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Abstract: The ADAM (a disintegrin-like and metalloproteinase) proteins are a family of 

transmembrane cell-surface proteins with important functions in adhesion and proteolytic 

processing in all animals. Human ADAM-15 is the only member of the ADAM family 

with the integrin binding motif Arg-Gly-Asp (RGD) in its disintegrin-like domain. This 

motif is also found in most snake venom disintegrins and other disintegrin-like proteins. 

This unique RGD motif within ADAM-15 serves as an integrin ligand binding site, 

through which it plays a pivotal role in interacting with integrin receptors, a large family of 

heterodimeric transmembrane glycoproteins. This manuscript will present a review of the 

RGD-containing disintegrin-like domain structures and the structural features responsible 

for their activity as antagonists of integrin function in relation to the canonical 

RGD template. 
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1. Introduction 

The “disintegrin” terminology was initially applied in 1990 to describe a family of cysteine-rich, 

RGD-containing proteins, isolated from the venom of snakes that inhibit platelet aggregation and 

integrin-mediated cell adhesion [1–3]. Subsequently, homologous proteins in which the arginine 

residue was replaced within the RGD motif including the motifs: KGD [4,5], MGD [6], VGD [7], 
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WGD or MLDG [8,9] were also adopted into the disintegrin family. The RGD sequence is also found 

in proteins such as decorsin [10] and ornatin [11] from leech toxins, and variabilin [12] from hard tick 

toxin. The term “disintegrins” was eventually reserved for a particular form of snake venom toxins, 

and the term “disintegrin-like protein” for RGD proteins with similar properties but different general 

structures, including the disintegrin-like/cysteine-rich (D/C) domains of the PIII class snake venom 

metalloproteinases (SVMP) [13,14]; the ADAM (a disintegrin-like and metalloproteinase) [15–18] and 

ADAMTS (ADAM with thrombospondin motifs) [19,20]; ADAMTSL (ADAMTS-like) families [21] 

and MDC (metalloproteinase disintegrin-like cysteine-rich) proteins [22,23]. The primary sequences of 

disintegrin-like domains in the ADAMs family were homologous to those found in snake venom 

disintegrins. These proteins constitute one subfamily of the so-called adamalysins, which is a protein 

family belonging to metzincin superfamily of metalloproteinases. Members of this large and conserved 

protein family have been isolated from a variety of organisms, including mammals, reptiles and 

invertebrates. Of the 34 ADAM proteins described including the 19 human ADAMs, human  

ADAM-15 (also called MDC-15, ADAM metallopeptidase domain 15 or metargidin) is the only 

ADAM protein with the RGD integrin ligand consensus motif in a position analogous to that found in 

snake venom disintegrins. The RGD sequence is followed by an additional cysteine residue that is not 

present in RGD-type snake venom disintegrins and has only been detected in non-RGD-type SVMP 

and ADAM proteins. In this review, we focus on the disintegrin-like domain in ADAM 15 and its 

structure and function. 

2. Overview of the ADAM-15 Gene Structure 

Human ADAM-15 was discovered in a screen for novel ADAMs by PCR [24]. Expression of a 

disintegrin-like protein had already been observed in cultured human vascular cells and in vivo [25]. 

ADAM-15 was named metargidin since it carried an RGD sequence in a similar position as snake 

venom disintegrins (metalloproteinase-RGD-disintegrin protein) [26].  

Human ADAM 15 is located at 1q21.3 of chromosome 1, the largest human chromosome, 

with ~8% of all human genetic information starting at 153,290,386 bp and ending at 153,301,876 bp 

from the pter (phosphotriesterase related) and reported to have six transcripts and 11,491 bases. Large 

introns (intron 1, 1183 bp) occur on the 5 and 3 sides of the gene with a cluster of exons between 

them (Figure 1) [27].  

Figure 1. Schematic of partial chromosome 1 with ADAM-15 gene indicated by an arrow. 
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The gene for ADAM-15 contains 23 exons varying in size from 63–316 bp and 22 introns ranging 

between 79–1283 bp [28]. The ADAM-15 protein isoforms deduced have combinations of cytosolic 

regulatory protein interacting motifs with one or both of the almost identical proline-rich regions 

encoded by exons 20 and 21, where the residues RxLPxxP are indispensable for nephrocystin SH3 

binding [29].  

