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Abstract

Background: Weight loss, especially fat mass reduction, helps to improve blood glucose control, insulin sensitivity,
and β-cell function. This study aimed to compare the effect of exenatide and glargine on body composition in
overweight and obese patients with type 2 diabetes (T2DM) who do not achieve adequate glycemic control with
metformin.

Methods: We performed a prospective, randomized study of 37 overweight or obese patients with T2DM who had
inadequate glycemic control with metformin. The patients were treated with either exenatide or glargine for
16 weeks. Dual-energy X-ray absorptiometry was used to assess body composition.

Results: Post-intervention weight, body mass index (BMI), waist circumference, body mass, and fat mass were lower
in patients treated with exenatide, while weight and BMI significantly increased with glargine. Reductions in weight,
BMI, body fat mass, and percent fat mass (except for gynoid) were greater with exenatide than with glargine, and
percent lean tissue (other than the limbs) increased with exenatide. In all body regions except for the limbs, fat
mass decreased with exenatide to a greater extent than lean tissue. Glucose control, insulin resistance, and β-cell
function were not different between the treatment groups.

Conclusions: For overweight and obese patients whose T2DM was inadequately controlled with metformin,
exenatide and glargine achieved similar improvements in glycemic control, insulin sensitivity, and β-cell function.
However, exenatide produced better weight and fat mass reduction, which were beneficial for blood glucose
control. Our findings may guide the selection of appropriate drugs for glycemic and weight control.

Trial registration: NCT02325960, registered 25 December 2014.
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Background
The prevalence of overweight and obesity has markedly
increased worldwide [1, 2]. Obesity, particularly “android
obesity” that is characterized by the accumulation of
android-visceral fat, is considered a major risk factor for
the development of insulin resistance [3] and type 2 dia-
betes (T2DM) [4, 5], and represents one of the most

critical public health challenges [1, 6]. Increased fat mass
associated with weight gain, especially abdominal weight
gain during T2DM treatment, ultimately impedes the
control of glycemia and other metabolic disorders [7].
Management of T2DM includes lifestyle modifications

[8, 9] and use of antihyperglycemic drugs [10]. Oral
medications that produce weight loss, especially metfor-
min [10–12], are the mainstay of first-line treatments for
T2DM. However, metformin monotherapy does not typ-
ically achieve good blood glucose control over an ex-
tended period. Glucagon-like peptide-1 (GLP-1) receptor
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agonists [10, 13–16] and basal insulin [14, 15, 17] are
both choices as pharmaceutical approaches to glycemic
treatment for T2DM patients who use metformin alone
but nevertheless have poorly controlled glycemia. How-
ever, previous studies found that these two types of
drugs had different effects on body weight and android
obesity [18–22]. Furthermore, GLP-1 receptor agonists
exhibit potent blood glucose reduction only during hyper-
glycemia, during which they increase insulin secretion and
reduce glucagon secretion in a glucose-dependent manner
[23, 24]. Clinical studies have demonstrated that GLP-1
receptor agonists reduce body weight and visceral and
hepatic fat deposits, and also improve hepatic insulin sen-
sitivity in obese patients with T2DM [18, 25–27]. More-
over, exenatide, a GLP-1 receptor antagonist, is associated
with a statistically significant reduction in total fat mass,
mainly in the trunk [19], whereas the basal insulin glargine
reduces liver fat content and improves hepatic insulin sen-
sitivity [28]. Glargine is also associated with significantly
increased total, trunk, and limb fat mass as well as limb
lean tissue [21, 22].
It is not clear whether GLP-1 receptor agonists or

basal insulin can achieve better control of body compos-
ition in overweight or obese T2DM patients who have
inadequate glycemic control with metformin. There are
no reports on the effects of exenatide or glargine on
trunk and android body composition, which might be
more associated with long-term glycemic control in pa-
tients with T2DM following metformin treatment. To fill
this knowledge gap, we used dual-energy X-ray absorpti-
ometry (DXA) to compare changes in body composition,
including fat mass and lean tissue, after using exenatide
or glargine in combination with metformin in over-
weight and obese T2DM patients with poor glycemic
control. Our study aims to assist in selecting optimal
therapies for glucose reduction and weight control, espe-
cially in overweight and obese patients with T2DM.

