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ABSTRACT

Next-generation DNA-sequencing (NGS) technolo-
gies, which are designed to streamline the acqui-
sition of massive amounts of sequencing data, are
nonetheless dependent on various preparative steps
to generate DNA fragments of required concentra-
tion, purity and average size (molecular weight). Cur-
rent automated electrophoresis systems for DNA-
and RNA-sample quality control, such as Agilent’s
Bioanalyzer® and TapeStation® products, are costly
to acquire and use; they also provide limited infor-
mation for samples having broad size distributions.
Here, we describe a software tool that helps deter-
mine the size distribution of DNA fragments in an
NGS library, or other DNA sample, based on gel-
electrophoretic line profiles. The software, developed
as an ImageJ plug-in, allows for straightforward pro-
cessing of gel images, including lane selection and
fitting of univariate functions to intensity distribu-
tions. The user selects the option of fitting either
discrete profiles in cases where discrete gel bands
are visible or continuous profiles, having multiple
bands buried under a single broad peak. The method
requires only modest imaging capabilities and is a
cost-effective, rigorous alternative characterization
method to augment existing techniques for library
quality control.

INTRODUCTION

Next-generation DNA sequencing (NGS) has rapidly be-
come an indispensible tool in virtually every life-science dis-
cipline. NGS workflows entail various DNA-sample manip-
ulations including PCR and enzymatic reactions to prepare
DNA fragments of specific concentration, purity and size in

ways that are compatible with a particular sequencing plat-
form (1). The quality of the NGS library has substantial in-
fluence on the success of a sequencing run, affecting both se-
quence validity and the number of reads (2). Many current
quality-control (QC) protocols require costly instruments
and consumables to assess the library average size, specif-
ically capillary-gel electrophoresis tools such as Agilent’s
Bioanalyzer® and TapeStation® products. With the expo-
nential growth of genome-wide analyses and large datasets
that hinge on NGS, it is crucial to optimize the accuracy
and cost-effectiveness of each workflow step.

Agarose-gel electrophoresis is arguably the most widely
used method for separating biopolymer components in
a sample based on physical, chemical and topological
properties (3–9). As an important example, a commonly
used workflow relies on gel electrophoresis to separate
DNA fragments generated by Illumina’s Nextera® Tn5
transposition-based tagging/fragmentation protocol. The
Nextera® kit produces sequencing libraries through enzy-
matic shearing of input DNA. Gel electrophoresis uses the
molecular-weight dependence of linear DNA’s mobility in
polymer gels to separate the resulting fragments along the
direction of migration (7,8). In applications, such as typi-
cal analyses of restriction digests, the products consist of
a small number of individual fragments, producing a char-
acteristic pattern of discrete bands. In contrast, a variety
of random-shearing-based protocols (including Nextera®

and other transposition-based protocols) can be used to
produce broad, ideally uniformly distributed, fragment li-
braries (10). Thus, agarose-gel separations of tagmentation
products, because of the large number of possible frag-
ment sizes, generally yield a quasi-continuous distribution
of DNA molecules along the path of migration.

QC on the fragment library can greatly improve the se-
quencing output and reduce both PCR bias and systematic
errors (11,12). Commercial and open-source tools, such as
GelAnalyzer, PyElph, GelJ or ImageQuant, offer a number
of features for gel image analysis. They allow the user to
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easily set up analyses and detect lanes and discrete bands
in ‘banded’ profiles; however, these tools lack the capabil-
ity to analyze quasi-continuous fragment-size distributions.
Our image-analysis tool is designed to efficiently analyze
both discrete and continuous gel-electrophoresis profiles.
The technique fits a univariate composite Gaussian func-
tion to approximate the profile. Amounts of each species in
the sample are then estimated using numerical integration.
The goal is to obtain information about the size distribu-
tion of fragmented DNA products, from which the average
molecular size and bulk concentration of DNA ends can
be determined. In the particular case of amplicon-based se-
quencing such as Illumina’s platforms, accurate knowledge
of such fragment-size distributions is essential to optimize
cluster density in sequencing protocols.

