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Purpose: To evaluate the effect of resolution on iron content using quantitative
susceptibility mapping (QSM); to verify the consistency of QSM across field strengths
and manufacturers in evaluating the iron content of deep gray matter (DGM) of
the human brain using subjects from multiple sites; and to establish a susceptibility
baseline as a function of age for each DGM structure using both a global and regional
iron analysis.

Methods: Data from 623 healthy adults, ranging from 20 to 90 years old, were collected
across 3 sites using gradient echo imaging on one 1.5 Tesla and two 3.0 Tesla MR
scanners. Eight subcortical gray matter nuclei were semi-automatically segmented
using a full-width half maximum threshold-based analysis of the QSM data. Mean
susceptibility, volume and total iron content with age correlations were evaluated for
each measured structure for both the whole-region and RII (high iron content regions)
analysis. For the purpose of studying the effect of resolution on QSM, a digitized model
of the brain was applied.

Results: The mean susceptibilities of the caudate nucleus (CN), globus pallidus (GP)
and putamen (PUT) were not significantly affected by changing the slice thickness from
0.5 to 3 mm. But for small structures, the susceptibility was reduced by 10% for 2 mm
thick slices. For global analysis, the mean susceptibility correlated positively with age for
the CN, PUT, red nucleus (RN), substantia nigra (SN), and dentate nucleus (DN). There
was a negative correlation with age in the thalamus (THA). The volumes of most nuclei
were negatively correlated with age. Apart from the GP, THA, and pulvinar thalamus (PT),
all the other structures showed an increasing total iron content despite the reductions
in volume with age. For the RII regional high iron content analysis, mean susceptibility
in most of the structures was moderately to strongly correlated with age. Similar to the
global analysis, apart from the GP, THA, and PT, all structures showed an increasing
total iron content.
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Conclusion: A reasonable estimate for age-related iron behavior can be obtained from
a large cross site, cross manufacturer set of data when high enough resolutions are
used. These estimates can be used for correcting for age related iron changes when
studying diseases like Parkinson’s disease, Alzheimer’s disease, and other iron related
neurodegenerative diseases.

Keywords: magnetic resonance imaging, quantitative susceptibility mapping, age-related brain iron, deep gray
matter, multicenter study

INTRODUCTION

Iron is ubiquitous in numerous biological processes in normal
aging as well as in neurodegeneration. It is distributed throughout
the brain in the form of ferritin and its concentration is highest
in the deep gray matter (DGM) (Haacke et al., 2005). Iron
plays an important role in many brain cellular processes,
including oxygen transport, electron transfer, neurotransmitter
synthesis, myelination, and mitochondrial function (Drayer,
1986; Connor et al., 1990). Despite this positive role for
iron utilization, it is toxic in the form of free iron. In that
case, iron can react with oxygen to produce neurotoxic free
radicals, which could lead to membrane lipid peroxidation
and accumulation of lipofuscin in neurons (Koeppen, 2003).
Excessive iron accumulation has been associated with various
neuro-degenerative diseases, such as Parkinson’s disease
(Ghassaban et al., 2019), atypical parkinsonian disorders (Lee
and Lee, 2019), Alzheimer’s disease (Nikseresht et al., 2019),
pantothenate kinase-associated neurodegeneration (Álvarez-
Córdoba et al., 2019), aceruloplasminemia (Zhou et al., 2020),
and different types of hereditary cerebellar ataxias (Deistung
et al., 2016). Brain iron deposition is also linked with cognitive
severity in Parkinson’s disease (Thomas et al., 2020). For these
reasons, probing and quantifying the presence of iron in the
brain is very important.

With the common use of 3D multi-echo gradient echo (GRE)
imaging methods, the ability to collect whole brain R2∗ and
quantitative susceptibility mapping (QSM) data has become
feasible clinically. QSM is an emerging MRI technique that is
sensitive to magnetic susceptibility differences between tissues.
The signal phase of GRE sequences can be used to detect the local
variations in iron content (Schwarz et al., 2014; Langkammer
et al., 2016). R2∗ depends on water content as well as iron content
and field strength, while QSM is, in principle, independent of
water content, echo time, and field strength. QSM has become
a complementary method to R2∗ for measuring iron content
(Liu et al., 2017; Santin et al., 2017). Kofi (2015) assessed the
reproducibility of brain QSM in healthy controls (HC) and