Materials and methods
Subjects
Forty-five overweight and obese T2DM patients with poor
glycemic control despite metformin monotherapy were
randomized using arbitrary computer-generated numbers
to receive exenatide or glargine treatments for 16 weeks in
addition to their current metformin treatment. Block
randomization was performed by third-party statisticians.
The inclusion criteria were as follows: 1) patients with
T2DM receiving a stable metformin dose of ≥1.5 g/d for
> 8 weeks; 2) age between 18 and 70 years; 3) glycated
hemoglobin (HbA1c) between 7.0 and 10.0%; and 4) body
mass index (BMI) ≥24 kg/m2 (based on the China Obesity
Task Force criteria) [29]. Exclusion criteria included: 1) al-
lergy to related drugs; 2) impaired renal function (serum
creatinine ≥1.5 mg/dL or ≥ 133 μmol/L); 3) diseases

causing acute or chronic hypoxia such as respiratory fail-
ure or stroke; 4) liver dysfunction (alanine aminotransfer-
ase [ALT] and aspartate aminotransferase [AST] ≥3 times
higher than the high normal limit) or acute alcoholism; 5)
history of cardiovascular disease in the past 12 months; 6)
proliferative retinopathy; 7) positive pregnancy test result,
breastfeeding mother, or not willing to use the appropriate
contraceptive methods; 8) systemic corticosteroid therapy
used in the past two months; 9) type 1 diabetes; or 10) use
of other experimental drugs during the preceding 30 days.
The study protocol was approved by the Research Ethics
Board of Drum Tower Hospital affiliated with Nanjing Uni-
versity Medical School (Protocol: AF/SQ-2014-072-01).
Adverse events (AEs) were collected and recorded in case
report form, and serious adverse events (SAEs) were re-
ported in written form to the Institutional Review Board of
the Drug Clinical Trial Agency Office and the Research
Ethics Board of Drum Tower Hospital, affiliated to Nanjing
University Medical School.

Study protocol
This prospective, randomized, and parallel design trial
lasted 16 weeks. For participants assigned to receive exe-
natide, the initial dosage was 5 μg twice daily for 4 weeks
followed by 10 μg twice daily for the remainder of the
trial. For basal insulin glargine, the starting dose was 8 IU
once daily, followed by a titrated dosage of ≥2 IU every
3 days based on fasting blood glucose (FBG) levels until
the peripheral blood glucose level reached 6.1 mmol/L,
following which a maintenance dose with fixed glargine
was administered for the remaining 12 weeks (Fig. 1). All
patients included in the study provided written informed
consent. Information regarding proper diet and exercise
was provided to all patients in the two groups. Patients
enrolled in the study were provided free antidiabetic drugs
and related laboratory examinations during follow-up.
Data from the same trial were published in a previous
study [30] that compared the effects of exenatide and in-
sulin glargine on glycemic variability using a CGMS®
(Glod, Medtronic); in that study, exenatide was found to
be more effective in reducing body weight and BMI al-
though both showed similar efficacy in achieving glycemic
control.

Measurements
Fat mass and lean tissue in the total body, trunk, android
regions, gynoid regions, and limbs were measured using
DXA (Lunar iDXA; Encore 13.4) at baseline and at the
end of the study. Body weight, waist circumference (WC),
and blood pressure were measured at baseline and every
four weeks.
All participants were administered an identical 85 g

carbohydrate-equivalent meal at baseline and at the end of
the treatment period. Plasma glucose and insulin levels
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were measured at 0, 30, 60, and 120 min after the meal.
Fasting serum HbA1c, ALT, AST, total cholesterol (TC), tri-
glyceride, high-density lipoprotein cholesterol, low-density
lipoprotein cholesterol (LDL-C), uric acid, and creatinine
levels were measured at baseline and after 16 weeks of
intervention.

Statistical analyses
The study was non-blinded, and all analyses were com-
pleted by an independent statistician using SPSS version
18.0 software (SPSS Inc., Chicago, IL, USA). The a priori
power calculations for sample size were previously de-
scribed [30]. A paired Student’s t-test was used when
comparing pre- and post-intervention changes within
each intervention group. Analysis of covariance was used
to test for differences between the treatment groups
after adjusting for baseline values. Effects of changes in
body composition in relation to FBG and HbA1c were
identified using Pearson’s correlation analysis and multi-
variate logistic regression. The non-inferiority margin of
0.30% in HbA1c was selected based on previous guidance
[31], and was considered clinically significant if the upper
limit of the 95% confidence interval (CI) of the treatment
difference was less than or equal to 0.3% points [32]. The
data are expressed as means ± standard errors (SE). Statis-
tical significance was defined as P < 0.05.

Results
Baseline values
Thirty-seven of the 45 randomized patients completed
the study; three patients in the exenatide group and five
in glargine were excluded for lack of DXA data (Fig. 1).
Baseline clinical characteristics of the study population
were similar between groups (Table 1). Nineteen sub-
jects (12 men and seven women) aged 47.6 ± 2.5 years

with a mean T2DM duration of 7.0 ± 1.2 years were
treated with exenatide. In the glargine group, 18 partici-
pants (12 men and six women) aged 48.3 ± 2.3 years and
T2DM duration of 4.4 ± 0.7 years completed treatment.

