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Introduction
Arthroplasty (joint replacement) is a very common and effective 
treatment for end-stage osteoarthritis of the hip. There were 
more than 370 000 primary total hip arthroplasty procedures 
performed during 2015 in the United States, and the number is 
projected to increase to more than 510 000 annually by 2020.1 
Unfortunately, there is wide variation in the risk of reoperation 
to replace prosthetic components (“revision”) across implants: for 
uncemented implant designs the risk of revision at 10 years post-
operatively ranges from 2.6% to 66.5%.2 Because industry-spon-
sored studies are known to have bias,3,4 regional and national 
patient registries are the best source of revision risk data. These 
registries are used to conduct postmarketing surveillance of 
implants.5 For example, the ASR metal-on-metal hip implant 
was withdrawn from the market after it was shown to have an 
increased risk of revision by national arthroplasty registries.6,7

Arthroplasty registries seek to properly identify poorly 
performing implants (“signal detection”) using classical bio-
statistical techniques.5 Registry analyses of implant revision 
risk typically use revision as an end point and time to first 
revision (TTR) as the measure and then Kaplan-Meier esti-
mates are computed.6 To account for confounding that could 
occur by patient-level variables, Cox proportional hazards 
modeling is employed, including sex, age, and body mass 
index (BMI).

However, arthroplasty registries consist of observational 
data, and it is well known that analyses of observational data 
using classical statistical methods can produce misleading 
results.7 This is a central problem because postmarketing sur-
veillance implicitly seeks to identify a causal relationship 
between the choice of implant and revision risk. Although 
novel statistical methods8–10 and multiregistry data sharing 
models11 have recently been developed for orthopedic implant 
device postmarket surveillance, they do not address the causal 
inference problem that arises from the existence of confound-
ing variables.

Statistical techniques for using directed acyclic graphs 
(DAGs) to model causal relationships have been developed in 
fields ranging from epidemiology12–14 to artificial intelligence.15 
One thread of DAG modeling of causality has been casual dis-
covery, which consists of algorithms to construct DAGs from 
empirical data that indicate causal relationships.16 The 
TETRAD software package has been developed at Carnegie 
Mellon University for casual discovery17,18 and it is freely avail-
able in open source format.

The purpose of this project was to test the ability of a causal 
discovery tool to properly identify causal relationships in 
arthroplasty registry data. The approach was to generate simu-
lated data sets having known domain knowledge-based causal 
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structure and apply the TETRAD software package to them. 
Two registry sizes were simulated to evaluate the effectiveness 
of TETRAD in national and regional registry settings.

Methods
To evaluate the performance of TETRAD, simulated data sets 
with a known causal structure were first generated. Each simu-
lation consists of a number of cases, which represent a single 
patient along with its randomly generated sex, implant type, 
and TTR.

The PC causal discovery algorithm of Spirtes et  al16 was 
used to construct DAGs, which are graphs indicating causal 
structure, from the simulated data. Each node is a variable, and 
for each pair of nodes (A, B) there are 5 options for connection: 
(1) no edge indicating that there is no direct causal relation-
ship, (2) a directed edge from A to B indicating that A directly 
causes B, (3) a directed edge from B to A indicating that B 
directly causes A, (4) an undirected edge indicating that there 
is a causal relationship between A and B but the direction can-
not be determined from the data available, and (5) there may 
be a latent variable—or variables—confounding the relation-
ship between A and B. Note that if there is a directed path 
from A to B, then A can be an indirect cause of B. Figure 1 
illustrates the PC algorithm (a causal discovery algorithm 
named after its authors, Peter and Clark16) on a 4-node hypo-
thetical DAG. Conceptually, the PC algorithm evaluates pat-
terns in the data to determine whether they are consistent with 
hypothetical DAGs representing possible causal structures.

The causal structure used for the simulations (Figure 2) 
contained 3 variables: implant, sex, and TTR. The model rep-
resents the clinical situation where there is one implant of 
interest being analyzed (compared with cases performed with 
all implants other than the one of interest), and that implant 
affects TTR. In these simulations, the causal model also 
includes sex, which affects the selection of implant and TTR. 
This model was chosen as a simple example of a possible causal 
relationship between implant and TTR with a measured con-
founding variable (sex) that is a direct causal factor for both 
implant and TTR.