MATERIALS AND METHODS

Library preparation and gel-electrophoresis-based size selec-
tion

Human, Caenorhabditis elegans or bacteriophage-lambda
genomic DNA (� DNA) were incubated with Nextera
XT Tagmentase® (Illumina), an engineered Tn5 trans-
posase, for at least 15 min at 37◦C. DNA fragments under-
went PCR-based amplification using Illumina’s Nextera®

primers and the resulting libraries were subjected to elec-
trophoresis for the indicated time in 1% agarose gels
(Lonza) at 3.0 V cm−1 in TBE buffer (50 mM Tris-borate,
1 mM Na2EDTA; pH 8.4). Gels and electrophoresis buffer
contained 0.5 �g ml−1 ethidium bromide unless otherwise
noted. NGS libraries consisted of tagmented DNA reiso-
lated from excised regions of gel lanes using a Zymoclean
Gel DNA Recovery® kit (Zymo Laboratories) (13).

A reference mixture of �-DNA fragments was prepared
by digesting � DNA to completion with 2 units of AciI
(New England Biolabs) per �g of � DNA (New England
Biolabs) for 2 h at 37◦C. A virtual digest performed using
SnapGene® showed that the �-AciI digest consists of 517
DNA fragments and 206 discrete fragment sizes distributed
between 2 and 1086 bp. In addition to the �-AciI reference
mixture, DNA ladders were used as markers: HiLo lad-
der (Bionexus, Inc) and an NEB 100-base-pair (bp) ladder
(New England Biolabs).

Image acquisition

Several cameras were used to record digital images of the
agarose gels. Both high bit-depth (16-bit) grayscale images
and RGB (24-bit) color images were acquired. Table 1 lists
the different cameras used for the comparison and the spec-
ifications of the acquired images.

Sequencing protocol and bioinformatic analysis

Gel-purified DNA libraries were sequenced using the
MiSeq® platform (Illumina) according to the vendor’s rec-
ommended protocol. Paired-end reads were obtained by
sequencing DNA libraries using 150v3 MiSeq® kits (Il-
lumina) for 76 paired cycles. Insert sizes were determined
bioinformatically from the distance between paired reads

Table 1. Cameras used for image acquisition

Camera 1 (C1) Flea2 1.4 MP Mono FireWire 1394b
1392x1032, 12 bit, uncompressed

Camera 2 (C2) SONY, DSC-WX350, 125ms exp 1440x1080,
sRGB 24 bit, compressed

Camera 3 (C3) One Plus, Android phone,
3480,2610x4640i,RGB 24 bit, compressed

Camera 4 (C4) Apple, iPhone SE, 67 ms exp 3024x4032,
sRGB 24 bit, compressed

(R1 and R2) after alignment. The size histogram of se-
quenced reads was obtained as described by Shoura et al.
(13).

Plug-in operation

The workflow for analysis of the gel images is imple-
mented using an ImageJ (https://imagej.net/ImageJ2) plug-
in (Gel Lanes Fit). The ImageJ platform was chosen be-
cause of its wide distribution as an open-source plat-
form for application and development of image analysis
tools. The JFreeChart (http://www.jfree.org/jfreechart) li-
brary was used for output plots and the Apache Com-
mons Math (http://commons.apache.org/proper/commons-
math/) library was used to implement the fitting algorithm.

The Gel Lanes Fit plug-in includes a number of features
that streamline the processing of gel images. Each gel lane
is associated with a rectangular ‘region of interest’ (ROI).
The dimensions of each ROI can be selected interactively
through the plug-in’s interface and, as the ROI is resized,
the line-profile plot of the corresponding gel lane is dynam-
ically updated. The interface provides access to parameters
for non-linear least-squares fitting of the line profile dis-
cussed below.