Body weight, BMI, and WC
Body weight and BMI (both P < 0.001) significantly de-
creased after exenatide intervention, while body weight
and BMI (both P = 0.048) significantly increased after
glargine intervention (Table 1). After treatment, WC sig-
nificantly decreased (P = 0.012) in the exenatide group
but did not change in the glargine group. The exenatide
treatment group had greater decreases in body weight
(△ = − 4.5 kg; 95% CI, − 6.3 to − 2.7 kg) and BMI (△ = −
1.6 kg/m2; 95%CI, − 2.2 to − 0.9 kg/m2) than the insulin
glargine group (P < 0.001) (Table 1).

Body fat mass and lean tissue
A significant reduction of body fat mass was achieved
with exenatide treatment, including total (△ = − 2.1 kg;
95% CI, − 3.0 to − 1.2 kg; P < 0.001), trunk (△ = − 1.3 kg;
95% CI, − 2.0 to − 0.7 kg; P < 0.001), limb (△ = − 0.7 kg;
95% CI, − 1.1 to − 0.4 kg; P < 0.001), android (△ = −
0.3 kg; 95% CI, − 0.5 to − 0.1 kg; P = 0.001), and gynoid
(△ = − 0.2 kg; 95% CI, − 0.3 to − 0.1 kg; P = 0.002). How-
ever, no changes were observed after insulin glargine
intervention (Table 2). There was a significantly greater
decrease in fat mass in the exenatide group (including
total, trunk, limb, android, and gynoid fat) (Table 2).
Percent total fat mass (△ = − 1.7%; 95% CI, − 2.4 to

− 0.9%; P < 0.001), trunk fat (△ = − 2.4%; 95% CI, −
3.5 to − 1.2%; P < 0.001), limb fat (△ = − 1.1%; 95%
CI, − 1.7 to − 0.5%; P = 0.001), android fat (△ = −
2.9%; 95% CI, − 4.2 to − 1.5%; P < 0.001), and gynoid
fat (△ = − 0.9%; 95% CI, − 1.7 to 0.0%; P = 0.046)

Fig. 1 Flow chart of the study participants
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decreased with exenatide, but were unchanged with
glargine (Table 2). Exenatide was superior to glargine
in reducing the percentage of fat (total fat mass: P =
0.005; trunk fat: P = 0.006; limb fat: P = 0.010; an-
droid fat: P = 0.018) (Table 2).
After treatment with exenatide, limb lean tissue sig-

nificantly decreased (△ = − 0.7 ± 0.2 kg, P = 0.011); this

decreased was greater with exenatide than with glargine
(P = 0.019; Table 2).
Exenatide significantly increased the percentage of

total body lean tissue (△ = 1.5%; 95% CI, 0.8 to 2.3%; P <
0.001), trunk (△ = 2.3%; 95% CI, 1.1 to 3.5%; P = 0.001),
limbs (△ = 0.9%; 95% CI, 0.3 to 1.5%; P = 0.007), android
regions (△ = 2.9%; 95% CI, 1.5 to 4.3%; P < 0.001), and

Table 1 Subject characteristics, insulin sensitivity, and β-cell function at baseline and after treatment

Exenatide Insulin glargine Estimated treatment
difference, Exenatide
vs Insulin glargine
Mean (95% CI)

P
Decreased value
between two
groups

Pre
Mean + SE

Post
Mean ± SE

P Pre
Mean ± SE

Post
Mean ± SE

P

Number (n) 19 – – 18 – – – –

Sex (male/female) 12/7 – – 12/6 – – – –

Age 47.6 ± 2.5 – – 48.3 ± 2.3 – – – –

Diabetes duration 7.0 ± 1.2 – – 4.4 ± 0.7 – – – –

Weight (kg) 80.8 ± 2.4 77.3 ± 2.4 < 0.001 75.1 ± 1.8 76.0 ± 1.8 0.048 − 4.5 (− 6.3 to − 2.7) < 0.001

BMI (kg/m2) 28.1 ± 0.5 26.9 ± 0.5 < 0.001 27.0 ± 0.6 27.3 ± 0.5 0.048 −1.6 (− 2.2 to − 0.9) < 0.001

Waist circumference (cm) 96.5 ± 1.5 93.5 ± 1.6 0.012 93.9 ± 1.7 93.4 ± 1.7 0.361 −2.6 (− 5.0 to − 0.1) 0.070

SBP (mmHg) 119.4 ± 3.5 120.9 ± 3.2 0.600 114.7 ± 2.9 118.3 ± 3.9 0.329 −2.1 (− 11.3 to 7.0) 0.943

