group (or in 
short: pivot probability), times the benefit of being pivotal; as the latter is normalized to 1, the benefit part of the 
gains from switching equals the pivot probability itself, which we denote as ( )p p p( ) (1 )k

n
k

k n k1
1

1π = −−
−

− − . By 
(2.1), p = 0 and p = 1 are always fixed points; by (2.6), interior points may additionally exist for p such that 

p c( )kπ = . The existence of such interior fixed points depends on the properties of π p( )k .

Results
The following properties of π p( )k  depending on k are easily checked, where Property 1(i) and 1(ii) have been pre-
viously derived in the literature9 (all proofs of the properties and results in this paper can be found in part A of the 
Supporting Information):

Property 1 about p( )kπ :

	 (i)	 For =k 1, π p( )k  is a decreasing function with (0) 1kπ =  and π =(1) 0k .
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	(iii)	 For =k n, π p( )k  is an increasing function with π =(0) 0k  and π =(1) 1k .

Property 1 can be understood by the fact that with a given threshold k, the focal player is most likely to be 
pivotal if the fraction of cooperating players within the population is −

−
k
n

1
1
. Result 1 now follows directly from 

Property 1, and derives the stable fixed points as a function of the participation costs and of the threshold level 
(where the parts of Result 1 for ≤ <k n1  have been stated elsewhere7,9,29). The result can be concisely stated by 
looking at the type of the game played as a function of the parameters; these game types, and their corresponding 
phase diagrams are represented in Fig. 2. These game types have originally been defined for, and are most often 
described in the context of two-player games; when we refer to these games here, we mean n-player versions of 
them4,5,7,32,34,35, where we omit the qualifier “n-player” for brevity. A Snowdrift Game36 is a game with a single 
interior stable fixed point where a fraction of the players cooperates (in particular, as in all cases where the game 
is a Snowdrift Game, a single cooperator suffices to produce the public good, the game is a Volunteer’s Dilemma37). 
A Prisoner’s Dilemma is a game with a single stable fixed point where all players defect30. A Stag Hunt34 is a game 
with both a stable fixed point where the entire population cooperates, and a stable fixed point where the entire 
population defects. A Hybrid Game shares features of the Volunteer’s Dilemma and the Stag Hunt, and has both 
a stable fixed point where all players defect (which we refer to as the defective stable fixed point), and an interior 
cooperative stable fixed point.

We first look at non-interior stable fixed points. While in existing literature the focus is on the cooperative 
stable fixed point9, we include in our analysis the possibility that p = 0 is a stable fixed point. In fact, such a defec-
tive stable fixed point exists for all k 1> , as it is then a best response to defect if the entire population defects. For 
k 1= , however, if the entire population defects, the individual player is better off cooperating, and =p 0 is an 
unstable fixed point. Additionally, for k n= , =p 1 is a stable fixed point, because the individual player is then 
better off cooperating in a population where all players cooperate; however, for <k n, the individual player is 
better off defecting in such a case, and p 1=  is an unstable fixed point.

We next look at interior stable fixed points. For k n1 < < , Property 1(ii) tells us that p( )kπ  is hill-shaped, such 
that for participation costs that are not too large, two interior fixed points exist. For k 1=  (respectively =k n), 
given that π p( )k  is decreasing (increasing) and ranges from 1 to 0 (from 0 to 1), a single interior fixed point always 
exists. Denote in particular by pk

I an interior fixed point with p c( )k k
Iπ =  in the increasing part of p( )kπ , and by pk

II 
an interior fixed point with p c( )k k

IIπ =  in the decreasing part of p( )kπ . Clearly, any fixed point pk
I is unstable, 

because for a slightly larger (smaller) fraction of cooperating players, the individual player is better off cooperat-
ing (defecting). Summarizing, for k 1= , the game has a single interior cooperative fixed point. Also, for 

k n1 < ≤ , the game has two stable fixed points, namely the defective stable fixed point, and the cooperative sta-
ble fixed point. In this case, we consider the size of the basin of attraction of the cooperative stable fixed point, i.e. 

p(1 )k
I− , as the probability that this fixed point will evolve. The underlying reasoning is that each initial popula-

tion is equally likely, so that the probability that the cooperative stable fixed point evolves is equal to the probabil-
ity that the initial population lies in its basin of attraction.

