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Abstract

Objective: In Huntington’s disease (HD), a hereditary neurodegenerative disorder, cognitive impairment in early disease stages mainly in-
volves executive dysfunction. However, visual cognitive deficits have additionally been reported and are of clinical relevance given their
influence on daily life and overall cognitive performance. This study aimed to assess visual perceptual skills in HD gene carriers.

Methods: Subtasks of the Visual Object and Space Perception battery and Groningen Intelligence Test were administered in 62 partici-
pants (18 healthy controls, 22 participants with a genetic confirmation of HD without symptoms, i.e., premanifest HD, and 22 participants
with a genetic confirmation of HD with symptoms, i.e., manifest HD). Group differences in task performance were measured using analysis
of covariance with and without correction for age. Receiver Operating Characteristics (ROC) analysis was performed to examine which task
best discriminated between groups and cut-off scores were provided.

Results: Manifest HD performed significantly worse compared to both controls and premanifest HD on all visual perceptional tasks.
Premanifest HD did not differ in task performance from controls. Besides the Shape Detection, all tasks were robust in discriminating
between groups. The Animal Silhouettes test was most accurate in discriminating manifest HD from premanifest HD (AUC = 0.90, SE =
0.048, p < .001).

Conclusion: Visual perceptual deficits are present in early manifest HD, especially an impaired recognition of animals and objects from
sketched silhouettes, and not in premanifest HD. This suggests that decline in visual processing only occurs in clinical disease stages. The
visual cognitive battery, especially the Silhouettes tasks used in this study is sensitive in discriminating manifest HD from premanifest HD
and controls.
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Introduction

Motor disturbances, cognitive impairment, and psychiatric symptoms are the main clinical characteristics of Huntington’s
disease (HD), an autosomal dominant inherited neurodegenerative disorder that is caused by an expanded cytosine-adenine-
guanine (CAG) repeat length in the Huntingtin gene on chromosome 4 (The Huntington’s Disease Collaborative Research
Group, 1993). Cognitive decline in HD has been widely studied and mainly involves executive dysfunction, such as impaired
attention and planning skills, and cognitive inflexibility (Dumas, van den Bogaard, Middelkoop, & Roos, 2013). In addition,
impaired working memory, slower psychomotor speed, and deficits in emotion recognition have also been described (Dumas
et al., 2013). Eventually, in more advanced disease stages, cognitive deterioration results in dementia. Findings from previous
studies have shown that cognitive symptoms in HD patients contribute to a decline in daily functioning, such as the ability to
work and drive a car, which causes a large burden on patients and their relatives (Paulsen, 2011; Ross, Pantelyat, Kogan, &
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Brandt, 2014). Besides cognitive impairment, patients with HD also develop progressive motor disturbances and behavioral
changes. Motor disturbances are characterized by chorea, dystonia, hypokinesia, and gait impairments (Roos, 2010).
Depression, irritability and aggression, obsessive-compulsive behavior, and apathy are frequent reported neuropsychiatric
symptoms in HD (van Duijn et al., 2014). The manifestation of motor disturbances typically defines the disease onset, in gen-
eral between the ages of 30 and 50 years (Bates et al., 2015; Roos, 2010). Still, cognitive decline can already be present in
early stages of the disease, even before the onset of motor symptoms (i.e., the premanifest stage) (Bates et al., 2015). In this
stage, cognitive impairment primarily comprises of slower psychomotor speed and impaired emotion recognition (Bates et al.,
2015; Dumas et al., 2013). Despite the growing evidence of early cognitive deficits in HD, there is no accepted cognitive bat-
tery available to measures the degree of these impairments, making it difficult to give predictions about poor cognitive func-
tioning (Paulsen, 2011). Determining the affected cognitive domains in early disease stage is important as this might aid in
better understanding the disease and finding new therapeutic targets for symptomatic treatment.