DBP (mmHg) 77.7 ± 1.9 79.8 ± 1.5 0.293 77.2 ± 2.0 74.2 ± 2.2 0.205 5.2 (−1.0 to 11.3) 0.034

ALT (U/L) 31.8 ± 4.3 31.0 ± 4.1 0.825 36.8 ± 4.8 29.5 ± 3.8 0.035 6.5 (− 3.3 to 16.3) 0.290

AST (U/L) 21.9 ± 2.2 21.4 ± 2.2 0.766 24.6 ± 2.1 22.6 ± 2.0 0.191 1.4 (− 3.1 to 5.9) 0.756

TG (mmol/L) 1.8 ± 0.2 1.6 ± 0.2 0.243 1.7 ± 0.2 1.5 ± 0.2 0.301 0.0 (− 0.5 to 0.5) 0.778

TC (mmol/L) 4.5 ± 0.3 4.1 ± 0.3 0.020 4.3 ± 0.2 4.3 ± 0.2 0.979 − 0.5 (− 1.0 to 0.1) 0.113

HDL-C (mmol/L) 1.0 ± 0.1 1.0 ± 0.1 0.176 1.0 ± 0.1 1.1 ± 0.1 0.107 − 0.2 (− 0.3 to 0.0) 0.040

LDL-C (mmol/L) 2.4 ± 0.2 2.1 ± 0.2 0.009 2.3 ± 0.1 2.3 ± 0.1 0.914 − 0.3 (− 0.7 to 0.0) 0.091

FBG (mmol/L) 8.7 ± 0.5 6.8 ± 0.4 0.002 9.0 ± 0.5 6.9 ± 0.4 < 0.001 0.2 (− 1.2 to 1.6) 0.978

30-min glucose (mmol/L) 10.8 ± 0.7 9.1 ± 0.9 0.070 12.1 ± 0.7 9.9 ± 0.6 0.001 0.5 (− 1.6 to 2.7) 0.867

60-min glucose (mmol/L) 14.1 ± 1.0 11.7 ± 1.1 0.087 14.8 ± 0.7 11.9 ± 0.5 < 0.001 0.5 (− 2.4 to 3.4) 0.976

120-min glucose (mmol/L) 13.3 ± 0.9 11.7 ± 0.8 0.101 14.0 ± 1.0 12.3 ± 0.9 0.123 0.0 (− 2.8 to 2.8) 0.691

Fasting insulin (uIU/mL) 10.1 ± 1.3 10.1 ± 1.7 0.984 11.0 ± 1.0 10.0 ± 1.9 0.616 1.1 (−4.3 to 6.5) 0.822

30 min insulin (uIU/mL) 19.5 ± 3.0 17.8 ± 3.9 0.593 19.2 ± 2.2 23.8 ± 5.0 0.345 −6.3 (− 17.6 to 5.0) 0.272

60 min insulin (uIU/mL) 28.7 ± 5.1 33.8 ± 8.8 0.489 33.2 ± 3.7 36.2 ± 6.4 0.660 2.0 (− 18.2 to 22.2) 0.906

120 min insulin (uIU/mL) 34.8 ± 5.5 39.5 ± 8.8 0.414 40.6 ± 6.3 48.9 ± 8.9 0.357 − 3.6 (− 24.2 to 17.1) 0.692

1 / HOMA-IR (μIU/mL. mmol/L) 0.4 ± 0.1 0.5 ± 0.1 0.035 0.3 ± 0.0 0.5 ± 0.1 0.007 0.0 (− 0.3 to 0.2) 0.886

ISIM (μIU/mL. mmol/L) 4.5 ± 0.7 7.1 ± 1.1 0.034 3.7 ± 0.6 5.3 ± 0.8 0.040 0.9 (− 1.9 to 3.8) 0.292

HOMA-β (IU/mol) 50.4 ± 9.9 124.4 ± 48.2 0.098 54.6 ± 10.9 87.5 ± 30.5 0.315 41.0 (− 68.8 to 150.8) 0.418

InsAUC30 / GluAUC30 (IU/mol) 11.9 ± 1.9 15.5 ± 3.3 0.106 11.3 ± 1.6 15.0 ± 3.2 0.225 0.0 (− 7.3 to 7.3) 0.977

InsAUC120 / GluAUC120 (IU/mol) 17.3 ± 3.2 22.3 ± 5.8 0.118 16.7 ± 2.9 22.6 ± 5.0 0.232 − 0.9 (− 11.9 to 10.1) 0.839

DI 30 (mmol/L. mmol/L) 42.5 ± 5.2 72.2 ± 12.4 0.012 35.0 ± 4.5 61.0 ± 6.7 < 0.001 3.8 (− 21.0 to 28.5) 0.869