Simulated data sets were constructed using distributions 
from the Apache Commons Mathematics Library version 
3.6.1,19 using the included Mersenne Twister algorithm20 
seeded with the system time as a source of pseudo-randomness. 
The variables were generated in sequence according to the 
topologic ordering of the DAG that represents the relationship 
between the variables. In this situation, the order was sex, 
implant type, and then TTR. The sex variable was a Boolean 
variable where 0 represented female and 1 represented male. 
Sex was generated from a simple Bernoulli distribution with 
parameter, pS , which was the proportion of cases which were 
male. Implant type was a Boolean variable where 1 was used if 
the case used the implant to be analyzed as a potential outlier 
device (the “implant of interest”), and 0 was used to represent a 

case that used any implant other than the implant of interest. 
Implant type was generated from a Bernoulli distribution 
dependent on sex, where the parameter pI F,  was used if the 

Figure 1.  Example of causal discovery algorithm PC using 4 variables, 

x1, x3, x3, and x4, assuming that x1 and x2 are independent, x1 and x4 are 

conditionally independent given x3, x2, and x4 are conditionally 

independent given x3, x1 is a cause of x3, x2 is a cause of x3, and x3 is a 

cause of x4. This is illustrated as a DAG in (A). The algorithm has 3 steps. 

Step 1 consists of constructing a fully connected undirected graph (B). 

Step 2 consists of removing all edges where the data do not support a 

direct cause between 2 nodes. The edge between x1 and x2 is removed 

because they are independent. The edge between x1 and x4 is removed 

because x1 and x4 are conditionally independent given x3. This means 

that if x3 is fixed, any change in x1 does not cause a change in x4. 

Similarly, the edge between x2 and x4 is removed, resulting in the DAG 

shown in (C). Step 3 determines the direction of the edges remaining at 

the end of step 2. Directed edges from x1 to x3 and from x2 to x3 are 

determined because x3 must be a collider node due to x1 and x2 being 

independent (the “collider test” for edge direction), resulting in (D). The 

“from collider test” is used to determine that the edge from x3 to x4 is 

directed from x3 to x4 (E). Observe that the PC algorithm reconstructed 

(E) from the statistical independence assumptions implied by the DAG in 

(A). DAG indicates directed acyclic graph.

Figure 2.  Causal diagram for simulated data. The simulation included 3 

variables: (1) implant, (2) sex, and (3) time to first revision (TTR). Causal 

relationships are indicated by directed edges between nodes.
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case was female and pI M,  was used if the case was male. For 
the sake of simplicity, in this initial exploration, it was assumed 
that every case had a revision surgery, so for every case, TTR 
was generated with a Weibull distribution Weibull( )α β,  with 
shape parameter α  and scale parameter β. Both distribution 
parameters were dependent on sex and implant type where 
αF I,  and βF I,  were used when the case was female and the 
implant of interest was used, αF I,~  and βF I,~  were used when 
the case was female and an implant other than I was used (~I 
representing “not the implant of interest”), αM I,  and βM I,  
were used when the case was male and implant of interest was 
used, and αM I,~  and βM I,~  were used when the case was male 
with an implant other than I. Each simulation generated a set 
of NR  cases from the same set of parameters, and each simula-
tion was repeated 1000 times. To simplify the concept of effect 
size, the variable EI  represented the effect size of the implant 
on TTR. It was used to calculate βM I,  and βF I,  as shown in 
the following equations:
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The simulations were run on a machine with a 3.3-GHz 
AMD Ryzen 5 1400 Quad-Core Processor at a rate of approx-
imately 10.6 simulations per second. We verified that the 
numerical simulations converge over multiple runs. The gener-
ated simulations were analyzed using the open source 
TETRAD (version 6.4.0) software package implemented in 
Java. We used the PC algorithm and the χ2 independence test 
with a significance level of .05 to reconstruct the causal graphs 
from the simulation data. For each set of simulations, we calcu-
lated the proportion of graphs that contained each edge. We 
also calculated the proportion of those edges that were undi-
rected, directed correctly, and directed incorrectly.