In order to describe Result 1, we define ¯ π= =−
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ability as a function of p, where by Property 1 c c 1n0 = = , and where < <c0 1k  for k n1 < < .

Result 1. Types of games played as a function of thresholds and participation costs.

	 (i)	 For the minimal threshold (k 1= ), the game has a unique interior fixed point where a fraction 
= − −p c1 n

1
II 1/( 1) of players cooperates (Volunteer’s Dilemma).

	(ii)	 For intermediate thresholds ( k n1 < < ), when participation costs are large (c ck> ), the game has a 
unique stable fixed point where all players defect (p 0= ) (Prisoner’s Dilemma). When participation costs 
are small ( <c ck), the game both has a fixed point where all players defect ( =p 0 and a stable fixed point 
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where a fraction pk
II of the players cooperates, with p0 1k

II< <  (where pk
II is implicitly given by 

p c( )k k
IIπ = ) (Hybrid Game). The former stable fixed point has a basin of attraction pk

I, the latter stable 
fixed point a basin of attraction − p(1 )k

I  (where pk
I is implicitly given by p c( )k k

Iπ = , and where p pk k
I II< ).

	(iii)	 For the maximal threshold (k n= ), the game both has a stable fixed point where all players defect (p 0= ), 
and a stable fixed point where all players cooperate (p 1= ) (Stag Hunt). The former stable fixed point has 
a basin of attraction pn

I, the latter stable fixed point a basin of attraction p(1 )n
I− , where p cn

nI 1/( 1)= − .

In order to look at the effect of increases in the threshold, we now derive Property 2 about π p( )k , which looks 
at how the shape of the pivot probability p( )kπ  is affected by the threshold. An example is given in Fig. 3 for =n 7. 
Property 2 can be understood as follows. An increase in the threshold means that the pivot probability becomes 
smaller for a lower range of fractions of cooperation players, and larger for an upper range of such fractions, and 
that the fraction of cooperating players for which the pivot probability is maximal increases (Property 2(i)). At the 
same time, the maximal pivot probability itself is a U-shaped function of the threshold (Property 2(ii)); this is 
because the threshold is most likely to be exactly achieved when the threshold is low and a small fraction of the 
players cooperates, or when the threshold is high and a large fraction of the players cooperates. Furthermore, 
Property 2(iii) establishes some symmetry properties of the pivot probabilities, and Property 2(iv) calculates the 
maximal pivot probabilities whenever possible.

Property 2 about π p( )k :
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	(ii)	 > +c ck k 1 for k n 1
2

< + , and < +c ck k 1 for k n 1
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	(iv)	 c c 1n1 = = . Furthermore, = =−
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2 1
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2
, which equals 0.5 for =n 3, and converges to e−1 for 

large n. For odd n, c n( 1)/2+  equals 0.5 for n = 3 and converges to 0 for large n; for even n, =+c cn n( 2)/2 /2 
equals 4/9 for n 4=  and converges to 0 for large n.

We now come to our main result in Result 2, which follows directly from Property 2 and looks at how, for 
given levels of the participation costs, the game type changes as a function of the threshold. As the level of coop-
eration that can evolve differs across game types (see Fig. 2), these game-changing effects of increases in the 
threshold can be interpreted as effects on the level of cooperation. In detail, Result 2 shows that for sufficiently 
large participation costs (Result 2(i) and 2(ii)), increasing the threshold has a U-shaped effect on the level of coop-
eration, in that cooperation can evolve both for low and for high thresholds, but not for intermediate thresholds. 
Put otherwise, for sufficiently large participation costs, we have a Volunteer’s Dilemma or Hybrid Game for low 

Figure 3.  Pivot probabilities π p( )k  for all nonzero threshold levels k in the case of groups with size =n 7. By 
fixing a level for the participation costs c along the Y-axis and looking for the fixed points, one can see how the 
type of the game changes as a function of the threshold.
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thresholds and a Stag Hunt or Hybrid game for high thresholds (in which cases cooperation can evolve), but a 
Prisoner’s Dilemma for intermediate thresholds (in which cooperation cannot evolve).

Result 2. game-changing effects of an increase in the threshold.

	 (i)	 For the upper range of large participation costs (for = < <−c c c 1n2 1 ), the game is a Volunteer’s Dilemma 
with the minimal threshold (k 1= ), a Prisoner’s Dilemma with intermediate thresholds ( k n1 < < ), and a 
Stag Hunt with the maximal threshold (k n= ).