DI 120 (mmol/L. mmol/L) 62.2 ± 9.5 100.6 ± 18.0 0.019 50.8 ± 7.1 90.2 ± 10.8 0.004 −1.0 (− 39.4 to 37.4) 0.992

HBA1c (%) 8.0 ± 0.2 6.8 ± 0.3 < 0.001 8.2 ± 0.2 7.1 ± 0.2 0.001 − 0.1 (− 0.7 to 0.6) 0.469

BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, ALT alanine aminotransferase, AST aspartate aminotransferase, TG triglyceride, TC
total cholesterol, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, FBG fasting blood glucose, 1/HOMA-IR 1/homeostasis model
assessment of insulin resistance, ISIM Matsuda insulin sensitivity index, HOMA-β basal homeostasis model assessment of insulin secretion, InsAUC30/GluAUC30 was
calculated as the total insulin area under the curve divided by the total glucose area under the curve during the first 30 min of the 75-g oral glucose tolerance
test (OGTT); InsAUC120/GluAUC120 was calculated as the total insulin area under the curve divided by the total glucose area under the curve during the 120 min
of the OGTT; DI30: disposition index 30; DI120: disposition index 120; HbA1c: glycated hemoglobin. P-values < 0.05 were considered indicative of statistically
significant differences between the groups
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gynoid regions (△ = 0.9%; 95% CI, 0.0 to 1.7%; P = 0.049),
while they were unchanged with glargine (Table 2).
There appeared to be greater increases in the percentage
of lean tissue in the total body (1.4%; 95% CI, 0.4 to 2.4%;
P = 0.007), trunk (2.0%; 95% CI, 0.5 to 3.5%; P = 0.007), an-
droid regions (2.2%; 95% CI, 0.4 to 4.1%; P = 0.017), and
gynoid regions (0.8%; 95% CI, 0.0 to 1.6%; P = 0.019)

(Table 2) in the exenatide group than in the insulin glar-
gine group. Generally, exenatide treatment reduced fat
mass more than it reduced lean tissue (Fig. 2).

Correlative analysis and multiple regression
In the exenatide group, there were significant positive cor-
relations between △fat mass (including total, trunk, limb,

Table 2 Fat mass and lean tissue distribution at baseline and after treatment

Exenatide Insulin glargine Estimated treatment
difference, Exenatide
vs Insulin glargine
Mean (95% CI)

P
Decreased value
between two
groups

Pre
Mean ± SE

Post
Mean ± SE

P Pre
Mean ± SE

Post
Mean ± SE

P

Total fat mass (kg) 25.8 ± 1.0 23.7 ± 1.0 < 0.001 23.0 ± 1.1 23.0 ± 1.3 0.989 − 2.1 (− 3.2 to − 1.0) 0.001

Trunk fat (kg) 16.0 ± 0.6 14.7 ± 0.6 < 0.001 14.4 ± 0.9 14.4 ± 1.0 0.847 − 1.3 (− 2.0 to − 0.5) 0.001

Limb fat (kg) 8.6 ± 0.4 7.9 ± 0.4 < 0.001 7.5 ± 0.4 7.5 ± 0.4 0.825 − 0.8 (− 1.2 to 0.3) 0.005

Android fat (kg) 2.8 ± 0.1 2.5 ± 0.1 0.001 2.5 ± 0.2 2.4 ± 0.2 0.153 − 0.2 (− 0.4 to 0.1) 0.019

Gynoid fat (kg) 3.2 ± 0.2 3.0 ± 0.2 0.002 2.8 ± 0.2 2.8 ± 0.2 0.933 − 0.2 (− 0.3 to − 0.1) 0.018

Total fat mass (%) 32.4 ± 1.4 30.7 ± 1.4 < 0.001 31.0 ± 1.3 30.9 ± 1.5 0.619 − 1.5 (− 2.5 to − 0.5) 0.005

Trunk fat (%) 38.9 ± 1.4 36.5 ± 1.5 < 0.001 37.3 ± 1.6 36.9 ± 1.8 0.465 − 2.0 (− 3.5 to − 0.6) 0.006

Limb fat (%) 26.1 ± 1.5 25.0 ± 1.5 0.001 24.8 ± 1.3 24.8 ± 1.4 0.908 − 1.1 (− 1.9 to − 0.3) 0.010

Android fat (%) 42.0 ± 1.4 39.1 ± 1.5 < 0.001 40.5 ± 1.7 39.8 ± 1.0 0.278 − 2.2 (− 4.0 to − 0.4) 0.018

Gynoid fat (%) 28.4 ± 1.7 27.6 ± 1.6 0.046 26.5 ± 1.3 26.5 ± 1.4 0.973 − 0.8 (− 1.9 to 0.2) 0.128