Abbreviations: QSM, quantitative susceptibility mapping; DGM, deep gray
matter; GRE, gradient echo; HC, healthy controls; MS, multiple sclerosis; CNR,
contrast-to-noise ratio; WM, white matter; FOV, field-of-view; SNR, signal
to noise ratio; BET, brain extraction tool; 3DSRNCP, 3D phase unwrapping
algorithm; SHARP, sophisticated harmonic artifact reduction; TKD, truncated
k-space division; CN, caudate nucleus; GP, globus pallidus; PUT, putamen; THA,
thalamus; PT, pulvinar thalamus; RN, red nucleus; SN, substantia nigra; DN,
dentate nucleus; FWHM, full-width half maximum; SPIN, Signal Processing in
Nmr; ROI, region of interest; ANOVA, analysis of variance; GMD, gray matter
density; GMV, gray matter volume; STAGE, STrategically Acquired Gradient Echo.

patients with multiple sclerosis (MS) on both 1.5T and 3T
scanners. Brain QSM measurements have good inter-scanner and
same-scanner reproducibility for HC and patients, respectively.
Ippoliti et al. (2018) also evaluated the reproducibility and
consistency of QSM across 1.5T and 3.0T field strengths and
optimized the contrast-to-noise ratio (CNR) at 1.5T through
bandwidth tuning. Feng et al. (2018) evaluated the repeatability
of QSM on a 3.0T scanner using 8 subjects and found that
QSM results were highly reproducible across the four time scans.
Although the reliability and stability of QSM have been verified in
these papers with a small number of cases, a standard from which
to calculate the age dependency of iron across manufacturers
that also includes the effect of resolution has not been presented
or evaluated.

In addition, most current clinical applications of QSM look for
differences between patients and HCs in specific brain regions
or nuclei (Mostile et al., 2017). Therefore, it is important to be
able to correct for age to make a diagnosis relative to patients
with a specific neurodegenerative disease. An increase in age-
related iron deposition has been reported in many studies.
In Hallgren’s landmark work studying brain iron (Hallgren,
1958), histochemical methods were used to show the non-heme
iron concentration as a function of age in the brain. Acosta-
Cabronero et al. (2016) used QSM to provide insight into
iron accumulation in the brain across the adult lifespan (20–
79 years old). Whole-brain and ROI analyses confirmed that
the propensity of brain cells to accumulate excessive iron as
a function of age largely depends on their exact anatomical
location. Whereas only patchy signs of iron scavenging were
observed in white matter (WM), strong, bilateral, and confluent
QSM-age associations were identified in several deep-brain
nuclei, chiefly the striatum and midbrain- as well as across
motor, premotor, posterior insular, superior prefrontal, and
cerebellar cortices. The validity of QSM as a suitable in vivo
imaging technique with which to monitor iron dysregulation
in the human brain was demonstrated by confirming age-
related increases in several subcortical nuclei that are known to
accumulate iron with age. Their study indicated that, in addition
to these structures, there is a predilection for iron accumulation
in the frontal lobes, which, when combined with the subcortical
findings, suggests that iron accumulation with age predominantly
affects brain regions related to motor/cognition/output functions.
Keuken et al. (2017) included 30 young, 14 middle-age, and
10 elderly healthy subjects scanned at 7.0T. They investigated
volumetric, spatial, and quantitative MRI parameter (T1, T2∗,
and QSM) changes associated with healthy aging in subcortical
nuclei (basal ganglia, red nucleus, and the periaqueductal gray
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matter). They concluded that aging has a heterogeneous effect
across regions. Numerous papers have recently shown a similar
relationship with age and iron content using QSM (Aquino et al.,
2009; Haacke et al., 2010; Daugherty and Raz, 2013; Hare et al.,
2013; Liu et al., 2016; Ghassaban et al., 2018; Yan et al., 2018).
However, the number of subjects in these studies was generally
small with the largest being 174 (Liu et al., 2016).

Hence, in the present work, our goal was to evaluate the effect
of resolution on the QSM quantification; verify the consistency
of QSM across field strengths and manufacturers in evaluating
the DGM of the human brain using 623 subjects from multiple
imaging sites; and establish an iron content baseline (using QSM)
as a function of age for each DGM structure using both a
global and a regional iron analysis (Liu et al., 2016). Using a
normative database of iron content related to age may be useful
in categorizing and predicting neurological diseases especially
movement and cognition disorder diseases, or conditions which
affect motor or cognitive function.

MATERIALS AND METHODS

Data Acquisition
A total of 623 healthy adults were included from 3 sites: The
First Affiliated Hospital of Dalian Medical University (Site
1: Dalian), Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine (Site 2: Ruijin), and The First Affiliated
Hospital of Zhengzhou University (Site 3: Zhengzhou),
equipped with a GE HDX 1.5T scanner (173 cases, 85 females,
88 males; age, 45.1 ± 14.2 years; range, 20–69 years), a
Philips Ingenia 3.0T scanner (336 cases, 219 females, 117
males; age, 62.3 ± 6.5 years; range, 40–79 years), and a
Siemens Prisma 3.0T scanner (114 cases, 61 females, 53
males; age, 60.3 ± 9.3 years; range, 40–90 years), respectively.
All the participants provided written informed consent to
participate in this study. Data were acquired using the following
parameters: TR = 53/25/25 ms, TE = 40/17.5/17.5 ms, and
voxel size = 0.6 mm × 0.75 mm × 3 mm = 1.35 mm;
0.67 mm × 1.34 mm × 2 mm = 1.80 mm, and
0.67 mm × 1.34 mm × 2 mm = 1.80 mm for each
scanner, respectively.