Human ADAM-15 contains a signal peptide sequence (1 to 17 amino acids (aa)) (Figure 2), 

followed by a pro-peptide or pro-domain (18–206 aa) thought to function as an intramolecular 

chaperone (IMC). The pro-domain is cleaved from the metalloproteinase domain by furin [30], a 

membrane associated endoprotease that cleaves precursor proteins on the C-terminal side of the 

consensus sequence.  

Figure 2. Domain structures of ADAMs compared to snake venom metalloproteinases 

(SVMP). Members of the ADAM gene family are classified as membrane-anchored 

ADAMs containing cysteine-rich domain, cytosolic tail, disintegrin-like domain, epidermal 

growth factor-like domain, metalloproteinase domain, Pro-peptide domain and 

transmembrane (TM) domain. SVMP can be classified into four subgroups ((P-I to P-IV). 

S.P. denotes signal peptide. 

 

3. Overview of the Structural Domains of ADAM 15  

The pro-domain maintains the metalloproteinase site of ADAM in an inactive state through a 

cysteine switch [31] similar to that of matrix metalloproteinases (MMPs) and other reprolysins. In this 

regard, ADAMs, including ADAM-15, are reprolysin-like proteins. The MMPs or matrixins are 

synthesized as zymogens, which in the case of soluble matrixins are secreted while other members of 

the family remain bound to the cell surface. The cysteine switch motif in ADAMs may play a role 

during ADAM biosynthesis. The cysteine residue preferentially coordinates the active site zinc atom 
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sequestering the metalloproteinase domain in an inactive conformation. There are several zinc 

interacting sites in ADAM-15 (179, 348, 352, 358 aa). Inhibitors of the early secretory pathway block 

the processing of ADAM-15 and ADAM-9, thus positioning the location of ADAMs processing and 

activation at the trans-Golgi network [32]. The secondary function of the pro-domain is to chaperone 

proper folding of the ADAMs, especially the metalloproteinase domain since an ADAM-10 construct 

lacking the pro-domain is catalytically inactive in vivo [33]. 

The metalloproteinase domain of ADAM-15 (207–419 aa) and other ADAMs are well conserved, 

but only 25 out of 40 ADAMs, including ADAM-15 (348–359 aa) and ADAMs 1, 8–10, 12, 13, 16, 17, 

19–21, 24–26, 28, 30, 33–40, have the zinc binding catalytic site consensus sequence 

HExxHxxGxxHD where x is any amino acid. Three His residues and a water molecule tetrahedrally 

coordinate the zinc, and the Glu residue acts as a catalytic base [34].  

The disintegrin-like domain is downstream of the metalloproteinase domain. The ADAM-15 

disintegrin-like domain contains 90 aa (Met420 to Glu510), while in other ADAMs this domain contains 

60–90 aa. ADAM-15 and has 15 Cys residues showing sequence similarity to the snake venom 

disintegrins [35]. 

The cysteine-rich domain of ADAM-15 (511–656 aa) is thought to regulate cell fusion and may be 

involved in the activation of latent ADAM-15 and removal of the pro-domain through mechanisms 

that are not fully elucidated [17,36]. 

An EGF-like domain (657–685 aa) is downstream of the cysteine-rich domain, named for its 

similarity to epidermal growth factor (EGF) and other related growth factors and containing six, highly 

conserved cysteine residues with characteristic spacing [37]. Certain data suggest the EGF-like domain 

is involved in substrate specificity including substrate cleavage and recognition [38]. 

ADAM-15 and many others are type I membrane proteins anchored to the surface of the cell 

through the extracellular domain (207–696 aa), TM domain (697–717 aa) including a putative 

phosphorylation site (715 aa) and cytoplasmic domain near the C-terminus (718–814 aa). The 

cytoplasmic domain of ADAM-15 interacts with endophilin I and the sorting nexin 9. In contrast, all 

the ADAMTSs lack a TM domain and are secreted proteases.  

The cytosolic portion (cytoplasmic tail) of ADAM-15 (718–814 aa) and many other ADAMs vary 

in length (between 40–250 aa) and sequence composition. Similar to other proteolytically active 

ADAMs, the cytosolic part of ADAM-15 is rich in proline-rich consensus binding sites motif  

(766–772 aa and 801–806 aa). The cytosolic domain of ADAM-15 is encoded by exons used 

alternatively in normal tissues giving rise to splice variants with different compositions of putative 

protein binding motifs [29]. Certain ADAM-15 variants have been associated with poor survival of 

breast cancer patients [39]. 