Total lean tissue (kg) 52.0 ± 2.1 51.6 ± 2.2 0.278 48.4 ± 1.3 48.7 ± 1.4 0.445 − 0.7 (− 1.7 to 0.4) 0.216

Trunk lean tissue (kg) 24.6 ± 1.0 24.9 ± 1.0 0.123 23.2 ± 0.6 23.3 ± 0.6 0.600 0.2 (− 0.4 to 0.8) 0.460

Limb lean tissue (kg) 23.7 ± 1.1 23.0 ± 1.1 0.011 21.7 ± 0.8 21.8 ± 0.8 0.514 − 0.8 (− 1.4 to − 0.2) 0.019

Android lean tissue (kg) 3.8 ± 0.2 3.8 ± 0.2 0.750 3.5 ± 0.1 3.5 ± 0.1 0.863 0.0 (− 0.2 to 0.1) 0.013

Gynoid lean tissue (kg) 8.0 ± 0.3 7.9 ± 0.4 0.066 7.5 ± 0.2 7.5 ± 0.2 0.731 − 0.2 (− 0.4 to 0.0) 0.110

Total lean tissue (%) 64.3 ± 1.3 65.8 ± 1.3 < 0.001 65.5 ± 1.3 65.6 ± 1.5 0.693 1.4 (0.4 to 2.4) 0.007

Trunk lean tissue (%) 59.1 ± 1.3 61.4 ± 1.4 0.001 60.7 ± 1.6 61.0 ± 1.8 0.540 2.0 (0.5 to 3.5) 0.007

Limb lean tissue (%) 69.9 ± 1.5 70.8 ± 1.5 0.007 70.9 ± 1.2 71.0 ± 1.3 0.895 0.8 (0.0 to 1.7) 0.050

Android lean tissue (%) 57.2 ± 1.4 60.1 ± 1.5 < 0.001 58.7 ± 1.7 59.3 ± 2.0 0.323 2.2 (0.4 to 4.1) 0.017

Gynoid lean tissue (%) 69.1 ± 1.6 70.0 ± 1.6 0.049 70.8 ± 1.3 70.8 ± 1.4 0.994 0.8 (0.0 to 1.6) 0.019

The percent fat mass was calculated by dividing local fat mass by weight of the same body regions; the percent lean tissue was calculated by dividing local lean
mass by weight of the same body regions. P-values < 0.05 were considered indicative of statistically significant differences between the groups

Fig. 2 Changes in fat mass and lean tissue in the total body, trunk, limbs, and android and gynoid regions following exenatide treatment
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and android fat [0 < r < 1, P < 0.05] and each of △FBG and
△HbA1c. The △fat mass percentage, including total, trunk,
and android fat, was positively correlated with △FBG and
△HbA1c (0 < r < 1, P < 0.05). Furthermore, there was an
inverse correlation between△lean tissue percentage (com-
prising total, trunk, and android lean tissue) and each of
△FBG and △HbA1c (− 1 < r < 0, P < 0.05; Table 3).
In the exenatide group, multiple regression analysis

was used to evaluate variables independently associated
with △FBG and △HbA1c. We found that △total fat mass
and percentage △trunk fat mass were correlated with
△FBG (R2 = 0.397, P = 0.002; and R2 = 0.298, P = 0.009,
respectively) and that △android fat mass in terms of both
mass and percent mass were correlated with △HbA1c
(R2 = 0.547, P < 0.001; R2 = 0.454, P = 0.001, respectively).

Glycemic control, insulin sensitivity, and β-cell function
Exenatide and glargine significantly reduced FBG (exe-
natide, △ = − 2.0 mmol/L, P = 0.002; glargine, △ = −
2.1 mmol/L, P < 0.001) and HbA1c values (exenatide, △
= − 1.20%, P < 0.001; glargine, △ = − 1.1%, P = 0.001). The
reduction in FBG and HbA1c levels did not differ be-
tween the two groups. Blood glucose values at 30 min
(△ = − 2.2 mmol/L, P = 0.001) and 60 min (△ = −
2.9 mmol/L, P < 0.001) also decreased with glargine
treatment (Table 1).
The mean decrease in HbA1c from baseline was simi-

lar between treatments. The statistical results showed
that the upper limit of the 95% CI was 0.74, which was
greater than the previously set value. Thus, it was not
yet possible to argue that exenatide was less efficient
than insulin glargine in reducing HbA1c concentrations.
Exenatide and glargine increased the 1/homeostasis

model assessment of insulin resistance (1/HOMA-IR)
(exenatide from 0.4 ± 0.1 to 0.5 ± 0.1 μIU/mL. mmol/L,
P = 0.035; glargine from 0.3 ± 0.0 to 0.5 ± 0.1 μIU/mL.
mmol/L, P = 0.007), the Matsuda insulin sensitivity index