Function describing the line profile

The image-intensity line profile generated for the corre-
sponding ROI is modeled using a composite univariate
function of a coordinate y corresponding to the apparent
electrophoretic migration distance of DNA fragments in the
gel. This function is the sum of a background signal and a
set of discrete Gaussian peaks associated with each DNA
species in the mixture. In cases, where there are relatively
few species for which the centers of mass of each compo-
nent are well separated relative to peak width (defined in
terms of full peak width at half-maximum (FWHM), for
example), the gel pattern is made up of discrete bands and
the line profile consists of discrete peaks. Continuous distri-
butions, in which the separation of adjacent peak maxima is
comparable to their respective FWHM values, are expected
to have the appearance of a ‘streak’ or ‘smear.’

Some background contribution to the signal is expected
due to scattering from the gel and fluorescence from un-
bound ethidium dye. The background function maximum is
assumed to be less than the smallest minimum correspond-
ing to peaks in the discrete case. A constraint on the max-
imum degree of the background polynomial and its maxi-
mum slope (first derivative) can be set by the user using the
plug-in’s interface.

https://imagej.net/ImageJ2
http://www.jfree.org/jfreechart
http://commons.apache.org/proper/commons-math/
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Equation (1) shows the target function F(y). Bq(y) is a
polynomial of degree q. Both q and a limit on the first
derivative of Bq can be selected by the user. Gi are Gaussian
functions with given amplitude, ai, mean, mi and standard
deviation �i.

F(y) = Bq (y) +
∑

i

Gi (y, ai , mi , σi )

Bq (y) = b0 + b1 y + b2 y2 + . . . + bq yq

Gi (y) = ai exp
{
− (y − mi )2

2σ 2
i

}
(1)

The function is fitted using the Levenberg–Marquardt
least-squares algorithm (14). For discrete patterns, each
peak is assumed to be Gaussian with the mean at the loca-
tion of a local maximum and having variance proportional
to the band spread. Thus, initial guesses for mi and �i are
made using local maxima and peak widths. The peak toler-
ance parameter sets a threshold for the peak height in the
initial guess and thereby filters any peaks contributed by
noise. This parameter is defined as a percentage of the full
line-profile intensity range.

Discrete and known continuous patterns

Well-resolved image-intensity line profiles show peaks that
correspond to various species present in the sample. How-
ever, as discussed above, well-separated peaks cannot al-
ways be obtained. The function given in Equation (1) is as-
sumed to be valid for both discrete and continuous profiles,
but stronger constraints are needed to fit profiles composed
of under-resolved peaks. If a small peak overlaps a larger
peak, it cannot be detected automatically. However, an ini-
tial guess can be included using the custom peak feature,
which specifies the potential location and width of the un-
detected peak.

When the line profile approaches a continuum, there are
no discernible peaks and a different fitting strategy has to
be used. Each fragment in a known distribution is used
to define constraints on the location and the width of the
Gaussian peaks in Equation (1). As a model for a quasi-
continuous distribution of DNA-fragment sizes, we used
the mixture of products generated by complete digestion
of � DNA by the restriction enzyme AciI. This product
mixture contains 517 fragments of known size (see ‘Li-
brary preparation and gel-electrophoresis-based size selec-
tion’ section) and constitutes a basis set for fitting unknown,
quasi-continuous fragment distributions. The vast majority
of fragments in this mixture lie in a size range comparable
to that selected during library preparation.

An initial guess for the position (mean) of a fragment’s
peak is determined from the locations of known species in
a discrete, well-resolved ladder of standard fragments of
known molecular weight. The position of the unresolved
fragments along the continuum is interpolated from the
discrete-ladder pattern using the spline function in Equa-
tion (2), with spline nodes located along positions that cor-
respond to the maxima of ladder bands. We assume a piece-
wise linear relationship between the logarithm of the molec-
ular weight, log10(M), and displacement in the direction of

migration, y (9). The molecular weight, M, of a particular
double-stranded fragment is calculated from the molecule
size in base pairs, l, and the linear relation M(l) = 607.4l
+ 157.9. Here, 607.4 is the molecular weight of the aver-
age nucleotide pair and 157.9 is the combined molecular
weight of two 3’- or 5’-monophosphate groups, which are
the termini generally left behind by the restriction enzyme
(15). The displacement in the direction of migration, y, ob-
served in the gel is estimated using Equation (2), based
on a piecewise-linear relationship between log10(M) and y
(16). Thus, the linear segments are delimited by the compo-
nents of the standard ladder of molecular weights, Mladder =
{M1, . . . , Mk}, and the respective observed displacements,
Yladder = {Y1, . . . , Yk}. Each segment of y is defined over the
intervals Mi − 1 < M ≤ Mi for the ladder species i = 2, . . . , k.