ADAM-15 has another putative phosphorylation site (tyrosine 735 aa) as do many other ADAMs 

for serine-threonine and/or tyrosine kinases. Phosphorylation of ADAMs may serve to modulate 

adaptor functions of the protein to assemble complexes of proteins at sites of functional activity.  

4. Integrin Interactions of the Disintegrin-Like Domain of ADAM-15 

The initial identification of disintegrin-like domains within mammalian ADAMs led to the 

hypothesis that these regions interact with integrins similar to the related domains in snake venom 
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proteins [17]. There is now considerable evidence that the extracellular domains of ADAMs interact 

with integrins. Recombinant disintegrin-like domains have been identified with a consensus-binding 

motif, CRxxxxxCDxxExC, in their disintegrin loops [40]. These interactions influence cell adhesion 

and cell–cell interactions including those dependent upon the integrins: 21, IIb3, 41, 47, 51, 

61, 64, 91, V3 and V [41,42]. 

5. Structural Model of the Disintegrin-Like Domains of ADAMs Proteins 

The disintegrin-like domain (D-domain), which is located downstream of the metalloprotease 

domain, consists of 60 to 90 aa with 6 to 15 Cys residues. Most D-domains of ADAMs have an XCD 

motif with the exception of ADAM-15, which contains the RGD sequence (484–486) [43] similar to 

the snake venom disintegrins. Snake venom disintegrins are known to be potent inhibitors of various 

integrins. Snake venom disintegrins usually have a RGD motif that confers the ability to interact with 

integrins [44]. The disulfide bridge of RGD-containing disintegrins has been evaluated by chemical 

methods, NMR spectroscopy and crystallography. The most striking feature is the consistency of the 

disulfide bonds around the RGD sequence leading to the proposal of an “RGD-containing loop” in 

each protein, which may be important to their potency and selectivity. NMR studies of this loop in 

snake venom proteins, including kistrin [45–47], flavoridin [48], echistatin [49–51], albolabrin [52] 

and dendroaspin [53] along with the crystal structure of trimestatin [54], show that the RGD sequence 

is presented at the apex of a -turn. Although the active sequence in most disintegrins is the RGD 

tripeptide, some members of the family contain other sequences such as KGD, MVD, MLD, VGD, 

ECD, or MDG (single letter amino acid code) in complimentary positions and have been characterized 

as integrin-binding motifs [55]. The disintegrin-like domains of ADAMs and the P-III group SVMPs is 

larger than the RGD-disintegrins, and most of them have an XCD motif (where X is any amino acid) 

in their disintegrin-like domains, with the exception of ADAM-15 which contains the RGD 

sequence [56]. P-III group SVMPs comprising the metalloproteinase, disintegrin-like and cysteine-rich 

domains belong to the ADAM/adamalysin/reprolysin family [14,57–61]. Several ADAMs share a 

sequence Rx6DLPE in the D-domain, which can bind avidly to 91 e.g., ADAM-1, -2, -12, and -15, 

whereas ADAM-10 and -17 do not since they lack this motif [56]. 

In the study of metalloproteinase domain-containing proteins including the active sequence in terms 

of structure and function, the crystal structure of the entire ectodomain of mature ADAM-22 [62] 

reported following the crystallographic studies of two PIII SVMP proteins, VAP1 (vascular apoptosis-

inducing protein-1) and VAP2B (vascular apoptosis-inducing protein 2B), proved very useful [63,64]. 

Overlaying the SVMP structures on ADAM-22 revealed a positional shift in the D-domain and  

C-domains (the cysteine-rich domain, 530–676 aa) in ADAM-22 relative to the corresponding 

domains in the SVMPs. 

The D-domain that follows the metalloproteinase domain (M-domain) is seen in VAP1 and VAP2B 

and divided into 2 sub-domains, the “D-shoulder” (Ds) and ‘‘D-arm” (Da) (Figure 3). Both the Ds 

(residues 396–440) and Da subdomains (residues 441–487) contain calcium-binding sites [64–66]. 