In addition to executive dysfunction, impaired working memory, and slower psychomotor speed, there is increasing evi-
dence of impaired visual cognition in early stages of HD (Coppen, Van Der Grond, Hart, Lakke, & Roos, 2018; Dumas et al.,
2013; Johnson et al., 2015; Lemiere, Decruyenaere, Evers-Kiebooms, Vandenbussche, & Dom, 2004; O’Rourke et al., 2011;
Say et al., 2011). Visual cognition or higher-level vision is defined as the processing of retinal input combined with prior
knowledge to generate representations (Cavanagh, 2011). In the human brain, two distinct parallel anatomical pathways are
involved in visual cognition, the ventral and dorsal streams (Ungerleider & Haxby, 1994). The dorsal stream projects from
the occipitoparietal cortex to the frontal eye fields, and is also known as the “where” pathway that is responsible for three-
dimensional vision and movement perception of objects in space (Braddick & Atkinson, 2011; Ungerleider & Haxby, 1994).
The ventral stream, or the “what” pathway, in the occipitotemporal cortex is involved in visual object and face perception
(Kravitz, Saleem, Baker, Ungerleider, & Mishkin, 2013; Ungerleider & Haxby, 1994).

In HD, atrophy of the striatum is the neuropathological hallmark of the disease, but atrophy of the posterior cerebral cortex
also occurs early in the disease, and is specifically located in regions that are involved in higher-level vision, such as the lin-
gual and fusiform gyri, and the lateral occipital cortex (Coppen et al., 2018; Johnson et al., 2015; Labuschagne et al., 2016;
Rosas et al., 2008). Based on the ventral and dorsal visual pathways, visual cognition can be further divided in several subdo-
mains, such as visuomotor and visuospatial function, visual working memory, visual construction, and visual object percep-
tion (Lezak, Howieson, & Loring, 2004). Previous studies in early HD disease stages revealed dysfunction in the visuomotor
and visuospatial domains (Labuschagne et al., 2016; Lemiere et al., 2004; Mohr et al., 1991; Say et al., 2011), resulting in an
impaired awareness of visual stimuli and deficits in processing spatial information. Worse performance on visuospatial tasks
has also been reported in premanifest HD gene carriers (Johnson et al., 2015; O’Rourke et al., 2011), suggesting that early
cognitive impairment in HD involves more than executive dysfunction.

Conceptual organization and the dissociation of figures from their background are necessary for the detection and recogni-
tion of shapes, facial emotions and objects in the environment, which is classified as visual perception (Fesi & Mendola,
2013). Patients with HD often suffer from difficulties in social communication and affected relationships due to impairments
in the recognition of negative facial emotions, such as anger, disgust, and fear (Kordsachia, Labuschagne, & Stout, 2017).
However, in contrast to reported deficits in visuospatial processing, visuomotor function, and emotion perception, the visual
perception of objects has been studied less extensively in patients with HD (Coppen et al., 2018; Kordsachia et al., 2017). In
addition, visual deficits such as visual hallucinations or ophthalmic disorders, are also rarely reported by patients with HD
(Coppen et al., 2018; van Duijn et al., 2014). Instead of examining global visual cognition, investigating specific visual cogni-
tive deficits such as an impaired visual object perception can give a better understanding of the affected pathways in a neuro-
degenerative disorder such as HD. Furthermore, examining deficits in visual object perception in HD is of clinical
importance, as this can influence daily functioning, such as the impact on driving a car, difficulties with walking and a higher
risk of falling. In addition, deficits in visual object perception can negatively impact complex cognitive task performance.

To date, only five studies have assessed visual object perception in HD and reported deficits in simultaneous perception of
multiple objects (Finke et al., 2007), and an impaired object recognition in HD patients compared to controls (Gémez-
Tortosa, del Barrio, Barroso, & Garcia Ruiz, 1996; Lawrence, Watkins, Sahakian, Hodges, & Robbins, 2000; Lemiere et al.,
2004; Wolf et al., 2014). In these studies, heterogeneous cognitive test batteries have been used and little is known about
visual object perceptual skills in premanifest HD gene carriers. Therefore, the aim of this study is to contribute to the knowl-
edge on deficits in visual object perception in HD using cognitive assessments that primarily focus on visual object perception
in premanifest and manifest HD gene carriers compared to healthy controls.
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Methods

Farticipants

A total number of 62 participants (18 healthy controls, 22 premanifest HD gene carriers, and 22 manifest HD gene carriers)
were included in this study. Individuals were recruited from the outpatient clinic of our Neurology department. Partners and
HD gene-negative relatives were recruited as healthy controls. The local Medical Ethical Committee approved this study and
written informed consent was obtained from all participants.