	(ii)	 For the lower range of large participation costs (for < < =+ −c c c cn n( 1)/2 2 1 when n is odd, and for 
c c c c cn n n( 1)/2 /2 2 1= < < =+ −  when n is even), the game is a Volunteer’s Dilemma with the minimal 
threshold ( =k 1). As the threshold is now increased, the game successively becomes a Hybrid Game, then 
a Prisoner’s Dilemma, and then again a Hybrid game. With the maximal threshold (k n= ), the game is a 
Stag Hunt.

	(iii)	 For small participation costs (for < < +c c0 n( 1)/2 when n is odd, and for c c c0 n n( 1)/2 /2< < =+  when n is 
even), the game is a Volunteer’s Dilemma with the minimal threshold ( =k 1), a Hybrid Game with 
intermediate thresholds ( k n1 < < ), and a Stag Hunt with the maximal threshold ( =k n).

The interpretation of the game-changing effects in Result 2(i) and 2(ii) as effects on the level of cooperation is 
a strong interpretation, as it applies for all formal measures of the level of cooperation that one may consider. For 
instance, one may simply measure the level of cooperation by the fraction of cooperating players in the cooper-
ative stable fixed point9. Yet, a more goal-oriented measure may be found by calculating the probability that the 
public good is produced within any individual group; moreover, one may include in this measure the expected 
participation costs, so that one considers the expected payoff that each individual player obtains. Finally, for each 
of these measures, one may additionally include the ex-ante probability that cooperation evolves at all, as given by 
the basin of attraction of the cooperative stable fixed point. Whichever of these formal measures one considers, 
as the game is a Prisoner’s Dilemma for intermediate thresholds and has no cooperation, the U-shape effect is 
maintained.

It is natural to ask oneself whether the U-shaped effect on the level of cooperation implied by Result 2(i) 
and 2(ii) is maintained when one does not only consider game-changing effects of higher thresholds, but also 
looks at the effect on the level of cooperation when a higher threshold does not change the type of the game. As 
shown in part B of the Supporting Information, for a range of participation costs just below the maximal pivot 
probability, the effect of the threshold on the level of cooperation remains U-shaped, no matter what measure 
for the level of cooperation one considers. Moreover, by the hysteresis effect3,6, the game-changing effects in 
Result 2(i) may extend to smaller participation costs, where for intermediate thresholds the defective fixed point 
would continue to be the only outcome that can evolve. The point of the hysteresis effect is that for participation 
costs just below the maximal pivot probability, the fraction of cooperating players in the cooperative stable fixed 
point is only slightly above the critical fraction of cooperating players that brings one in the basin of attraction 
of this stable fixed point. Thus, a small shock in the fraction of cooperating players can lead to joint defection 
evolving. Once joint defection has evolved, a small shock in the fraction of cooperating players cannot bring one 
back to the cooperative stable fixed point. In the same way, for participation costs just below the maximal pivot 
probability, a small shock to the participation costs can turn the game into a Prisoner’s Dilemma. Once joint 
defection has evolved, a return to the original participation costs does not allow the cooperative stable fixed point 
to evolve again. For this reason, Result 2(i) may effectively apply for a wider range of participation costs. Yet, for 
the smallest participation costs, as is clear from Fig. 3, the hysteresis effect does not apply, because participation 
costs are far below the maximal pivot probability, and because the fraction of cooperators in the cooperative 
stable fixed point is much larger than the critical fraction dividing the basins of attraction. As shown in part B of 
the Supporting Information, the effect of the threshold on the level of cooperation is ambiguous in this case, and 
depends on the precise measure of the level of cooperation that is considered.