ADAM-22 contains three putative calcium ions, two in the D-domain and one in the M-domain M, 

metalloproteinase-like domain (residues 233–435). The Ds- and Da subdomains consist of a series of 

turns and two short regions of antiparallel-sheet forming a continuous C-shaped structure, which, 
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along with the N-terminal region of the C-domain, forms a “C-wrist” (Cw) segment. The Cw segment 

is followed by a ‘‘C-hand” (Ch) segment with a hypervariable region (HVR) at its distal portion [65]. 

These structural features are summarized in the schematic shown in Figure 3. There are three disulfide 

bonds in the Ds-segment, three in the Da-segment and one in the Cw-segment, and the segments are 

connected by single disulfide bonds (Figure 3). X-ray studies of atragin, a protein of P-III family of 

SVMPs, showed one disulfide bond connecting Ds and Da and another disulfide bond connecting Da 

and Cw comprised of one cystine residue in the disintegrin-like loop (XXCD) that caused it to become 

inaccessible for integrin-binding as in VAP1 and VAP2 [61]. 

Figure 3. Schematic presentations of the MDC domain. (A) and (B) present orthogonal 

views of the MDC domain of catrocollastatin/VAP2B. The M-domain, linker, Ds, Da, Cw 

and Ch segments, Zn2+ binding site, and the HVR are shown in yellow, gray, cyan, pink, 

gray, light green, red and blue, respectively. The GM6001 (an inhibitor) bound to the 

protein molecule is shown in ball and stick representation and three Ca binding sites are 

indicated as I-III, adapted with permission [66]. 
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6. Disintegrin-Like Domain of ADAM-15: Structure and Function 

ADAM-15 has been implicated in cell-cell, cell-matrix interactions and in the proteolysis of 

molecules on the cell surface or the extracellular matrix [67–70]. The function of ADAM-15 in  

cell-cell adhesion has been attributed to the D-domain as integrin ligand [71]. Human ADAM-15 

provided interesting insights into analyzing the structure/function of the RGD motif dependent 

interaction with integrin V3 compared to its RGD-independent association with 91 [59]. The study 

mapped the 91-interaction site to a motif RxxxxxxDLPEF (481–492 aa in human ADAM-15 

wherein the RGD motif is at 484–486 aa), that is conserved in all ADAMs excepting ADAM-10  

and -17 [59]. 

7. Investigation of the Integrin Interaction Using a Recombinant Disintegrin Domain from 

ADAM-15 (ddADAM-15) and Various Mutants 

The integrin, 91, is widely expressed on smooth muscle and epithelial cells, and mediates 

adhesion to the extracellular matrix proteins, osteopontin and tenascin-C [72]. We have studied a 

number of mutants of ddADAM-15 (Figure 4). Recombinant GST-ddADAM-15 and its mutants 

supported the adhesion of 91-transfected CHO cells, which were shown to reach 50% of the 

maximum number of adherent cells as dd(den)-ADAM-15 > ddADAM-15 > dd(2)-ADAM-15 > 

dd(12)-ADAM-15 > dd(19)-ADAM-15 > dd(A64)-ADAM-15 [73]. RGD-independent binding of 

integrin 9 to ddADAM-15 mediates cell-cell interactions [71].  

Figure 4. Mutants of disintegrin-like domain of ADAM-15. Sequence alignment of 

ddADAM-15 and its mutants plotted using CLC protein workbench version 5.2. 

Numbering is based on the amino acid sequence of ddADAM-15. The dd(A64)-ADAM-15 

shows that the R residue in R64GD of ddADAM-15 was replaced by Alanine;  

dd(12)-ADAM-15 denotes that the disintegrin-like RGD-loop of ADAM-15 was replaced 

by that of ADAM-12. A similar designation was applied to others. dd(den)-ADAM-15 

denotes that the disintegrin-like RGD-loop of ADAM-15 was replaced by that of 

dendroaspin (den), a disintegrin-like protein [53]. 
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Inhibition of adhesion of V3 integrin-mediated A375-SM cells (a highly metastatic variant of 