⎧⎪⎨
⎪⎩

y (log10 (M)) = hi log10 (M) + ci

hi = Yi−1 − Yi

log10 (Mi−1) − log10 (Mi )
ci = log10 (Mi−1) − Yi−1

(2)

In the case of a ‘discrete’ pattern the standard deviation of
the Gaussian peak associated with the band, �i, is estimated
using the FWHM of the peak intensity profile. For ‘contin-
uous’ patterns, a value of �i for each fragment in the distri-
bution is determined by interpolation of a piecewise least-
squares linear fit to the �i values corresponding to bands in
a discrete-ladder standard. Additional constraints are ap-
plied to the final profile fit by restricting deviations allowed
relative to the original �i estimates. The observed band in-
tensity, or peak amplitude, ai, is assumed to be proportional
to the product of mass fraction and DNA molecular weight.
The initial guess for the peak amplitude is thus estimated as
ai = fiwid, where fi is the fragment’s relative abundance, w
is the molecular weight normalized by the maximum value
and d is the full-scale range of the line profile.

Therefore, for a generic continuous profile with ‘un-
known’ fragments, the initial guess is represented by a set of
peaks associated with a ‘known’ distribution of nf fragments
and assumed similarities between known and unknown dis-
tributions of fragments. The final fit is constrained so that
the location and FWHM of each Gaussian component are
similar to that of the initial guess with the estimate for the
initial amplitude of each component based on the abun-
dance and size of fragments in the initial distribution. Ad-
herence of the amplitude for each peak to that expected
from the known distribution is constrained by an area-drift
parameter described below. The fitted peaks’ mean (y dis-
placement, proportional to the molecular weight, wi, fit) and
area, pi, fit (proportional to the fragment’s molecular weight
and abundance) are used to calculate an average molecular
weight for the distribution of fragments, using Equation (3).

w̄ =
∑

i wi,fit pi,fit

n f
∑

i pi,fit
(3)

The bulk DNA concentration, C as determined by Qbit
fluorescence assays for example, can then be converted to
number-averaged fragment molarity M̄ through the relation
M̄ = C/w̄.
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Area-drift constraint for continuous line profiles

Initial peak areas based on the parameters corresponding to
the known distribution are taken as elements of an array, P
in Equation (4), calculated for peak i as aiσi

√
2π , from the

peak’s amplitude, ai, and standard deviation, �i. At each fit-
ting iteration, the set of parameters is updated based on the
algorithm’s gradient requirements. The new list of parame-
ters is first checked to exclude non-physical parameter val-
ues, for ai, mi and �i. After the exclusion of non-physical pa-
rameter values, the algorithm recalculates an array of areas,
Q, in Equation (5). Particular constraints are enforced so
that the peak-area values from the initial guess retain their
proportionality, based on the known DNA mass distribu-
tion in the �-AciI digest.

P = {p0, . . . , pn} = {pi } (4)

Q = {p0 + δ0, . . . , pn + δn} = {qi } (5)

� =
{

pi
qi

}
≈ � = {γ, . . . , γ } (6)

The array � contains element-by-element ratios of P and
Q arrays. The applied area constraint ensures that Q stays
proportional to P. Thus, the elements in the array of ratios,
�, are bounded, and would ideally have the same values as
those in the array �, in Equation (6). This constraint is en-
forced using the condition in Equation (7). If the standard
deviation of the elements in �, s({� i}), exceeds a value �,
chosen by the user, then the array of areas Q is adjusted to
compensate, using Q

′
.