Data from the Michigan Arthroplasty Registry Collaborative 
Quality Initiative (MARCQI) were used to estimate baseline 
model parameters. The MARCQI is a consortium of 61 hospi-
tals working to improve the quality of care for hip and knee 
arthroplasty patients in Michigan.21 It collects data on devices 
implanted in patients as well as the dates of primary and revi-
sion cases. Therefore, TTR data were available. A total of 47 664 
total hip arthroplasty cases were used to estimate parameters 
using SAS version 9.4 (SAS Institute, Cary, NC, USA).

The choice of parameters used in the simulation was based 
on data from MARCQI. The proportion of males ( )ps  was 
fixed at the MARCQI average of 0.45. The proportions of 
cases with the implant of interest ( ), ,p pI F I Mand  were varied 
between 0.0 and 0.3, a range that encompasses the implants 
found in the MARCQI data set. The TTR parameters αF I,~ , 
αM I,~ , βF I,~ , and βM I,~  were fixed at the MARCQI average 
of 0.71, 0.71, 182.0, and 171.0, respectively. Because of the lack 
of variation seen in the Weibull shape parameter between 

implants in the MARCQI data, αF I,  and αM I,  were also 
fixed at 0.71. The effect size EI , which was defined by the ratio 
β βM I M I,~ ,: , was varied around a baseline of 2.0, the size 
commonly used by registries for outlier detection.5

The simulations were run with the number of cases NR  set 
at 799 and 20 863, representative of the number of revised cases 
in a regional and national arthroplasty registry, respectively. 
The size of a regional registry was based on the MARCQI; the 
national registry was based on the National Joint Registry of 
England, Wales, Northern Ireland, and the Isle of Man (NJR).22

TETRAD and traditional Cox proportional hazards mod-
eling were applied to real patient-level data from MARCQI. 
An implant was selected for analysis that appeared—based on 
inspection of the raw Kaplan-Meier curve—to have an 
increased risk of revision at 3 years following surgery.23 There 
were 1452 primary cases out of 47 599 using this implant com-
bination in the MARCQI database. Cox modeling was per-
formed using TTR as an outcome, and implant (of interest or 
not of interest), sex, age, and BMI were included as predictors.

Results
With a data set size representative of smaller regional regis-
tries such as MARCQI (~800 revised cases), TETRAD was 
only able to consistently identify an edge between implant and 
TTR (TTR) when the effect size was large, and even with a 
large effect size of 4.0 and a pI M,  and pI F,  of 0.04, only 75% 
of reconstructed graphs identified a causal relationship 
between implant and TTR. However, with a data set repre-
sentative of a large national registry such as NJR (~20 300 
revised cases), an edge was identified even with very small 
effect sizes, exceeding 95% identification with an effect size of 
2.0 for both pI M,  and pI F,  of 0.02 and pI M,  and pI F,  of 
0.04 (Figure 3). False positives (detection of implant to TTR 
edge at an effect size of 1.0) occurred at a rate of 2.9%, 4.4%, 
5.7%, and 4.7% in Figure 3A to D, respectively. These were 
consistent with the significance level of .05 set for the inde-
pendence tests. To confirm the results with no effect of sex on 
implant, the false-positive rate and true-positive rate were cal-
culated with various effect sizes and rates of implant of inter-
est use. The results confirm a false-positive rate consistent 
with a significance level of .05 (Table 1).

To detect a causal relationship in 95% of the reconstructed 
graphs, 19 500 revised cases were needed for an effect size of 
2.0 with pI M,  and pI F,  fixed at 0.02. When pI M,  and pI F,  
were increased to 0.04, only 9000 cases were needed (Figure 4). 
This difference in number of revised cases needed to detect the 
proper relationship indicates that edge detection is sensitive to 
changes in pI M,  and pI F, .

The algorithm was sensitive to changes in pI M,  and pI F,  
(Figures 5 and 6). With the regional-sized data set, detection 
was low at effect sizes of 1.5 and 2.0 (Figure 5A and B). Even 
at a large effect size of 4.0, the algorithm failed when pI M,  
and pI F,  were both very small (Figure 5C). With the 
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national-sized data set, the algorithm performs extremely well 
at an effect size of 2.0 and performs sufficiently at an effect size 
of 1.5 when pI M,  and pI F,  were not small (Figure 6A to C).