Simulation Model
For the purpose of studying the effect of resolution on the QSM
data, a digitized model of the brain was used (Buch, 2012).
This 3D isotropic model included the general structures of the
human brain including the gray/white matter, basal ganglia, and
midbrain structures as well as the major veins. The matrix size,
voxel resolution and field-of-view (FOV) for this model were:
504 mm × 504 mm × 504 mm, 0.5 mm × 0.5 mm × 0.5 mm,
and 252 mm× 252 mm× 252 mm, respectively.

The phase images, ϕ (Er), were simulated from
the susceptibility model, χ(Er), using the expression
(Haacke et al., 2010):

ϕ (Er) = γ B0 TE d (Er)⊗χ (Er) , [1]

where γ = 2.675× 108 rad/s/T is the gyromagnetic ratio and
B0 = 3T is the main magnetic field strength along the z-direction
(the slice select direction in this case); Er and TE are the voxel
position vector and the echo time, respectively. Also, ⊗ denotes
the convolution operation between d (Er), the unit dipole kernel,
and the susceptibility model.

Magnitude images were generated from the Ernst equation
(Brown, 2014) assuming that R2∗ (Er) = 20/s + 0.125 χ (Er)
(Ghassaban et al., 2019). Then, the complex signal was generated
from the simulated magnitude and phase images, and Gaussian
noise was added to each of the real and imaginary components to
produce a signal-to-noise ratio (SNR) of 10:1 at a TE = 7.5 ms.
The resulting complex data were then truncated in the slice
direction to produce images with the following resolutions:
0.5 mm × 0.5 mm × 0.5 mm, 0.5 mm × 0.5 mm × 1 mm,
0.5 mm × 0.5 mm × 2 mm, and 0.5 mm × 0.5 mm × 3 mm.
Figure 1 shows the simulated model in three different views with
labels for the main DGM analyzed and Table 1 summarizes the
susceptibility values, proton density, T1 relaxation times, and the
size of the different brain structures in the model.

Resampling of the Data to Create a
Single Resolution Common to All Sites
In order to create a comparison with the same resolution, the
original data in Site 1 was k-space cropped in-plane to create a
resolution of 0.67 mm × 1.34 mm × 3 mm to mimic the in-
plane resolution of the other two sites. Likewise, to make the slice
thicknesses the same for all sites, the data from the other two
sites were k-space cropped through-plane to increase the slice
thickness to 3 mm and therefore create an image with the same
resolution of 0.67 mm× 1.34 mm× 3 mm.

Quantitative Analysis
Quantitative susceptibility mapping data were reconstructed
using our in-house MATLAB-based toolbox SMART 2.0 (MRI
Institute for Biomedical Research, Detroit, MI, United States).
The brain extraction tool (BET) (Smith, 2002) was used to isolate
the brain tissue (threshold = 0.2, erode = 4, and island = 2000)
using the first echo where the signal intensity is highest; a 3D
phase unwrapping algorithm (3DSRNCP) (Abdul-Rahman et al.,
2007) to unwrap the original phase data; and the sophisticated
harmonic artifact reduction (SHARP) (Schweser et al., 2011)
to remove unwanted background fields (threshold = 0.05 and
deconvolution kernel size = 6). Both BET and SHARP steps
were skipped for the simulated data. Finally, a truncated k-space
division (TKD) based inverse filtering technique (threshold = 0.1)
with an iterative approach (iteration threshold = 0.1, and number
of iterations = 4) was used to reconstruct the susceptibility maps
(Tang et al., 2013).

Eight subcortical gray matter nuclei, inclusive of caudate
nucleus (CN), globus pallidus (GP), putamen (PUT), thalamus
(THA), pulvinar thalamus (PT), red nucleus (RN), substantia
nigra (SN), and dentate nucleus (DN) were semi-automatically
segmented using a full-width half maximum (FWHM) threshold
based analysis of the susceptibility maps using Signal Processing
in Nmr (SPIN) software (SpinTech, Inc., Bingham Farms, MI,
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FIGURE 1 | Illustration of the simulated brain model and its structures in three different views. This figure shows different deep gray matter structures such as the:
GP, globus pallidus; PUT, putamen; THA, thalamus; CN, caudate nucleus; SN, substantia nigra; RN, red nucleus; and CC, crus cerebri; in the axial (A,B), coronal
(C), and sagittal (D) views.