If s ({ξi }) > ε, then Q′ =
{[

ξ̄i ai,0 + U (−ε, ε)
]
σi

√
2π

}

(7)

Since the FWHM is subjected to a stricter constraint (see
previous subsection), the area constraint is mostly enforced
using the peaks’ amplitudes, N

′ = {a1, . . . , ak}, which are
obtained by scaling the array of initial amplitude guesses,
N = {a1, 0, . . . , ak, 0}, by ξ̄i , the sum of mean values of the
components of {pi/qi} plus a uniformly distributed random
increment, U .

RESULTS

Discrete profiles

The major goal of plug-in development was to provide
a tool that was equally capable of quantifying discrete,
banded, as well as continuous, gel profiles. An example of
discrete-band quantification is shown in Figure 1, in which
the plug-in is used to analyze a standard ladder composed
of known molecular-weight species. The location of clearly
defined bands is automatically detected using the location
of local maxima in the profile. The peak position, maxi-
mum intensity above background, integrated intensity and
the FWHM are reported by the plug-in for each peak in
the gel lane. As an example of a discrete profile fit, Figure 1
shows the output plot with the fitted profile’s distribution.
The plug-in also reports the ‘root-mean square’ (RMS) dif-
ference between the fit and the line profile, a measure of the

Figure 1. Fit to a discrete profile obtained for gel lane shown in the top
panel (also present in lane 1 of Figure 2A). The complete non-linear least-
squares fit (orange) and its component background (blue) and Gaussian
peaks (red) are shown. The vertical dashed lines (light red) indicate the lo-
cations of peak maxima, corresponding to known molecular-weight values
for the ladder species.

closeness of the fitted function to the original profile (not
shown). This discrete-profile fitting strategy applies in gen-
eral, but it is used specifically by the plug-in to analyze con-
tinuous line profiles.

Continuous profiles

The plug-in can quantify profiles with suboptimally re-
solved bands, such as DNA-fragmentation products ob-
tained with the Illumina Nextera® tagmentation kit and
quantitate the average size of fragments contained in the
mixture. Lanes labeled 2–5 in the gel in Figure 2A and 1–4
in Figure 2C are all examples of continuous gel profiles, in
which single bands are not visible.

The fragments in an unknown distribution are approxi-
mated by a known distribution of fragments having similar
electrophoretic mobilities. Figure 2 shows fits to continu-
ous profiles for an unknown fragment-size distribution (a
tagmentation reaction on bacteriophage-� DNA, lanes 3–5
in 2A and lanes 2–4 in 2C) using the �-AciI digest, a known
fragment-size distribution, as a model (lane 2 in Figure 2A
and lane 1 in Figure 2C). As expected, the algorithm per-
forms best in the range of fragment sizes that are well cov-
ered by the known distribution, but produces lower-quality
fits in size ranges where there is limited coverage by the �-
AciI digest (i.e. > 425 bp).

AciI digestion produces a fragment distribution that lies
approximately in the range that is appropriate for Illumina
tagmentase library preparation. Other quasi-continuous
distributions can be generated using a different enzyme or
a combination of enzymes. For example, digestion with
FinI will produce a quasi-continuous fragment distribution
spanning a different molecular-weight range (∼1000 bp)
than that produced by digestion with AciI. The plug-in is
designed to accommodate different molecular-weight stan-
dards, which are specified in an ASCII input file.
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A B

C D

Figure 2. Agarose-gel analysis of tagmentation products of phage-� DNA analyzed on (A) high-resolution and (C) low-resolution (i.e. mini) agarose gels.
Size-distribution fits for the high-resolution gel (B) and mini gel (D) of the same tagmented �-DNA sample subjected to increasing numbers of PCR-
amplification cycles (lanes 3–5 in (A), lanes 2–4 in (C)): 8 cycles (top plots), 14 cycles (middle plots) and 20 cycles (bottom plots) in both (B) and (D).
Vertical dashed lines (light red in (B), (D)) give the positions of maxima in the discrete molecular-weight ladder (blue ROI in (A), (C)).
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Sensitivity to gel resolution