The ability of the algorithm to detect direction was incon-
sistent and highly sensitive to errors in connectivity. When the 
reconstructed graph was fully connected, no directionality was 
inferred. In the simulations where one of the edges was unde-
tected, the algorithm attributed a causal direction to the other 
edges, but often in the incorrect orientation. Specifically, when 
attempting to establish a causal relationship between implant 
and TTR, the performance is highly variable, and even a large 
effect size and a high usage of the implant of interest do little 
to improve the performance (Table 2).

Analysis of real patient data from MARCQI showed that 
the PC algorithm found an edge between implant of interest 
and TTR, whereas the Cox model did not indicate a statisti-
cally significant association between these 2 variables.

Discussion
This study aimed to provide a preliminary evaluation of the 
viability of using the TETRAD software package to aid in 
identifying causal relationships in arthroplasty registry data. 
The software performed well with data sets on the scale of 
large, national registries, but its ability to identify relationships 
was notably reduced when using data set sizes representative of 
regional registries such as MARCQI. The ability of PC 

algorithm implemented in TETRAD to determine direction 
of causation was unreliable and highly sensitive to any errors in 
the identified graph structure for simulations of both regional- 
and national-sized registries. Consequently, domain knowledge 
is required during postprocessing to produce the correct direc-
tion of the edge connecting implant to TTR.

The primary objective of study for this article was the iden-
tification of a properly directed edge between implant and TTR 
because that is necessary for postmarket surveillance outlier 
detection. The other edges were explored, but they performed as 
expected and were not included in the results for 3 reasons: (1) 
they did not display interesting variation between simulations, 
(2) the parameters that would cause interesting variation if 
changed do not vary considerably in our data set, and (3) they 
are not of primary interest to arthroplasty registry signal detec-
tion activities. The simulation parameters varied were chosen 
because they have some effect on the ability of the algorithm to 
detect the implant to TTR edge, and we wished to determine at 
what ranges of parameters this algorithm perform satisfactorily. 
The analysis was done based on an effect size of 2.0 based on 
the outlier detection methods used by the Australian 
Orthopaedic Association National Joint Replacement Registry.5 
The performance of the algorithm was dependent on the size of 
each group of cases being analyzed. If there are too few cases 
that use the implant of interest, the independence tests will be 
unable to detect an effect on TTR even if the effect size is large. 

Figure 3.  Proportion of reconstructed graphs with an edge between implant and TTR for a given effect size. Figure panels 3A and B use a registry size of 

799 revised cases, and figure panels 3C and D use a registry size of 20 800 revised cases. Figure panels 3A and 3C use a pI F,  and pI M,  of 0.02, and 

figure panels 3B and 3D use a pI F,  and pI M,  of 0.04. Error bars represent 95% confidence interval. TTR indicates time to first revision.
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The number of cases that use the implant of interest depends on 
pI M, , pI F, , and NR .

Although the inability to consistently determine the direc-
tion of the edge between implant and TTR is concerning, it 
does not disqualify TETRAD as a possible tool for causal dis-
covery in arthroplasty because the directionality of the edge 
can be determined in postprocessing using logic. The PC 

algorithm prunes the fully connected DAG using statistical 
independence tests, and the result for a large registry is that the 
resulting undirected graph very likely has the implant-to-TTR 
edge correctly identified. The absence of direction is a result of 
the later steps in the PC algorithm that rely on analysis of 
3-node chains as colliders or noncolliders (Figure 1). The very 
small DAG used for these simulations, which only had 3 nodes, 

Table 1.  Rates of detection of the arc between implant and time to first revision for a range of both effect size and proportion of 
cases that use the implant of interest.

Effect 
size

Proportion with 
implant of interest

False-positive 
rate (FPR)a

True-positive 
rate (TPR)b

1.0 0.01 0.0490 NA

1.0 0.05 0.0474 NA

1.0 0.10 0.0486 NA

1.5 0.01 NA 0.0801

1.5 0.05 NA 0.1338

1.5 0.10 NA 0.1908

2.0 0.01 NA 0.1198

2.0 0.05 NA 0.2830

2.0 0.10 NA 0.4187

2.5 0.01 NA 0.1891

2.5 0.05 NA 0.4346

2.5 0.10 NA 0.6528

3.0 0.01 NA 0.2442

3.0 0.05 NA 0.5839

3.0 0.10 NA 0.8278

Abbreviation: NA, not applicable.
aFPR is only applicable when the effect size is 1.
bTPR is only applicable when the effect size is greater than 1.