TABLE 1 | The susceptibility (ppb), T1 relaxation time, relative proton density (ρ0), and the size (mm3) of different structures for the simulated brain model.

χ (ppb) T1(ms) ρ0 Size (mm3)

WM 0 837 0.73 ∼

GM 20 1607 0.80 ∼

VNT/CSF −14 4163 1.00 ∼

CN 60 1226 0.82 42.5 × 14.5 × 20.5

GP 180 888 0.72 20.5 × 14.5 × 13.5

PUT 90 1140 0.82 33.5 × 14.5 × 21

SN 160, 200 1147 0.79 9.5 × 8.5 × 7, 9.5 × 7.5 × 6

RN 130 833 0.80 6 × 10 × 6

CC −30 780 0.79 14.5 × 10 × 10.5

THA 10 1218 0.79 29.5 × 26.5 × 17.5

V 450 1932 0.85 ∼

The size is described in row×column×slice directions format. Please note that SN in the model is composed of two parts. WM, white matter; GM, gray matter; GP, globus
pallidus; PUT, putamen; THA, thalamus; CN, caudate nucleus; SN, substantia nigra; RN, red nucleus; CC, crus cerebri; V, veins; VNT, ventricles; CSF, cerebrospinal fluid;
and ppb, parts per billion.

United States). The mean susceptibility values and volumes of
the regions of interest (ROIs) were then assessed. Representative
images from each site and segmentation outlines are shown in
Figure 2. The raters had an intraclass coefficient of >0.9 for the
susceptibility measurement of all structures, and these averages
are reported in this study. The product of the mean susceptibility
and the volume of each GM nuclei was used to represent the
total iron deposition in the structure. During the ROI drawing,
the readers were blinded to the subject type and age to reduce
the impact of ROI selection on evaluating the susceptibility-
age relationship. The 3D whole-structural measurements (global)
were used to determine age-related thresholds, which were
applied to calculate the local iron deposition [RII: portion of the
structure that contains high iron concentrations, that is, those
regions with iron content higher than two standard deviations
above the mean as a function of age as taken from the paper of
Liu et al. (2016)]. Age-susceptibility, age-volume and age-total
iron correlations were determined for each measured structure
for both the whole-region and the high iron content region RII.

Statistical Analysis
The statistical analyses were performed using MATLAB R2019a
(MathWorks, Natick, MA, United States) and SPSS 22.0.

Participant demographics were compared between groups with
an analysis of variance (ANOVA) or Welch’s ANOVA in the
case of nonparametric variables as determined by Levene’s test.
Distribution of sex was compared using a χ2 test. The mean
susceptibility/nuclei volume/total iron content (volume × mean
susceptibility) data were fitted using linear regression models
(Liu et al., 2016) and Pearson correlation analysis was applied
to investigate the relationship between each measure and age in
each structure. Strength of the Pearson correlation coefficient (r)
was determined using the following guide for the absolute value:
0.00–0.19 “very weak,” 0.20–0.39 “weak,” 0.40–0.59 “moderate,”
0.60–0.79 “strong,” and 0.80–1.0 “very strong.” p-values less than
0.05 were considered statistically significant.

RESULTS

Participant Characteristics
Group subject demographics are shown in Table 2. Sex
distribution (χ2 = 13.6, p < 0.05) and age (Welch’s F = 190,
p < 0.05) differed significantly across the three sites. The average
age of the subjects in Site 1 was smaller than that of Site 2 or Site
3, and the distribution of each age group was relatively uniform.

Frontiers in Neuroscience | www.frontiersin.org 4 January 2021 | Volume 14 | Article 607705

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-607705 December 21, 2020 Time: 14:20 # 5

Li et al. Iron in Deep Gray Matter

FIGURE 2 | Representative images from each site and segmentation outlines of 8 ROIs. (A) Site 1, (B) Site 2, and (C) Site 3.

TABLE 2 | Demographic data of the subjects and the scanning parameters in three sites.

Site 1 Site 2 Site 3 p-value

Sample size 173 336 114 /

Age range (years) 20–69 40–79 40–90 /

Age (years, mean ± SD) 45.1 ± 14.2 62.3 ± 6.5 60.3 ± 9.3 <0.05

Sex (male/female) 88/85 117/219 53/61 <0.05

MRI scanner GE HDX Philips Ingenia Siemens Prisma

Field strength (Tesla) 1.5 3.0 3.0

TR (ms) 53 20 20

TE (ms) 40 17.5 17.5

Voxel size (mmł) 0.6 × 0.75 × 3 0.67 × 1.34 × 2 0.67 × 1.34 × 2

SD, standard deviation.