We carried out a pilot assessment of utility of the plug-
in by analyzing apparent fragment-size distributions for
samples subject to distinct PCR amplification protocols
and electrophoretic-separation conditions. In particular,
we were interested in assessing whether profiling of gel-
electrophoresis patterns using our tool could anticipate dif-
ferences in size distributions observed in high-throughput
Illumina DNA-sequencing experiments for different sam-
ples and conditions. Working with a set of samples ampli-
fied through different numbers of PCR cycles, we compared
plug-in and sequencing output from (i) long-format, high-
resolution agarose gels (Figure 2A and B) and (ii) short-
format, lower-resolution (minigel) electrophoretic separa-
tions (Figure 2C and D). Identical samples were run at the
same field strength (3.0 V cm−1) on both gels, but for dif-
ferent durations: 16 h in the case of the long-format gel and
2 h in the case of the minigel. Standards consisted of the Hi-
Lo ladder, 100-bp ladder and and the �-AciI digest; experi-
mental lanes contained products of a tagmentation reaction
with phage � genomic DNA that were subjected to differing
numbers of PCR-amplification cycles.

The effect of suboptimal fragment separation on minigels
is apparent when we compare electrophoretic fragment-size
distributions obtained after 8, 14 and 20 PCR cycles (Fig-
ure 2C and D). In particular, between 14 and 20 cycles there
is a substantial increase in the subpopulation of fragments
>500 bp in size. The effect of size-distribution distortion is
especially prominent in the minigel results and, because of
the relatively small region being excised, more difficult to
mitigate through selective excision of an appropriate region
of the gel. These results both confirm the utility of the plug-
in analysis package and highlight the extent to which gel
resolution has a significant effect on NGS-library charac-
terization.

Further evaluation using the plug-in examined differ-
ences in size distributions obtained both from analy-
sis of the lane profiles and from MiSeq post-sequencing
fragment-size distributions for the completed library (see
‘Sequencing protocol and bioinformatic analysis’ section).
Although input- and output-size profiles for the MiSeq
will show some distortion due to the known preference
for smaller fragments during bridge amplification, measure-
ment of input material with the plug-in allows prediction of
conditions most likely to alter that pattern of eventual frag-
ment densities (11,17–20). Figure 3 quantitatively shows the
effect of increasing numbers of amplification cycles on the
fragment-size distributions obtained from MiSeq output.
As with the data from the plug-in analysis, there is a clear
increase in low-molecular-weight bias between 14 and 20
amplification cycles. Although additional aspects of library-
preparation and sequencing workflow may contribute to
biases in the apparent molecular-weight distributions, it is
clear that libraries prepared using limited PCR amplifica-
tion and careful size selection on high-resolution agarose
gels are likely to provide higher fidelity sequencing output.

Sensitivity to image-acquisition hardware

The images for the gel in Figure 2A were acquired using two
different cameras (C1 and C2 in Table 1), whereas images

Figure 3. Fragment-library size distributions obtained from bioinformatic
analysis of MiSeq sequencing output. A tagmented sample of phage � ge-
nomic DNA was subjected to 8, 14 and 20 cycles of PCR amplification,
respectively. The fragment counts in each bin are normalized with respect
to the maximum value in each distribution.

Figure 4. Dependence of plug-in output on camera hardware. Estimates
of average fragment size obtained for images of the low-resolution gel (Fig-
ure 2C collected using four different camera systems, C1–C4 (Table 1).
The plug-in measurements of average fragment size were compared for the
known �-AciI digest and the same �-genome tagmented samples analyzed
in Figure 2. Error bars indicate the standard deviation (i.e.