Clinical characteristics are presented in Table 1. Premanifest HD gene carriers were significantly younger in age (mean
37.3 years, SD 8.8) compared to both controls (mean 46.2 years, SD 10.7) and manifest HD gene carriers (mean 52.5 years,
SD 104, F(2, 59) = 12.91, p = .020 and p < .001 respectively). All participants had a normal or corrected to normal primary
visual ability above 0.5 (20/40 vision) on the visual acuity test. In each group, one male participant was not able to perceive
red-green color differences, measured using the Ishihara Color test. There were no individuals with ophthalmic disorders or
other major co-morbidities. All HD gene carriers required a positive genetic test with a CAG repeat expansion of 36 or more
on the Huntingtin gene. Trained investigators assessed the degree of motor disturbances using the Unified Huntington’s dis-
ease Rating Scale — Total Motor Score (UHDRS-TMS), a scale that examines several motor domains, such as chorea and dys-
tonia severity, gait and postural stability, and oculomotor function, with higher scores indicating increased motor impairment
(Huntington Study Group, 1996). Participants were considered to be premanifest based on an UHDRS-TMS of 5 or less
(Huntington Study Group, 1996). Manifest HD gene carriers were included with an UHDRS-TMS of more than 5. The
UHDRS Total Functional Capacity (TFC) score was administered to assess global functioning. This involves five components
of daily functioning including work, finances, domestic chores, activities of daily living (such as eating, bathing, and dress-
ing), and care environment (home, or nursing home). Here, lower TFC scores indicate more impaired function. Manifest HD
gene carriers had a higher UHDRS-TMS (F(2, 59) = 53.17, p < .001) and a lower TFC score (H(2) = 42.45, p < .001) com-
pared to both controls and premanifest HD. The TFC score was additionally used to divide manifest HD gene carriers into
disease stages, in which HD stage 1 and 2 represent early disease stages and HD stage 4 and 5 more advanced stages
(Shoulson & Fahn, 1979). Twenty manifest HD gene carriers were in an early disease stage (18.2% in HD stage 1, 72.7% in
HD stage 2), whereas 2 manifest HD gene carriers (9.1%) were in a mid to moderate stage of the disease.

There were no significant differences between groups for gender, education in years, and handedness. In addition, CAG
repeat length did not significantly differ between premanifest and manifest HD.

Clinical Assessments

Visual object recognition and perceptual processing was measured using subtests of the Visual Object and Space
Perception (VOSP) battery (Warrington & James, 1991) and a subtest of the Groningen Intelligence Test (GIT) (Luteijn &
Barelds, 2004). These assessments were chosen because of the minimal involvement of motor, attentional, and executive
functions (Rapport et al., 1998; Warrington & James, 1991). For our study, we administered the visual screening test and
three visual perceptual subtests of the VOSP. An example of each subtest used for this study is presented in Fig. 1. The

Table 1. Demographic and clinical characteristics

Controls Premanifest HD Manifest HD
N 18 22 22
Age, years 46.2 +10.7 37.3+838 525+ 104

(24.1-61.3) (23.2-52.9) (28.5-64.8)
Gender (male/female) 711 11/11 12/10
Handedness—right (%) 15 20 17

(83.3%) (90.9%) (77.3%)
Education, years 16.9 16.8 16.0

(12-20) (12-23) (12-20)
CAG repeat length N/A 42.0 + 2.2 (38-45) 43.0 + 2.4 (40-48)
UHDRS-TFC 13 13 9

(11-13) (10-13) (6-13)
UHDRS-TMS 1.8 £ 1.2 (0-5) 2.7+ 1.0 (1-5) 29.3 + 16.4 (8-58)

Data are mean + SD (range) for age, CAG repeat length, education in years, and UHDRS-TMS. Numbers (%) are presented for handedness and gender, and
median (range) is given for UHDRS-TFC.

N/A = Not applicable; CAG = Cytosine, Adenine, Guanine; UHDRS-TFC = Unified Huntington’s Disease Rating Scale Total Functional Capacity; UHDRS-
TMS = Unified Huntington’s Disease Rating Scale Total Motor Score.
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Fig. 1. Examples of visual object perception tasks: Modified examples of subtasks used in this study are displayed for both the Visual Object and Space
Perception battery (Warrington and James, 1991) and the Groningen Intelligence Test (Luteijn and Barelds, 2004). ( A) the Shape Detection test requires the
identification of the letter X on separate sheets (left: yes, right: no). (B) The Silhouettes test entails the correct naming of an animal or object silhouette (left:
camel and duck, right: cup, glasses). (C) The Object Decision test consists of four black shapes and requires pointing out the silhouette of a real object (left:
real object is below right, right: real object is below right). (D) The Figure Recognition involves the correct naming of the figures (left: fish, right: violin
player).