The subjects in both sites 2 and 3 were mainly between 55 and
65 years old, as shown in Figure 3.

Effect of Resolution on QSM in the
Simulated Data
Figure 4 shows the plots of the measured susceptibility values
in the various structures of interest in the simulated model
for different resolutions. The measured susceptibility values in
these plots are zero-referenced with respect to the measured
susceptibility in the THA. As seen in these plots, the mean
susceptibilities of CN, GP, and PUT are not significantly affected

by changing the slice thickness from 0.5 to 3 mm, but for the
small structures, such as the SN and RN, the susceptibility is
reduced about 10% for 2 mm thick slices and nearly 25% for
3 mm thick slices.

The iron content for the k-space cropped lower resolutions
were compared to the original iron content measurements
(Figure 5). Three representative structures were chosen to
highlight in the Figure: the putamen because it is a large structure
and the red nucleus and substantia nigra because they are small
structures where we expect to see the biggest effect. We found
that the R2 values of the correlations were very high, on the order
of 0.9 or higher indicating the closeness of the measurements.
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FIGURE 3 | Distribution of subjects’ age from the three sites. Sites 2 and 3
provide needed complimentary data for the higher age range compared to
site 1.

The values of all the slopes and correlation measures are given
in Supplementary Table 1. For those data that were originally
cropped to lower resolution and retraced, the R values were in
the range of 0.7 to 0.9 for site 1, 0.8 to 0.9 for site 2 and 0.7 to
0.9 for site 3 for most structures. However, despite not having
as high R values as the original data, all the data points in the
remeasured lower resolution still fell within the 95% confidence
intervals determined by the higher resolution data.

Relationship Between Mean
Susceptibility and Age
Global Analysis
For the global mean susceptibility analysis of iron content, the
slopes (ppb/year) and intercepts (ppb) across the sites overlapped
for all structures as shown in Figures 6A,B. Further, as shown
in Supplementary Table 2, the mean values in the dominant
age range (55–65 years) of sites 02 and 03 agree very well with
those from site 1 suggesting that the 95% CI projections of site 1
to higher ages should match sites 2 and 3 well. With these two
facts in mind, we have merged the data from all 3 sites into a
single large dataset to assess the relationship between the mean
magnetic susceptibility and age. As shown in Supplementary
Table 3 and Figure 7, the mean susceptibility correlated with age
(with a positive slope) for the CN, PUT, RN, SN, and DN, all
p < 0.001. For the THA, there was a strong negative correlation
with age (p < 0.001). The mean susceptibility in the GP had a
negative slope but it was not significantly different from zero
(p = 0.49) while the PT had a small negative slope that was
significant (p < 0.01).

RII Analysis
For the RII regional high iron content analysis, the slopes ranges
(ppb/year) and intercepts (ppb) across the sites also overlapped
for all structures (except for the PUT and RN) and are shown in
Figures 6C,D. Further, as shown in Supplementary Table 2, the
mean values in the dominant age range (55–65 years) of sites 2

and 3 agree very well with those from site 1 suggesting that the
95% CI projections of site 1 to higher ages should match sites 2
and 3 well. This allows for the data from the 3 sites to be merged
into a single dataset to assess the relationship between the mean
magnetic susceptibility and age for RII. For the RII analysis, as
shown in Table 3 and Figure 8, mean susceptibility in all the
structures was moderately to strongly correlated with age (all
p < 0.001) except for the THA. For the THA, there was a slight
negative slope with age (p < 0.001).

Relationship Between Nuclei Volume and
Age
Global Analysis
The parameters of the linear fitting equations for the global nuclei
volumes versus age are given in Supplementary Table 4. The
volumes of most nuclei, including the CN, GP, PUT, THA, PT,
and RN were negatively correlated with age (all p < 0.001).
Of interest is the fact that volumes for the SN and DN both
increase with age. Volumes for the global analysis are shown in
Supplementary Figure 1.

RII Analysis
There was a negative correlation between the volume of the
RII region for the THA with age (p < 0.001) as shown in
Supplementary Table 5. RII volumes of SN and DN increased
with age significantly, but correlation between RII volume
of RN and age was not significantly different from zero
(p = 0.14). All the volumes for the RII analysis are shown in
Supplementary Figure 2.

Relationship Between Total Iron Content
(Volume × Mean Susceptibility) and Age
Global Analysis
The parameters of the linear fitting equations for total iron
content globally versus age is given in Supplementary Table 6
and Supplementary Figure 3. Apart from the GP, THA, and PT
all the other structures showed an increasing total iron content
despite the reductions in volume with age.