(ISIM) (exenatide from 4.5 ± 0.7 to 7.1 ± 1.1 μIU/mL.
mmol/L, P = 0.034, glargine from 3.7 ± 0.6 to 5.3 ± 0.8
μIU/mL. mmol/L, P = 0.040), disposition index 30 (exe-
natide from 42.5 ± 5.2 to 72.2 ± 12.4 mmol/L. mmol/L,
P = 0.012; glargine from 35.0 ± 4.5 to 61.0 ± 6.7 mmol/L.
mmol/L, P < 0.001), and disposition index 120 (exenatide
from 62.2 ± 9.5 to 100.6 ± 18.0 mmol/L. mmol/L, P =
0.019; glargine from 50.8 ± 7.1 to 90.2 ± 10.8 mmol/L.
mmol/L, P = 0.004). However, there were no statistical
differences between the two groups. Moreover, the basal
homeostasis model assessment of insulin secretion
(HOMA-β), the early-phase ratio of the area under the
curve of insulin to glucose during 0–30min (InsAUC30/
GluAUC30), and total-phase InsAUC120/GluAUC120
did not differ between the pre-treatment and
post-treatment values in the two groups (Table 1).

Lipid profiles and liver function
After 16 weeks of treatments, TC (△ = − 0.5 mmol/L, P
= 0.020) and LDL-C (△ = − 0.3 mmol/L, P = 0.009)
significantly decreased in the exenatide group but were
unchanged in the glargine group. Conversely, ALT (△ =
− 7.3 IU/L, P = 0.035) significantly decreased with glar-
gine, but did not change with exenatide. The extent of
reduction in TC, LDL-C, and ALT did not differ be-
tween the two groups (P > 0.05; Table 1).

AEs
In the exenatide group, 17 subjects had gastrointestinal in-
tolerance/appetite suppression, three subjects had nausea
that resolved over time, and four subjects had abdominal
distension. No subjects in the insulin glargine-treated
group experienced gastrointestinal intolerance or any
other AEs. Moreover, no hypoglycemia-related events oc-
curred in these patients, which might due to the absence
of preprandial insulin and insulin-stimulating drugs. No

Table 3 Correlations of body composition measurements with FBG and HbA1c following exenatide treatment

Changes in FBG (mmol/L) Changes in HbA1c (%)

r p r p

Changes in total fat (kg) 0.629 0.005 0.644 0.004

Changes in trunk fat (kg) 0.611 0.007 0.628 0.005

Changes in limbs fat (kg) 0.564 0.015 0.578 0.012

Changes in Android fat (kg) 0.621 0.006 0.772 <0.001

Changes in total fat (%) 0.519 0.018 0.631 0.005

Changes in trunk fat (%) 0.549 0.018 0.640 0.004

Changes in Android fat (%) 0.540 0.021 0.718 0.001

Changes in total lean (%) −0.513 0.030 − 0.645 0.004

Changes in trunk lean (%) −0.536 0.022 −0.639 0.004

Changes in Android lean (%) −0.528 0.024 −0.689 0.002

FBG fasting blood glucose, HbA1c glycated hemoglobin
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participants withdrew from the study due to these AEs,
and no SAEs occurred whatsoever.

Discussion
A notable finding in our study was that exenatide was
superior to glargine in reducing absolute and percent fat
mass and in increasing the percent lean tissue in differ-
ent parts of the body, while improvements in FBG,
HbA1c, insulin sensitivity, and β-cell function between
the two groups were similar after 16 weeks of treatment.
Weight loss by exenatide was mainly due to decreased
body fat content rather than decreased lean tissue.
The LEAD-2 trial showed that the percentage of total