Shape Detection test is used as a screening test to assess if participants are able to complete the other assessments and requires
the identification of the letter X on separate sheets, with a maximum score of 20 (Fig. 1). A score below 15 points indicates
the inability to complete the rest of the battery. The Silhouettes test consists of black shapes of 15 animals and 15 objects on
separate sheets. Participants need to correctly name each silhouette, with a maximum score of 15 on each test. The Object
Decision test comprises of 20 separate sheets with four black shapes of which one represents the silhouette of a real object.
The participant needed to point out the real object without requiring a verbal response. The total score is the total number of
correct answers, with a maximum score of 20. The GIT is widely used to examine general intellectual ability and consists of
nine subtests to evaluate several intelligence domains (Luteijn & Barelds, 2004). In our study, we used one subtest of the
GIT, the Figure Recognition test, to assess the perceptional figure and object recognition. This subtest was thoroughly revised
in 2004 to secure a more modern and accurate approach of testing visual perception by including objects such as a mobile
phone, computer, and alarm clock, making it a more suitable assessment tool for visual object perception in younger indivi-
duals. In addition, the Figure Recognition test has, to our knowledge, not been investigated in HD patients previously. In this
test, 20 partly sketched, fragmented, black- and white figures were presented in random order with increasing difficulty and
comprise of animals and objects, and also includes figures of active individuals, such as a cleaning lady, jockey on a horse,
and a cyclist. Participants needed to correctly name the figures. The total score measured is the total number of correctly
named figures, with a maximum score of 20. For all assessments, the tests were terminated after five consecutive errors.

Statistics

Group differences were analyzed using a one-way Analysis of Variance (ANOVA) for age, years of education, and
UHDRS-TMS. y*-test was used for gender and handedness, whereas Kruskal-Wallis test was used for UHDRS-TFC scores.
Independent samples 7-test was performed to assess group differences between premanifest and manifest HD gene carriers for
CAG repeat length. Analysis of Covariance (ANCOVA) was used to analyze group differences in visual perceptual task per-
formance, with and without age as covariate, and post-hoc comparisons using Sidak correction, if the ANCOVA yielded



1324 E.M. Coppen et al. / Archives of Clinical Neuropsychology 34 (2019); 1320-1328

significant results. Because the cognitive battery consisted of five separate cognitive tasks, the significant p-value was defined
as .05/5 = .01. We used a Receiver Operating Characteristics (ROC) analysis to examine which visual test best discriminated
between groups that showed significant group differences and provided cut-off scores per subtest. In this analysis, the sensi-
tivity is plotted against the specificity of the predictor. The area under the curve (AUC) was used as an indicator of which pre-
dictor had the most discriminatory accuracy to distinguish between premanifest HD, manifest HD, and controls. Statistical
analyses were performed using the Statistical Package for Social Sciences (SPSS for Mac, version 23, SPSS Inc.).

Results

All participants scored above the threshold of 15 correct answers on the Shape Detection test. Therefore, all participants
were able to complete the entire cognitive battery. Task performances per group are presented in Table 2. Besides the Shape
Detection test, manifest HD performed significantly worse compared to controls on the Animal and Object Silhouettes tasks
(F(2,59) = 19.71, p < .001, and F(2,59) = 11.11, p < .001 respectively), the Object Decision test (F(2,59) = 7.61, p = .001),
and the Figure Recognition test (F(2,59) = 8.60, p = .001). Premanifest HD did not differ in task performance compared to
controls. Although the premanifest HD group was significant younger compared to the other groups, performance on the
Silhouettes tests and the Object Decision test remained significantly different after adjustment for age as presented in Fig. 2.