RII Analysis
The parameters of the linear fitting equations for RII analysis
total iron versus age is given in Supplementary Table 7 and
Supplementary Figure 4. Like the global analysis, apart from
the GP, THA, and PT all structures showed an increasing total
iron content (despite the reductions in RII volume with age)
as well as a much tighter distribution than the global iron
dependence with age.

DISCUSSION

In this study, the effect of image resolution on the QSM
quantification was evaluated based on a simulation model, as
well as resampled original data. The consistency of QSM across
field strengths and manufacturers in evaluating the DGM of the
human brain was verified using a total of 623 subjects from
multiple imaging sites, and a QSM baseline as a function of
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FIGURE 4 | Susceptibility as a function of slice thickness. Comparison of the measured susceptibility values (ppb) of different structures for both left (L) and right (R)
sides in the reconstructed QSM data from the simulated noisy phase with different resolutions. The plot in red is the true susceptibility in the original high-resolution
model and the other plots show the reconstructed QSM data with different resolutions. As seen in this figure, as the resolution reduces, the measured susceptibility
values in smaller structures such as the RN, SN, and CC are negatively affected.

FIGURE 5 | Comparisons between the iron content of the PUT, RN, and SN in the k-space cropped lower resolution images and the original images.These
correlations are very high because the same ROIs were used in the cropped and re-interpolated data. When the boundaries are redrawn on the lower resolution data
(see Supplementary Figure S5), the correlations are not as good as those shown here, but the data still lies within the 95% confidence intervals as noted in the
results section.

Frontiers in Neuroscience | www.frontiersin.org 7 January 2021 | Volume 14 | Article 607705

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-607705 December 21, 2020 Time: 14:20 # 8

Li et al. Iron in Deep Gray Matter

FIGURE 6 | Slopes (A,C) and intercepts (B,D) 95% confidence intervals of the 8 gray matter nuclei from the 3 sites for the global and RII analysis. CN, caudate
nucleus; GP, globus pallidus; PUT, putamen; THA, thalamus; PT, pulvinar thalamus; RN, red nucleus; SN, substantia nigra; DN, dentate nucleus.

FIGURE 7 | Mean susceptibilities for the global analysis. The mean susceptibility and 95% confidence intervals and 95% prediction intervals are shown for each
structure as a function of age. CN, caudate nucleus; GP, globus pallidus; PUT, putamen; THA, thalamus; PT, pulvinar thalamus; RN, red nucleus; SN, substantia
nigra; DN, dentate nucleus.
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TABLE 3 | Linear fitting equations for mean susceptibility (χ) (ppb) versus age for the RII analysis.

χ = A × age+B Error in A (ppb/year) Error in B (ppb) r r-CI p-value

CN χ = 0.82 × age+49 0.05 2.89 0.80 (0.77, 0.83) <0.001

GP χ = 0.74 × age+187 0.13 7.62 0.43 (0.36, 0.5) <0.001

PUT χ = 1.38 × age+50 0.07 3.88 0.86 (0.83, 0.88) <0.001

THA χ = −0.1 × age+33 0.05 2.70 −0.17 (−0.25, −0.09) <0.001

PT χ = 0.33 × age+62 0.05 2.87 0.52 (0.45, 0.58) <0.001

RN χ = 1.23 × age+100 0.09 5.14 0.77 (0.74, 0.81) <0.001

SN χ = 0.77 × age+158 0.11 6.18 0.51 (0.45, 0.57) <0.001

DN χ = 0.81 × age+105 0.12 6.98 0.53 (0.46, 0.59) <0.001

R, Pearson correlation coefficient; r-CI, confidence interval of r.

FIGURE 8 | Mean susceptibilities for the RII analysis. The mean susceptibility and 95% confidence intervals and 95% prediction intervals are shown for each
structure as a function of age. CN, caudate nucleus; GP, globus pallidus; PUT, putamen; THA, thalamus; PT, pulvinar thalamus; RN, red nucleus; SN, substantia
nigra; DN, dentate nucleus.

age for each DGM structure for both global and regional iron
analysis was determined. The RII analysis showed a much tighter
correlation with age and a higher slope than the global analysis
for all structures, providing an additional source of information
outside whole structure mean iron or total iron for a reliable and
sensitive reference for age-related changes. The age related data
generated for each structure including susceptibility, volume, or
total iron content for both the global and regional analysis can
be used to correct for age dependence of each of these measures
for monitoring abnormal global and regional iron deposition.
The literature and data for RII is scant as it is a relatively
new technique for measuring iron on QSM (Habib et al., 2012;
Ghassaban et al., 2019; Sethi et al., 2019).