Another way to interpret our results is in terms of the predicted frequency of the different game types. What 
game types receive more weight across the parameter space covering all possible combinations of participation 
costs and thresholds? To assess this, Fig.  4 represents for the example =n 7 all possible thresholds 
(k 1, 2, , 7= … ) on the X-axis, and all participation costs ( c0 1< < ) on the Y-axis; as a function of these, the 
type of the game played is indicated. As is clear from Fig. 4, roughly, games in which the evolution of cooperation 
is possible apply for smaller participation costs (as the Prisoner’s Dilemma applies for larger participation costs). 
Yet, both for low and for high thresholds, participation costs need to be less small to allow for the evolution of 
cooperation, with such evolution possible over the entire participation cost range both for the minimal threshold 
(in which case the game is a Volunteer’s Dilemma) and the maximal threshold (in which case the game is a Stag 
Hunt). For this reason, across the parameter space, among the games that allow for the evolution of cooperation, 
games with low and with high thresholds have more weight. This effect is particularly pronounced for small 
groups. For instance, assuming a uniform distribution of both k and c, applying Property 2(iv), it can be checked 
that with n = 3 the Snowdrift game and the Stag Hunt each take up 1/3 of the parameter space, whereas the 
Hybrid game and the Prisoner’s Dilemma each take up 1/6; with n = 4 the Snowdrift game and the Stag Hunt each 
take up 25% of the parameter space, the Hybrid game takes up 22%, and the Prisoner’s Dilemma takes up 28%. 
For larger groups, Hybrid games take up a larger part of the parameter space; yet within the class of Hybrid games 
itself, those where few or where many players cooperate in the cooperative stable fixed point again receive more 
weight, as is clear from Fig. 4.
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We further look at how the picture in Fig. 4 is affected by group size. Given Property 2(iv), as +c n( 1)/2 
approaches 0 for large n when n is odd (and as =+c cn n( 2)/2 /2 approach 0 for large n when n is even), the U-shaped 
effect of the threshold on the level of cooperation in Results 2(i) and 2(ii) applies for a wider range of participation 
costs the larger the group size. Yet, at the same time, it is clear that for large n the share of the parameter space 
taken up by the Volunteer’s Dilemma and the Stag Hunt becomes smaller and smaller. Moreover, the fraction of 
cooperating players in the unique stable fixed point of the Volunteer’s Dilemma, and the basin of attraction of the 
joint-cooperation fixed point in the Stag Hunt, get smaller and smaller as n is increased. This means that for the 
U-shaped effect in Result 2(i), the level of cooperation for the minimal and maximal threshold is small, so that the 
U-shaped effect is weak. While for group sizes approaching infinity the fixed points can be calculated, these 
appear less relevant because the Prisoner’s Dilemma becomes dominant, and in the remaining cases where coop-
eration can evolve, the predicted level of cooperation is vanishingly small. Overall, our two results about the 
counter-intuitive effect of a higher threshold and about the frequency of different game types across the parame-
ter space, are thus most pronounced for smaller groups.

Discussion
The first conclusion of this paper, namely that a higher threshold for the successful production of a public good 
may enable rather than hamper the evolution of cooperation, can be linked to a hypothesis that dates back to at 
least Kropotkin38,39, stating that the evolution of cooperation takes place when harsh environments make it in 
organisms’ interest to cooperate. This hypothesis may be termed the common-enemy hypothesis, with a harsher 
environment acting as a common enemy encouraging cooperation. The hypothesis forms an alternative to more 
well-known explanations for the evolution of cooperation, including direct40 and indirect reciprocity41, network 
reciprocity42, kin selection43, and group selection44. In our analysis, a harsh environment takes the form of e.g. a 
larger prey, such that more cooperating predators are needed to successfully catch a prey, or of a higher threat of 
intrusion, such that a larger number of defenders is needed to successfully protect a common territory.

Existing theoretical underpinnings for the common-enemy hypothesis argue that in harsher environments, 
players who defect from cooperation become to a larger extent the victim of their own defection (the so-called 
boomerang effect)27,28,45. Put otherwise, a harsher environment makes each player’s cooperative effort to a higher 
extent pivotal, and thus changes the benefit of being pivotal. The argument is therefore that harsher environments 
change the shape of the impact function of the public good produced by the players, and in particular makes the 
impact function to a larger extent accelerating, such that the last player who cooperates contributes more (see 
Fig. 1(a)). In the current paper, a harsher environment does not change the shape of the impact function, in the 
sense that the player whose cooperative effort ensures that the threshold is reached, always contributes the full 

Figure 4.  Parameter space representing all possible participation costs (vertical axis), and all possible 
thresholds (horizontal axis) for the case n = 7. As thresholds are natural numbers, they are represented as 
bars. The figure represents the incidence of the several game types (see Fig. 2) across the parameter space, 
where to each color corresponds a game type (where the game types refer to n-player versions of these games). 
As shown in the figure, the game types that allow for the evolution of cooperation (all other games than the 
Prisoner’s Dilemma) take up a large part of the parameter space for lower, and for higher thresholds. For large 
participation costs, the only game types that allow for the evolution of cooperation are the Volunteer’s Dilemma 
and the Stag Hunt.
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value of the public good (the impact function always takes the shape of a step function; see Fig. 1(b)). Instead, a 
harsher environment in the form of a larger threshold means that the probability of the individual player being 
pivotal in her group becomes larger, so that a cooperative stable fixed point may come to exist, where none existed 
before. In the current paper, it is therefore not the benefit of being pivotal that is affected by the harshness of the 
environment, but the probability of being pivotal.