Using ROC analysis, all visual perceptual tasks were robust in discriminating between controls and manifest HD
(Fig. 1A), and between premanifest HD and manifest HD (Fig. 1B), except for the Shape Detection test (Table 3). Both

Table 2. Group differences on visual cognitive assessments

Controls Pre-HD Mani-HD Covariate Estimates of p-value p-value p-value
(N =18) (N =22) (N =22) effect sizes Controls vs. Controls vs. Pre-HD vs.
Pre-HD Mani-HD Mani-HD
Shape 19.6 £ 0.6 19.9 + 0.7 193 +1.0 — 0.100 .606 485 .039
Detection Age 0.093 522 422 .053
Animal 11.9+ 1.7 122+ 1.6 92+19 — 0.401 943 <.001 <.001
Silhouettes Age 0.336 961 <.001 <.001
Object 10.6 + 1.9 103 +2.5 7.2 +3.1 — 0.274 967 <.001 001
Silhouettes Age 0.280 998 <.001 .001
Object 17.8 £ 1.6 174+ 1.4 153+32 — 0.205 939 .003 007
Decision Age 0.221 999 001 005
Figure 13.8 +3.07 128 £2.9 95+39 — 0.226 147 .001 .008
Recognition Age 0.170 470 003 179

Note: Data are mean + SD of total number correct. Estimates of effect sizes as partial eta squared (1) are presented in a separate column. Analysis of covari-
ance (ANCOVA) was used to assess group differences, with and without age as covariate. Post-hoc tests were adjusted using Sidak correction. Significant
p-values corrected for multiple comparisons (p < .01) are presented in bold. Pre-HD = premanifest HD gene carriers, before the onset of motor symptoms,
Mani-HD = manifest HD gene carriers with motor symptoms.

A Controls vs Manifest HD B Premanifest HD vs Manifest HD

1.0 =
> B > --— Animal silhouettes
> 0.6+ S o068/ ¥ 5 | Obiject silhouettes
2 o4 ’ 2 --- Object decision
P & -~- Figure recognition

0.2 - — Reference line

0.0 ‘ , ; ; 0.04 ; . ; :

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity 1 - Specificity

Fig. 2. Receiver Operating Characteristics (ROC) curves: Except for the Shape Detection test were all visual perceptual tasks were robust in discriminating
between controls and manifest HD (1 A), and between premanifest HD and manifest HD (1B).
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Table 3. Receiver Operating Characteristics (ROC) curve analysis

Controls vs. Mani-HD Pre-HD vs. Mani HD

AUC [95% CI] Cut-off scores  Sensitivity ~ Specificity ~ AUC [95% CI] Cut-off scores  Sensitivity ~ Specificity
Animal Silhouettes ~ 0.86 [0.75-0.97]* 11 83% 72% 0.90 [0.80-0.99]* 11 91% 73%
Object Silhouettes 0.82[0.70-0.95]* 10 83% 81% 0.78 [0.65-0.92]* 9 82% 64%
Object Decision 0.75 [0.60-0.901* 17 72% 55% 0.72 [0.56-0.87]* 17 68% 64%
Figure Recognition ~ 0.79 [0.66-0.93]* 12 72% 64% 0.74 [0.60-0.89]* 11 82% 60%

* p-value < .05. AUC: area under the curve; CI = confidence interval.

B Controls (N = 18)
Bm Premanifest HD (N = 22)
# Manifest HD (N = 22)

100 4

80 4

60 1

40

Participants (%)

20

Animal Silhouettes Object Silhouettes Object Decision Figure Recognition

Fig. 3. Percentage of participants impaired on cognitive task: Participants were divided into impaired and normal based on the cut-oft scores of the ROC anal-
ysis. Manifest HD gene carriers were impaired on all cognitive tasks with the highest percentage of impaired participants on the Animal and Object
Silhouettes tasks.

Animal and Object Silhouettes tests were the most sensitive in distinguishing controls from manifest HD, with similar Areas
Under the Curve (AUC), AUC = 0.86, SE: 0.058, p < .001 and AUC = 0.82, SE: 0.066, p = .001 respectively. The Animal
Silhouettes test was also the most accurate assessment in identifying premanifest HD from manifest HD (AUC = 0.90, SE:
0.048, p < .001). Using the cut-off scores of the ROC analysis, 83% of the controls and 91% of the premanifest HD gene car-
riers scored 11 points or higher (maximum of 15 points) on the Animal Silhouettes test, while only 27% of the manifest HD
reached this score (Fig. 3). This was also seen for the Object Silhouettes test, for which 18% of the manifest HD scored 10
points or higher (maximum of 15 points), compared to 72% of the controls and 68% of the premanifest HD gene carriers.
Higher numbers of errors were found in all groups on the Figure Recognition test compared to the Silhouettes tests. Still,
72% of the controls scored 12 points or higher (maximum of 20) on the Figure Recognition task, compared to 82% of the pre-
manifest HD and 36% of the manifest HD.