As for the RII analysis findings, the correlations of iron with
age are moderate to strong in almost all structures other than
the THA, which is consistent with the work of Liu et al. (2016).
Even in the GP, which usually shows no iron content change over
the lifespan after the age of 20 years (Hallgren, 1958; Xu et al.,
2008; Li et al., 2014), we found the Pearson correlation coefficient
for age and RII susceptibility greater than 0.40. Data from all

major DGM nuclei fell well within the calculated 95% confidence
intervals derived from the merged data except for some outliers
in the GP. These are likely due to high levels of mineralization
in the caudal part of the structure. An added advantage to the
RII analysis is that it is less dependent on an accurate drawing
of the structure since much of the higher iron content regions
are inside the boundaries of these structures. Finally, the slopes
and intercepts found by merging the RII data from all three sites
agrees with the iron trends with age in other studies (Liu et al.,
2010, 2016; Ghassaban et al., 2019).

Iron Changes With Age
When considering the global analysis for all structures,
susceptibility values for the subjects aged 55–65 years are
accordance with values recorded by Acosta-Cabronero et al.
(2016) on subjects aged 59–79 years. They delineated ROIs of the
deep gray matter automatically (CN, PUT, and GP) and manually
(RN, SN, and DN) on QSM. When comparing the regression
slope and intercepts, there were differences between our study
and theirs. One reason may be due to a 3D erosion function being
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performed to remove spurious pixels whereas our study used a
FWHM boundary for our global analysis. But the more likely
reason is too narrow an age range without subjects in the 20 to
30 year decade to anchor the data properly. Their team did not
report volumetric measurements. The susceptibility versus age
plot for the thalamus was flat and similar to our plot, but with a
shift in the intercept. Several of the structures have iron content in
agreement with recent work by Zhang et al. (2018), who collected
data across the human lifespan. The age-related increases in iron
affect the morphology and contrast of the structure with the
surrounding tissue which is particularly true for the DN. This
may have applications to iron rich structures like the SN and GP.
Further, we report similar global susceptibility changes with age
to a recent work by Ghassaban et al. (2019), who recently used
0.86 mm× 0.86 mm× 1 mm resolution at 3T.

Hallgren and Sourander (Hallgren, 1958) stated that in
younger and middle-aged brains, advanced age was associated
with greater iron concentrations in the basal ganglia than in
subcortical WM, but noted that the association between age and
iron content was attenuated after middle age. Much of the recent
MR data actually show that there is a continued slow increase in
age and the quantity and quality of the published data now by far
supersedes the limited results in Hallgren and Sourander.

Of note in these results are the following observations.
At any given age, there is a wide range of “normal” iron
content. This makes it very hard to give a narrow range of
age if one were to be given the iron content. This is less of
a problem for the RII analysis because the results are more
tightly bound. One might ask what causes this large variation
of iron content and if it is related to some disease state like
hypertension or vascular disease. This, in itself, would be an
intriguing finding to ascertain why some elderly people have
the same low iron content as younger people. Furthermore,
there is strong neuropathologic evidence that iron overload
is a hallmark of many neurodegenerative processes. Outcomes
relating to progression of cognitive impairment are of particular
interest (Belaidi and Bush, 2016; Moon et al., 2016; Lane et al.,
2018; Chang, 2019). Many central nervous system disorders
have also been associated with an excessive deposition of iron
in specific brain locales as reported in Huntington’s disease
(Chen et al., 2013) (caudate, putamen), Parkinson’s disease and
multisystem atrophy (Lee et al., 2013; Péran et al., 2018; Seki et al.,
2019) (putamen, globus pallidus), multiple sclerosis (Haacke
et al., 2009; Mahad et al., 2015; Ropele et al., 2017; Zivadinov
et al., 2018) (associated with the MS plaques), and intracerebral
hematoma periphery (Garton et al., 2016). An understanding of
the normal brain-iron distribution may also help interpret the
pathophysiology of the brain damage that occurs in association
with neurodegenerative, demyelinating, and vascular disorders.

Another interesting finding is the negative slope of the
thalamus. To understand this effect, one has to look back
at what QSM actually provides; it provides only changes in
susceptibility. The positive and negative values represent more
or less magnetic susceptibility relative to the reference region,
respectively (Doring et al., 2016). So, if the WM remains the zero
mark of QSM then the negative slope of the THA really represents
an increasing iron content of the WM with age. Now WM is

diamagnetic relative to GM because it is myelinated. However,
it has been shown that demyelinated WM has effectively the
same susceptibility as GM (about 50 ppb) which makes sense
because its overall iron content is about the same as that of
gray matter (Haacke et al., 2005; Langkammer et al., 2012).
Therefore, an increasing susceptibility of WM with age could
represent a general demyelination over time. Since the THA
susceptibility changes from roughly 10 ppb to −20 ppb over the
age range of 20 years to 90 years, this suggests an increase of
WM susceptibility of 30 ppb or a little over half of the difference
between healthy WM and GM.