√
variance) of

the fitted distribution. Numerical data for this experiment are also pro-
vided in Supplementary Table S2.

for the gel in Figure 2C were acquired using all four camera
systems. Figure 4 and Supplementary Figure S1 compare
the values of average fragment size estimated using the plug-
in for both the mini- and high-resolution gel data (numeri-
cal data for Figure 4 can be found in Supplementary Tables
S2 and S1). Each dataset reports the apparent average frag-
ment size for the �-AciI digest and for different numbers of
PCR-amplification cycles of a tagmentation reaction ana-
lyzed on a single gel, but imaged using different hardware.
The error bars show the standard deviation above and be-
low the mean, ±1�d, of the fitted distribution of fragments,
as a measure of the distribution’s spread. In general, the dif-
ferences are modest with the largest discrepancies occurring
between high-resolution scientific cameras having appro-
priate bandpass optical filters and simpler camera systems
(such as cell phone cameras), which generate uncalibrated
RGB images. We speculate that the absence of a bandpass
filter alters the spectral content of the captured signal, which
in the absence of calibration, may report inaccurate signal
intensities upon conversion from RGB to grayscale.
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A

B

Figure 5. Data used to examine the effect of fragment-density test. (A)
The gel was analyzed considering the portions delimited by the ROIs, using
lane 1 (blue) as the reference ladder. ROIs 2–6 are tagmentation products
of human genomic DNA; 7 and 8 are �-AciI digest samples (B). Summary
plot of the fit for the gel in panel (A). Fragment-size mean and standard-
deviation values for model distributions containing varying numbers of
reference fragments (peaks). Symbols are colored according to the pro-
portion of the original �-AciI basis fragments retained in the reference dis-
tribution; thus, 1:2 means that every other peak was eliminated from the
fit, 2:3 every third peak etc. Data are also reported in Supplementary Table
S4.

To further test the robustness of our approach, we pro-
cessed a gel image of tagmentation products taken at differ-
ent exposure levels. The ROIs in Figure 6A and B show the
excised regions from which libraries were prepared for this
analysis. As shown in Figure 6C and D, the apparent aver-
age fragment sizes are independent of the imaging exposure
time. Detailed results are also reported in Supplementary
Table S3.

Effect of fragment-size densities in reference distributions

The plug-in provides better profile fits when the reference
distribution predominantly consists of DNA fragments in
the size range of interest. This is because we generally wish
to restrict band widths (FWHM) for both discrete and con-
tinuous profiles to values similar to those of co-localized
peaks present in the discrete reference ladder. To provide
improved profile fits in regions where the reference distri-
bution has fewer peaks, the constraint that the FWHM of
an unknown fragment’s peak would be similar to that of a
comparably sized fragment in the reference ladder (see ‘Dis-
crete and known continuous patterns’ section for details)
has to be relaxed, with the assumption that a single Gaus-
sian peak in the basis set covers a range of fragment sizes
that are present in the analyzed distribution.

To examine the effect of limiting reference-peak cover-
age, we created hypothetical reference distributions by reg-
ularly removing some basis-set peaks present in the �-AciI
digest. Figure 5A shows the gel used for this example and
Figure 5B (Supplementary Table S4) reports the fitted dis-
tribution’s mean fragment size and standard deviation. Sup-
plementary Table S5 reports the absolute RMS as a measure
of the closeness of fit for the respective cases.

Comparison with TapeStation® output

Tagmented libraries prepared from C. elegans genomic
DNA were analyzed by agarose-gel electrophoresis as
shown in Figure 6 and also using Agilent’s TapeStation®

(TS) system. We excised two different sections of the gel
from each lane to obtain distinct fragment distributions
having different average fragment sizes, as indicated by the
respective ROIs. The libraries were reisolated from the gel as
described (see ‘Library preparation and gel-electrophoresis-
based size selection section’) and reanalyzed on an Agilent
2200 TapeStation. Here we compare the fragment-size dis-
tributions obtained by using the plug-in with those provided
by TS output. Generally, fragments of lower molecular size
(300–500 bp) are relevant for NGS; however, we investi-
gated distributions of larger fragment sizes to determine the
effectiveness of our plug-in for other applications. Compar-
ison of plug-in and TS results are shown in Figure 6E and
F (Supplementary Table S6).