Figure 4.  Proportion of reconstructed graphs with an edge between implant and TTR for a given number of revised cases. Both panels use an effect size 

( )EI  of 2.0. Figure panel 4A uses a pI F,  and pI M,  of 0.02 and figure panel 4B uses a pI F,  and pI M,  of 0.04. Error bars represent 95% confidence interval. 

TTR indicates time to first revision.
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will not provide the chains necessary for the edge directing 
portions of the PC algorithm. Larger DAGs that include age, 
BMI, surgeon volume, etc, are likely to provide DAGs that 
provide better directionality of edges. This should be an area of 
further investigation. However, even for the small DAGs ana-
lyzed here, the final step of causal inference can be done manu-
ally, making the method useful in practical settings. This is 
done by recognizing that TTR cannot cause implant because 
the choice of implant is made prior to the primary surgery, 
which is by definition prior to the revision event represented by 
the TTR variable. If the PC algorithm implemented in 
TETRAD returns an edge between implant and TTR, then 
the only logical direction can be from implant to TTR. 
Unfortunately, this domain knowledge cannot be implemented 
as a constraint in the PC algorithm; specifying the direction of 
this edge must be done as postprocessing following application 
of the PC algorithm.

With a large data set, the algorithm has the potential to be 
a useful tool in identifying a causal relationship between 
implant and TTR, but for smaller data sets such as MARCQI, 
there are too few revised cases to reliably detect an effect. For 
an NR  representative of a large, national registry such as NJR, 

the algorithm performed satisfactorily with pI M,  and pI F,  
set at both 0.02 and 0.04 (Figure 3C and D). For the simula-
tion of the smaller registry, however, the algorithm did not per-
form well for small values of pI M,  and pI F,  (Figure 3A and 
B) but it did achieve high detection ability when these param-
eters were larger (Figure 5C).

However, with a large data set, the algorithm reliably detects 
an edge down to an effect size of 2.0, even with a small pI M,  
and pI F,  (Figure 6). Based on these results, for this algorithm to 
be useful for identifying a relationship between implant and 
TTR, a sufficiently large number of revised cases using the 
implant of interest are necessary for determining a causal rela-
tionship between implant and TTR. In our simulations, that 
number was approximately 300 cases but that number is expected 
to be larger with data sets where not every case has a TTR.

The ASR metal-on-metal implant experience was used to 
motivate this study, so it is reasonable to ask whether the PC 
algorithm would be able to identify an edge for an implant hav-
ing the same clinical outcomes as the ASR at the time it was 
recalled from the market. That is, could the PC algorithm have 
identified it as an outlier device in 2010? That year was when 
data from the NJR prompted the voluntary recall of the device 

Figure 5.  Proportion of reconstructed graphs with an edge between 

implant and TTR for a given pI F,  and pI M, . Number of revised cases is 

set at 799 for all panels. Effect size ( )EI  is set at 1.5, 2.0, and 4.0 in figure 

panels 5A to C, respectively. TTR indicates time to first revision.

Figure 6.  Proportion of reconstructed graphs with an edge between 

implant and TTR for a given pI F,  and pI M, . Number of revised cases is 

set at 20 863 for all panels. Effect size (EI  is set at 1.25, 1.5, and 2.0 in 

figure panels 6A to C, respectively). TTR indicates time to first revision.
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after several years of data from Australia suggesting the same.24 
At that time, the 5-year revision risk of the ASR was 13% 
according to the NJR. For comparison, the overall revision risk 
at 5 years reported in the NJR 2010 annual report was 2.9%.25 
This results in a ratio of ASR revision risk to overall revision 
risk of 4.5 (because the 2.9% value includes ASRs, the actual 
ratio of ASR to non-ASR devices is likely larger than 4.5). Our 
simulation results indicate that both large national registry and 
smaller regional registry would have a high likelihood of 
detecting an edge between implant and TTR, provided the 
device was highly used in the regional registry. Using the 
knowledge that implant choice precedes revision can direct the 
edge; therefore, the causal connection between the ASR and 
revision could likely have been determined using the PC algo-
rithm. This supports the possible utility of the PC algorithm in 
implant postmarket surveillance.