Another consideration is determining the total iron content
from susceptibility by estimating the iron concentration from
the age equations provided in Hallgren and Sourander’s work
as done in other studies (Aquino et al., 2009; Liu et al., 2016).
On the assumption that the gray matter density (GMD) remains
constant with age, the total iron content is proportional to gray
matter volume (GMV). In fact, GMD changes with age, sex,
and is not easily quantified (Gennatas et al., 2017). There are a
variety of methods that can be used in the future to determine
absolute water content and thereby solving this problem; one
such method is STrategically Acquired Gradient Echo (STAGE)
imaging (Haacke et al., 2020).

Volume Changes With Age
Our volumetric results for the subjects in the 55-year age range
and up are in accordance with recent work by He et al. (2017).
Also, Ghassaban et al. (2019) showed volumes decreased with
age for all structures (except for SN and DN), suggesting brain
atrophy occurs with age. Fjell et al. (2013) measured segmented
brain volumes over time for adults 18–94 years of age; while
they fit the volumes with an exponential function for age,
they noted corresponding decreases in GM volume with age.
In another study assessing volumes at 1.5T, Raz et al. (2003)
also noted decreases in GM volume in the CN and PUT in a
cohort of 55 subjects aged 20–77 years, but not the GP which is
highly subject to perivascular spaces and mineralization. Areas
of mineralization and large veins were not measured in our
ROIs, however, perivascular spaces are not as easily visualized
on magnitude on which our tracings were performed and may
contribute to the discrepancy in the age versus volume plots
between these studies.

For SN and DN, there is a small positive correlation with age,
possibly because the increased iron content makes the structures
clearer on the QSM data. Our volumetric results, nevertheless,
are in accordance with a work which involved 38 subjects,
aged 64.1 ± 7.5 years, with DN volumes ranging between 600
and 800 mm3 (He et al., 2017). For the SN, the volumes for
our analysis overlap well with data for 20 controls (mean age,
60.8 ± 8.3 years, SN volume = 400–650 mm3) (Pyatigorskaya
et al., 2018). Likewise, total iron content followed the same trends.

Resolution Effects
As far as resolution is concerned, the large structures are not
much affected by slices as thick as 3 mm but the SN, RN
and DN are expected to have lower susceptibilities for slices
that are too thick. The final effects of these thicker slices also
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depend to some degree on how the structures are drawn and if
partial volume effects are considered. The advantage of tracing
the DN on QSM, instead of T2W or SWI, is that the variability
of the structural volume is reduced (He et al., 2017). Our group
opted to use FWHM to trace the structures which may confer
a high reliability between the raters, however, for structures
which have smaller size and more intricate detail like the DN, it
may be a drawback. Ideally, an automated means to assess the
structures may improve the agreement between all structures,
field strengths and manufacturers. Both our simulations and
the restructuring of the data show that even with resolutions
as low as 0.67 mm × 1.34 mm × 3 mm, iron content with
age still follows the pattern as shown in this paper, although
some minor deviations can occur for smaller objects such
as the RN and SN. Nevertheless, for sufficient SNR, higher
resolution is always desirable for better edge definition and
volume measurements (such as the higher resolution used for
sites 2 and 3: 0.67× 1.34× 2 mm3).

Limitations
There are several limitations to this study. First, the distribution
of subject age was different between site 1 and the other two
sites as was the slice thickness. Nevertheless, for larger structures
this did not affect the susceptibilities significantly. Second, other
QSM methods may provide slightly higher absolute levels of
susceptibility by 5 to 10% but, as long as any one method
is used consistently across sites and imaging parameters, then
the results should be consistent with those presented herein
(Liu et al., 2016).

CONCLUSION

Although QSM has the potential to be a robust technology,
care must be taken in assessing some smaller structures like
the DN, the RN and the SN to avoid reconstruction bias based
on slice thickness. We recommend using a slice thickness no
greater than 2 mm to avoid a resolution-related reduction in
susceptibility values. RII iron analysis showed a tighter age-
related behavior than global iron analysis and appeared to be
less susceptible to imaging parameters, field strength, or region
drawing. For the first time, we showed that the local iron content
in the GP increases with age (range 20–90 years) despite the
global iron remaining roughly constant. Almost all structures
showed a reduction in iron containing volumes with age except
for the SN and DN. Finally, the results of this work show
that a reasonable estimate for age-related iron behavior can be
obtained from a large cross site, cross manufacturer set of data
and can be used for correcting for age related iron changes when

studying diseases like Parkinson’s disease and other iron related
neurodegenerative diseases.
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