fat mass decreased significantly more after 26 weeks of
treatment with the GLP-1 receptor agonist liraglutide at
doses of 1.2 and 1.8 mg combined with metformin than
after treatment with glimepiride/metformin [18]. The
total lean body tissue measured by DXA or computed
tomography decreased in the 0.6, 1.2, and 1.8 mg met-
formin groups, and reductions in visceral adipose tissue
were greater than those in abdominal subcutaneous adi-
pose tissue in the 1.2 and 1.8 mg metformin groups.
With respect to GLP-1 agonist monotherapy, the
LEAD-3 trial showed that the total fat mass and percent
total fat were significantly decreased with liraglutide but
increased with glimepiride [18]. Consistent with previous
findings, we found that fat mass reduction by exenatide/
metformin played a greater role in weight loss than did
lean tissue reduction. Weight gain, especially by fat ac-
cumulation, impedes long-term glycemic control; hence,
this combination may be more beneficial to reducing ex-
cess body fat in overweight and obese T2DM and assist
in the long-term regulation of blood glucose [7]. Similar
to the current 16-week study, a 1-year randomized study
combining exenatide or glargine with metformin in 69
patients with T2DM showed that, in contrast to glargine,
exenatide significantly reduced total fat mass and trunk
fat mass. However, in contrast to the current study, no
differences in total lean tissue were found [19]. Further-
more, we found that exenatide decreases fat mass in the
total body, trunk, limbs, android regions, and gynoid re-
gions to a greater extent than glargine. Our study also
revealed that exenatide decreased the percentage of fat
in the total body, trunk, android regions, and limbs, and
that this was accompanied by an increase in the percent-
age of lean tissue in the total body, trunk, android re-
gions, and gynoid regions. Fat mass in the trunk,
especially in the android region, has been shown to ex-
hibit a stronger direct correlation with cardiovascular
disease risk factors than has fat mass in other parts of
the body [4, 5, 33–37]. In the current study, the reduced
fat mass and increased lean tissue observed following exe-
natide treatment, especially in the trunk and android re-
gions, was also related to improvements in glycemic

control. These data suggest that exenatide may help reduce
the risk of cardiovascular disease in patients with T2DM.
In a study by Bi et al., the effects of exenatide and pre-

mixed insulin on body fat distributions were compared
using magnetic resonance imaging (MRI); they showed
that exenatide markedly reduced both visceral and sub-
cutaneous fat while premixed insulin did not [20]. In
contrast to their study, DXA (as used in our study)
might be better for measuring drug-induced changes in
body fat composition than MRI; distinguishing and
measuring body fat in the trunk, android, and gynoid re-
gions; and evaluating the effect of exenatide and basal
insulin on fat mass and lean tissue in different parts of
the human body.
We found that glargine treatment produced weight

gain with little change in fat mass and lean tissue. In
contrast, a 6-month study comparing glargine to detemir
in insulin-naïve patients with T2DM who had inad-
equate disease control found that the former signifi-
cantly increased body weight, total fat mass, trunk fat
mass, fat mass, and lean mass in limbs, while the latter
significantly decreased truncal lean mass [21]. Unlike
glargine, detemir regulates central appetite via more ro-
bust signal transduction in the hypothalamus and cere-
bral cortex than in the periphery; thus, glargine might be
associated with more weight gain [38, 39].
Weight loss, especially adipose tissue reduction, typic-

ally improves blood glucose control in accordance with
the degree of weight loss and also improves insulin sen-
sitivity and β-cell function [40–42]. Nevertheless, we
found similar improvements in insulin sensitivity as
measured by 1/HOMA-IR and ISIM, as well as similar
improvements in insulin release and β-cell function as
determined via the HOMA-β, InsAUC30/GluAUC30,
InsAUC120/GluAUC120, and disposition index in re-
sponse to exenatide or glargine. This may be a function
of early insulin sensitivity and β-cell function improve-
ment as a consequence of glycemic control, while the ef-
fect of weight loss on insulin sensitivity and β-cell
function may require a longer time. Weight loss, espe-
cially android fat mass reduction, is related to insulin re-
sistance improvement [20, 43]; the positive relationship
between fat mass reduction and the decreases in FBG
and HbA1c only with exenatide in the current study
suggests a more prolonged beneficial effect of exenatide
on insulin sensitivity and β-cell function improvement.
Our study had some limitations. Only 37 patients par-

ticipated, which may negatively influence the statistical
power; moreover, the 16-week period may not have been
sufficient to evaluate the additional benefits of weight
and fat mass reduction on insulin sensitivity and β-cell
function, as has previously been reported [20, 43]. A
blinded multi-center research study with a larger num-
ber of patients is required to confirm our findings.
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Furthermore, in addition to DXA, body composition can
also be measured using computed tomography [18] or
MRI [20]; however, these methods are expensive, require
a longer examination time, and expose the patients to
greater amounts of radiation. The dosage of insulin glar-
gine was titrated only in the first four weeks pursuant to
our research design; hence, a fixed dosage of insulin
glargine during the remaining 12 weeks may not be con-
ducive to glucose control.

Conclusions
Our results showed that exenatide and glargine produce
similar improvements in glycemic control, insulin sensitiv-
ity, and β-cell function in overweight or obese patients with
T2DM who are unable to achieve adequate glycemic con-
trol with metformin monotherapy. Our data showed that
exenatide was superior to glargine in terms of reduced body
weight, BMI, fat mass, and percent fat mass. Additionally,
weight loss with exenatide was mainly a consequence of de-
creased fat mass rather than lean tissue mass, which may
help improve glycemic and weight control.
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