The second conclusion from this paper is that cooperation where either a small fraction in any group coop-
erates, or a large fraction, should evolve more frequently than cooperation where an intermediate fraction of a 
group cooperates. When modeling the evolution of cooperation, evolutionary game theory has often focused on 
stylized games such as the Volunteer’s Dilemma (leading to polymorphism) or the Stag Hunt (leading to bistabil-
ity)7. While this focus is due to the simplifying assumption of two-player games, which do not allow for Hybrid 
games characterized by both polymorphism and bistability, our analysis suggests that this focus has some merit, 
given our prediction that cooperation where either a small, or a large fraction of a group cooperates, evolves 
more frequently. It is tempting to see a similar pattern in canonical examples of cooperative behavior, which often 
include sentinel behaviour, where a single sentinel may suffice to produce the public good46, as well as cooperative 
hunting, where several hunters need to cooperate to catch the prey16,17. However, a systematic study looking at 
the relevance of several game types across a broad range of cooperative instances is missing, and furthermore, 
cooperative hunting has itself been observed to be characterized by polymorphism, with both cooperators and 
defectors16.

Our results can be linked to the literature that studies the effect of group size on the probability of coopera-
tion, connected to the so-called Olson conjecture9,47, stating that cooperation is hampered by larger group sizes. 
Given that a cooperative stable fixed point exists over a large range of participation costs when the threshold 
approaches the group size, it follows that holding the threshold fixed and decreasing group size until it approaches 
the threshold can enable the evolution of cooperation – which is fully in line with the Olson conjecture. If group 
size is itself subject to evolution48, it is therefore possible that groups evolve to be equal in size to the threshold 
needed to achieve successful public-good production. Yet, in a similar way, one could reason that, since for low 
thresholds it is also the case that a cooperative stable fixed points exists for a large range of participation costs, 
starting from a fixed intermediate threshold, increasing group size could also enable the evolution of cooperation, 
as the fixed threshold then becomes small compared to group size. However, this reasoning is wrong, as is clear 
by looking at the effect of group size on pivot probabilities9. The point is that, while by decreasing group size one 
can always ensure that the threshold becomes equal to the group size (so that the game becomes a Stag Hunt), 
by increasing group size for a given threshold, even though the threshold may become small compared to group 
size, one can never make the threshold equal to 1 (so that the game never becomes a Volunteer’s Dilemma). Our 
results are thus in line with the Olson conjecture, in that all else equal an increase in group size is still predicted to 
hamper the evolution of cooperation. Still, our results imply that, if for a given group size and threshold smaller 
than the group size cooperation cannot evolve, then increasing the group size and at the same time increasing the 
threshold even more so that it approaches the new group size, can still enable the evolution of cooperation. This is 
because of the large pivot probabilities that can be achieved if the threshold approaches the group size.

An avenue for future research is to study the common-enemy hypothesis in combination with standard expla-
nations for the evolution of cooperation, such as (in)direct reciprocity or network reciprocity. Notably, in sta-
tistical physics (for an overview, see49) the effect of threshold changes on the evolution of cooperation has been 
studied for structured populations50. Because of network reciprocity, in simulations, an opposite effect to the 
one we describe for sufficiently large participation costs is observed, where the level of cooperation that evolves 
is higher for intermediate thresholds than for low or high thresholds. The intuition for this result is that it is for 
intermediate thresholds that cooperators benefit most from the vicinity of other cooperators. For a similar reason, 
cooperation can also be higher for intermediate group sizes in case of network reciprocity51. As a well-mixed pop-
ulation can be considered as a limit case of a structured population52, a question for future research is therefore 
for what population structures the effect we describe applies, and for what population structures an opposite 
effect applies.
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