Discussion

Our study showed that deficits in visual object perception, specifically impairments in the recognition of animals and
figures from sketched silhouettes, are present in early manifest HD gene carriers. We found normal visual perceptual skills in
premanifest HD gene carriers, which suggest that decline in visual processing only occurs in clinical disease stages. Two other
studies also examined visual perception in premanifest HD gene carriers (Gémez-Tortosa et al., 1996; Lemiere et al., 2004),
and showed similar results. One study assessed cognitive performance using sum scores of visual perceptual tasks over a
follow-up period of 2.5 years, but only found a decline in sum scores over time in manifest HD, not in premanifest HD
(Lemiere et al., 2004). Our results complement the findings of this study, since we also used the Visual Object and Space
Perception (VOSP) test battery to evaluate visual object perception. But in contrast to the study performed by Lemiere et al.,
we assessed cognitive performance per task separately without using sum scores. Our findings suggest that especially the
identification of abstract objects, displayed in partly sketched silhouettes that were ranked with increasing difficulty, was most
difficult for the symptomatic HD participants. Interestingly, 68% of our premanifest HD participants scored 10 points or high-
er on this task (maximum of 15 points), while only 18% of the manifest HD reached this score. Another study used a different
cognitive battery, but also showed that only early and more advanced HD patients scored worse on a task where they needed
to recognize and name a fragmented object on a card. Again, no differences in scores were observed between premanifest HD
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and controls (Gémez-Tortosa et al., 1996). Two additional studies in manifest HD used a similar cognitive battery as was
used in our study, but findings are inconsistent. One study concluded that perceptual dysfunction is not present in HD, as
manifest HD only showed an impaired performance on one subtask, the Object Decision task (Lawrence et al., 2000). Here, 7
out of 18 (39%) manifest HD gene carriers scored below the fifth percentile of the control norm (e.g., a score below 15 points)
(Lawrence et al., 2000). This is similar to our results, since 8 of the 22 manifest HD (36%) scored below 15 points on this
task. However, we also observed worse performance on all other visual perceptual tasks, which is in line with another study
that reported an overall impaired performance on visual perception tasks in early manifest HD compared to controls (Wolf
et al., 2014).

Thus, our findings suggest that visual object perception in HD seems to remain unaffected in the premanifest disease stage
but becomes pronounced in early manifest stages (Gémez-Tortosa et al., 1996; Lemiere et al., 2004; Wolf et al., 2014). An
explanation for this could be that brain regions involved in visual perceptual processing remain relatively preserved early in
the course of the disease. Neuroimaging studies have indeed confirmed that atrophy in premanifest HD stages is primarily
located in striatal brain regions (such as the putamen, caudate nucleus, and nucleus accumbens) and can be detected even a
decade before clinical disease onset, whereas atrophy of the cerebral cortex is less pronounced at this stage (Aylward et al.,
2004; Tabrizi et al., 2009). In the human brain, visual processing involves a complex and hierarchical distributed system
including all cortical lobes and many subcortical brain regions. Visual processing in humans is not restricted to the secondary
associative visual areas, but continues within multiple regions in the parietal, temporal and frontal lobes (Kolb & Whishaw,
2015). Although specific functions have not yet been assigned to all of these additional visual brain regions, there is increas-
ing evidence of different regions having certain functions (Kolb & Whishaw, 2015).

The processing of visual stimuli can generally be divided into two distinct anatomical streams. The ventral pathway, pro-
jecting to occipitotemporal brain regions, is associated with object perception, whereas the dorsal pathway, projecting to occi-
pitoparietal brain regions, is concerned with spatial processing (Kravitz et al., 2013; Ungerleider & Haxby, 1994).

Studies in manifest HD gene carriers showed distinct volume loss and cortical thinning in occipital and temporal cortical
regions, such as the lingual and fusiform gyri (Johnson et al., 2015; Labuschagne et al., 2016; Nana, Kim, Thu, Oorschot, &
Tippett, 2014; Rosas et al., 2008). Therefore, our results of impaired visual object perception in manifest HD gene carriers
might be caused by early neurodegenerative changes in the ventral pathway. Previous studies have already shown that visuo-
spatial dysfunction in HD gene carriers was associated with parieto-occipital and temporal cortical volume loss (Johnson
et al., 2015; Labuschagne et al., 2016). However, additional neuroimaging and neuropathological are needed to confirm this
hypothesis for visual object perception.