The most obvious comparison is with methods convention-
ally used for postmarketing surveillance of medical devices. 
More specifically, this method should be evaluated in the con-
text of methods used for postmarketing surveillance of hip 
replacement implants. The Australian Orthopaedic Association 
National Joint Replacement Registry, which first identified the 
ASR resurfacing hip as an outlier,24 uses a rigorous process of 
postmarketing surveillance and outlier detection.5 That process 
begins with computing revision risks. A device that has twice 

the risk compared with all others in the class is selected for 
additional Cox proportional hazards modeling to adjust for age 
and sex. Ranstam et  al6,26,27 have made recommendations on 
statistical methods for analyzing implant data in arthroplasty 
registries, and they also focus on Cox models. Although these 
existing methods have been very useful, they lack the theoreti-
cal power of graphical causal model analysis for assessing causal 
relationship between implant and revision risk. Published anal-
yses of revision risks associated with implant design features 
typically use multivariate modeling without reference to graph-
ical methods for rigorously analyzing the problem causal infer-
ence, even though the ultimate purpose is to draw causal 
inference conclusions about the relationship between implant 
design and revision risk.28–39 Many of these studies use exten-
sive and careful modeling and propensity score matching to 
mitigate bias,31,34,40 but they differ from this study because they 
do not describe formally employing concepts of d-separation 
and casual inference.15 This is concerning because it has been 
shown by analysis of empirical data7 and computer simula-
tion16 that regression modeling methods can produce results 
inconsistent with known causality.

The primary strength of this study was that it used a combina-
tion of real-world arthroplasty registry data and computer simula-
tion. The simulation paradigm allowed for the causal discovery 
method to be evaluated against known causal relationships and 

Table 2.  Rates of detection and direction for an arc between implant and TTR for a range of both effect size and proportion of 
cases that use the implant of interest.

Effect 
size

Proportion with 
implant of interest

Proportion 
with arca

Proportion 
directedb

Proportion oriented 
correctlyc

1.0 0.01 0.0490 0.0022 0.7727

1.0 0.05 0.0474 0.0006 0.3333

1.0 0.10 0.0486 0.0020 0.6000

1.5 0.01 0.0801 0.0022 0.5000

1.5 0.05 0.1338 0.0048 0.5000

1.5 0.10 0.1908 0.0076 0.4342

2.0 0.01 0.1198 0.0045 0.8222

2.0 0.05 0.2830 0.0132 0.5909

2.0 0.10 0.4187 0.0193 0.5233

2.5 0.01 0.1891 0.0085 0.6353

2.5 0.05 0.4346 0.0194 0.5825

2.5 0.10 0.6528 0.0276 0.5797

3.0 0.01 0.2442 0.0105 0.6095

3.0 0.05 0.5839 0.0243 0.5556

3.0 0.10 0.8278 0.0423 0.5816

Abbreviation: TTR, time to first revision.
aProportion of simulations that identified an arc between implant and TTR.
bSimulations that identified an arc, proportion that identified a direction to the arc.
cSimulations that identified a direction, proportion that identified the direction in the correct orientation.
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effect magnitudes. Having known relationships enabled an analysis 
of whether the method could accurately determine the true causal 
relationship. Moreover, the statistical distributions and parameters 
used for the simulations were obtained by fitting models to data 
obtained from the MARCQI. Use of actual distributions strength-
ens the simulation results. Finally, a strength of this study was that it 
grew organically out of the work of the MARCQI device commit-
tee, which conducts statistical evaluations of revision risk by implant. 
Therefore, the selection of variables and the range to simulate over 
were based on actual postmarketing surveillance activities of hip 
replacement implants in the United States.