DISCUSSION

We have developed an ImageJ plug-in for the quantitation
of gel-electrophoresis images that can analyze both discrete
and continuous gel patterns. This work was motivated by
the lack of rigorous and inexpensive DNA size-analysis
tools for NGS library preparation. Knowing the distribu-
tion of fragment sizes and, hence, the average concentra-
tion of DNA termini in a sequencing library is an important
quality-control (QC) step, particularly in amplicon-based
sequencing.

In the case of discrete patterns, the plug-in can directly
quantify relative amounts of DNA based on the intensity
and width of the gel bands. In the case of continuous pat-
terns, the plug-in estimates the fragment-size distribution
based on a model of superimposed Gaussian peaks derived
from a suitable known standard. For NGS library prepa-
ration, the user specifies, through a rectangular ROI, the
region of the gel lane and hence the subset of fragmented
products that make up the library. The plug-in provides an
estimate of the actual DNA-mass distribution, detailed in-
formation that typically goes beyond that provided by spe-
cialized QC tools.

We carried out a case study for the determination of
library-size distributions using the Nextera® tagmentation
protocol. The distribution of fragment sizes in the input li-
brary is important in the performance of amplicon-based
NGS. Fragments that are too small will be favored during
the bridge amplification step, hindering the sequencing of
longer fragments; fragments that are too large pose prob-
lems with dye localization. Using the plug-in, we were able
to quantify a fragment-size bias caused by excessive PCR
amplification. Awareness of this amplification bias can im-
prove QC in the preparation of NGS libraries.

The plug-in performs well with both high-resolution and
short-format (i.e. mini-) gels (see ‘Image acquisition’ sec-
tion); however, analysis is most efficient when bands in the
reference ladder of DNA standards are well separated and
peaks in the reference lane can be detected automatically.
Apparent DNA-size distributions were broadly insensitive
to image characteristics and quality in our study, which
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Figure 6. Tagmented libraries prepared from C. elegans genomic DNA. Gel images show the sections corresponding to panel (A) low-molecular-weight
and panel (B) high-molecular-weight fractions. In both cases, lanes 2 and 3 are �-AciI digest samples; lanes 4–7 C. elegans genomic-DNA tagmentation
reactions amplified by PCR under different conditions. Summary plot of average fragment size based on short- or long-exposure images, panel (C) low-
molecular-weight and panel (D) high-molecular-weight fractions (Supplementary Table S3 in table form). Comparison of average fragment sizes obtained
using the plug-in to those generated by TapeStation output for the same DNA fractions: panel (E) low molecular weight and panel (F) high molecular
weight (Supplementary Table S6 in table form).

used four different camera systems ranging from scientific
CCDs to cell phone cameras. This shows that the approach
implemented by the plug-in can robustly analyze raw im-
age data from a wide variety of sources. From our experi-
ence, the precision and accuracy afforded by the approach
is more than sufficient for guiding sample preparation in a
wide range of sequencing modalities and applications. On-
going tool development and applications will investigate ef-
fects of digital image compression, conversion from RGB
to grayscale or changes in pixel-value precision when using
sensors with different dynamic ranges. For NGS applica-
tions, the magnitude of the variations observed in predicted
fragment-size averages obtained using different gel cameras
are not expected to be propagated in such a way to affect
cluster density predictions.

As a final validation step, we compared the plug-in’s esti-
mates of average fragment size with that generated by Ag-
ilent’s TapeStation® (TS) instrument. The TS system has
a list price of ∼USD 50,000 and significant consumables
costs. Moreover, the TS software reports the most-probable
fragment size (i.e., the mode) along with graphical output
of the apparent size distribution. In most cases, the plug-in
output is in good agreement with TS output. However, for
some of the samples TS reports unreasonable mode values
for the size distribution. This happens with very flat profiles
where a peak is not detectable. Our approach, while not as
‘hands-off’ as the TS system, can handle lower signal-to-
noise line profiles where at least some slope is detectable in
the fragment-size distribution.
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