Deficits in visual object perception and visuospatial function have also frequently been reported in other neurodegenerative
disorders. For example, impaired visual object perception is common in patients with Alzheimer’s disease (AD), dementia
with Lewy bodies (DLB) and moderate stage patients with Parkinson’s disease (PD) (Cagnin et al., 2013; Quental, Brucki, &
Bueno, 2013), while patients with corticobasal degeneration showed more pronounced visuospatial deficits (Bak, Caine,
Hearn, & Hodges, 2006). Both PD and DLB patients performed worse on visual object perception tasks compared to patients
with AD (Mosimann et al., 2004). In corticobasal degeneration, it has been reported that impaired performance on visuospatial
tasks is associated with cortical atrophy in the parietal lobe (Halpern et al., 2004). Studies in patients with PD found correla-
tions between poor performance on visuoperceptual tests and atrophy in the fusiform, parahippocampal, and occipital gyri
(e.g., the occipitotemporal cortex or ventral pathway) (Pereira et al., 2009). Similar to patients with PD, HD gene carriers
show impairments in visuospatial and visuoperceptual functions, which might reflect specific anatomical changes in temporal
and parietal brain regions. As the degree and patterns of impairment varies across diseases, this suggests a different neural
basis in each condition (Bak et al., 2006; Mosimann et al., 2004).

Previous studies in HD patients have used heterogeneous test batteries to examine visual object perception or included
tasks that integrated several visual cognitive domains, such as visuomotor function or visuoconstructive abilities (Goémez-
Anson et al., 2009; Gémez-Tortosa et al., 1996; O’Rourke et al., 2011). We believe that the use of a standardized battery that
examines all visual cognitive domains separately can give a more complete evaluation of visual cognitive function in HD pa-
tients. The cognitive tasks selected in our study are designed to assess specific, dissociable aspects of object perception, rela-
tively independent of other cognitive and motor processes with limited requirement of verbal responses (Rapport et al., 1998;
Warrington & James, 1991). Because HD is a progressive disorder, patients in more advanced disease stages will naturally be
older, as was also seen in our study. Interestingly, despite the fact that our premanifest HD group was younger compared to
the other groups, performance on the visual object perception tasks was independent for age.

This way, we were able to accurately measure visual perception without the influence of age and other HD signs, such as
motor disturbances, slowness in execution (i.e., bradykinesia) or slowness in information processing speed (i.e., bradyphre-
nia). Also, since all participants had a normal primary visual ability and the entire cohort scored above the threshold for the
Shape Detection test, which was used as a screening test for the complete cognitive battery, this implies that our findings
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seem to accurately measure higher-level processing deficits. However, since we did not measure visuospatial function in our
study, it should be noted that the HD patients that showed impaired visual object perception could also have deficits in visuo-
spatial function. This is not unlikely, as impaired visuospatial function has been detected in previous studies, even in premani-
fest HD gene carriers (Johnson et al., 2015; Lemiere et al., 2004; O’Rourke et al., 2011). Furthermore, the subtests of the
VOSP that were used in our study might not encompass a complete assessment of visual perception, since we have not exam-
ined visual (emotion) recognition or contrast and color perception. The small sample size and markedly younger premanifest
HD group in our cohort might have limited our ability to observe differences in the premanifest HD group compared to the
manifest HD and control groups. Future studies are, therefore, needed to examine changes in visual perceptual and spatial
abilities in premanifest HD gene carriers when the disease progresses and they convert into manifest HD. Still, retest effects
on the VOSP object perception tasks were observed in premanifest HD and controls over time (Lemiere et al., 2004), so cau-
tion is warranted when selecting tests for visual cognition. Finally, it would be interesting to assess the influence of visual
cognitive deficits on decline in daily functioning in a larger and longitudinal cohort study.

In conclusion, impaired object recognition is present in early manifest HD. In addition, the visual perceptual tasks of the
VOSP battery and the Figure Recognition task of the GIT are sensitive to distinguish manifest HD gene carriers from controls.
As these tasks require minimal interference of other cognitive functions or motor skills, these tasks should be included in a
standardized battery and used as a marker of visual cognitive function.
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