This study had 4 primary limitations: (1) it focuses on TTR 
outcome, (2) it used a simplified model of TTR, (3) it examined 
a limited number of causal relationships, and (4) no censoring 
was included. Joint replacement patients have many outcomes, 
including pain, range of motion, and avoidance of negative 
adverse events (death, revision, venous thromboembolism, etc). 
Revision is only one end point, and this is a limitation of the 
analysis. However, revision is the clinical end point that is virtu-
ally universally used in hip and knee arthroplasty registries. 
Because of the ubiquity of this outcome in the analysis of large 
arthroplasty registry quality improvement data sets, it makes 
sense to focus on revision. This study simplified revision to a 
random number assigned to each case. In actual registry data, 
not every patient has an associated TTR due to study length 
and censorship. This allowed us to run the simulation data 
directly through the causal discovery algorithm without inter-
polating missing values, but it also made the simulation data 
more poorly represent the registry data. Because implant selec-
tion is a comparatively easy factor to modify, quality improve-
ment in hip and knee arthroplasty needs methods for 
determining causal relationships between implant and TTR. 
Conceptually, there are many factors that may confound statisti-
cal associations found between implant and TTR, including 
age, BMI, surgeon volume, hospital volume, etc. Although the 
focus on sex is well justified in the literature, it is only a first step 
in understanding the utility of causal discovery in hip arthro-
plasty implant analysis. The no censoring limitation likely has 
the biggest impact on registries that have not been around for a 
very long time because revisions often occur years after the pri-
mary surgery. Thus, it is more likely to affect a new registry such 
as MARCQI than an established registry such as the Australian 
Orthopaedic Association National Joint Replacement Registry.

We applied the PC algorithm to MARCQI data for a single 
hip stem/cup combination and found that the PC algorithm and 
Cox model produced different results regarding an association 
between implant and TTR. When the MARCQI data including 
age and BMI was used, the PC algorithm identified a number of 
relationships, including a directed arc from TTR to BMI. When 
we applied the PC algorithm to MARCQI data with only the 3 
variables used in the simulations, the unused variables act as 
unmeasured noise variables as we previously found that there are 
relationships between them. As expected, the PC algorithm still 
identified an arc between implant and TTR. However, the Cox 
model did not indicate a statistically significant association 

between implant and TTR. Because we do not know the true 
causal relationship for this implant combination and TTR, we 
cannot conclude that the PC algorithm led to a false positive or 
the Cox model produced a false negative. However, this result 
does suggest that it is possible that the PC algorithm may detect 
outlier devices with higher sensitivity than Cox modeling.

This work prompts additional study into using causal discov-
ery algorithms for arthroplasty registries. One potential area of 
further research includes improved modeling of TTR data. One 
of the limitations of this study is its simplified model of revision. 
Future work may implement a more complex model of TTR, 
such as semiparametric Bayesian survival analysis.41 Additional 
work needs to be conducted to investigate other relevant clinical 
variables and the sensitivity of the results to unmeasured or noise 
variables. A potential future investigation may include the analy-
sis of the MARCQI data set with the FCI (Fast Causal 
Inference) algorithm, which does not operate under the assump-
tion that all variables are measured, which would be useful in a 
case as described above with MARCQI.

In conclusion, this study introduced and evaluated a novel 
tool for use in postmarketing surveillance of hip replacement 
implants conducted by large patient registries. The innovation 
lies in the fact that causal discovery algorithms have not—to 
our knowledge—been employed to analyze orthopedic implant 
data. The results indicated that it may be useful to identify 
edges in a DAG representing causality, but it is not nearly as 
good at identifying the causal direction of the edge. The 
method should continue to be investigated to determine how it 
performs in the presence of additional clinical variables. Finally, 
predictive modeling of implant revision risk is a long-term goal 
of this research. The identification of causal relationships is an 
important part of such modeling. Therefore, this work serves as 
a first step toward predictive analytics in arthroplasty.
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Appendix 1
Notation

EI 	� effect size of the implant on TTR, 
which is defined by the ratio of 
β βM I M I,~ ,: .

NR 	� number of cases in each of 1000 
simulated data sets. It can vary 
according to scale of study, eg, state-
level or national-level sizes.

ps 	� the proportion of cases which are 
male

pI F, 	� the proportion of cases which are 
female using the implant of interest

pI M, 	� the proportion of cases which are 
male using the implant of interest

TTR Weibull( , )~ α β 	� TTR follows Weibull distribution 
with shape parameter α  and scale 
parameter β . Furthermore, for dif-
ferent groups,

	� αF I,  and βF I,  are for females using 
the implant of interest;

	� αM I,  and βM I,  are for males using 
the implant of interest;

	� αF I,~  and βF I,~  are for females 
using an implant other than the one 
of interest;

	� αM I,~  and βM I,~  are for males 
using an implant other than the one 
of interest.
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