A375 cells, containing V3 integrin) to fibrinogen, by dd-ADAM-15 and its mutants, is ranked as 

dd(den)-ADAM-15 > dd(2)-ADAM-15 > ddADAM-15 > dd(12)-ADAM-15 > dd(19)-ADAM-15 > 

dd(A64)-ADAM-15 [73]. Charrier et al. have reported that overexpression of ADAM-15, containing a 

mutation in the RGD motif in Caco2-BBE (human intestinal cell line) monolayers, decreases Jurkat 

cell adhesion, and showing ADAM-15-mediated binding of T cells on intestinal epithelial cells is RGD 

sequence-dependent [74]. This suggests that the V3 and 51 integrins expressed on T lymphocyte 

membranes are putative binding partners for epithelial ADAM-15. In vitro experiments confirmed that 

ddADAM-15 interacts with V3 and 51 integrins on hematopoietic cells [74], and ADAM-15 

interaction with these integrins is RGD-dependent [75]. Mosnier et al. reported that ADAM-15 is 

upregulated in epi- and endothelial cells in close contact with51-expressing leukocytes, suggesting a 

role in leukocyte migration [76]. ADAM-15 interacts with V3 and 51 integrins, both of which are 

involved in endothelial cell migration indicating a possible role in atherosclerosis [77,78]. 

ddADAM-15 is reported to bind via 21 to HT1080 (a human fibrosarcoma cell line), but the 

binding is weaker than with dd(den)-ADAM-15, which showed the highest binding ability for HT1080 

cells [73). The order of binding potency for dd recombinant proteins to 41-mediated MOLT 4 

(human acute lymphoblastic leukemia cell line containing 41) cell is demonstrated to be  

dd(2)-ADAM-15 > dd(19)-ADAM-15 > dd(den)-ADAM-15 = ddADAM-15 > dd(12)-ADAM-15 

while dd(A64)-ddADAM-15 showed little/no ability to support cell adhesion compared to its wild-type 

counterpart. These results suggest that the RGD tripeptide motif may play a role in this binding as 

dd(A64)-ddADAM-15 failed to bind to this cell line. However, since both dd(den)-ADAM-15 and 

ddADAM-15 contain the RGD-motif and others do not have the RGD, the difference in potencies 

emphasizes the importance of the flanking residues in determining potency [73].  

Although no inhibition to platelet aggregation was found for dd(2)-ADAM-15, dd(A64)-ADAM-15, 

dd(19)-ADAM-15 and dd(12)-ADAM-15 with ADP-induced platelet aggregation in platelet-rich 

plasma, ddADAM-15 showed low activity with a maximum 25% inhibition at 10 μM despite the 

presence of the RGD motif, which is known to be favored for binding to platelet IIB3 [73]. Further, 

yeast-expressed ddADAM-15 inhibited binding of IIB3 to its biological ligands fibrinogen in a 

dose-dependent manner. Mutation of the three residues proximal to the RGD tripeptide sequence, 

RPTRGD sequence to NWKRGD (named NWK mutant), increased its affinity for IIB3. The NWK 

mutant had a greater inhibitory action on human platelet aggregation than ddADAM-15 [79], 

suggesting that flanking amino acid residues are important for activity of the RGD motif.  

We have shown that ddADAM-15 can bind to airway smooth muscle cells (ASMCs) and this 

binding can be modulated by putative disintegrin-like loops within the ddADAM-15 scaffold [80]. 

This adhesion was mediated by the 1-asociated integrins including 41, 51, 91. Hence, 

ddADAM-15 can serve as a 1 integrin antagonist as seen by the inhibition of ASMC binding to 

fibrinogen. ddADAM-15 inhibited PDGF-induced cell migration with the RGD-motif playing a crucial 

role as shown by the replacement of the putative disintegrin-like loop with those of ADAM-2, -12 

and -19. We established that fibrinogen, rather than fibronectin, binding was blocked by ddADAM-15 

in a dose-dependent manner in 1-mediated cell binding, implying that ddADAM-15 and fibrinogen 

share a similar 1 integrin binding site. Such a region may not be involved in fibronectin binding 

despite the location of an RGD sequence in the tenth type III repeat of fibronectin, which is the major 
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binding site for 1 integrin with 51 [81,82]. The role of RGD in ddADAM-15 may be limited, as this 

is the only ADAM family protein containing this sequence. It cannot be ruled out that regions beyond 

the disintegrin-like loop also play a role in integrin-binding since ddADAM-15 and ddADAM-12, 

which lacks the RGD-motif can interact with 1-associated 9 integrin [68], and -associated α5 

integrin [67] in other cell types. 

8. ADAM-15 Is Associated with Diseases 

The role of ADAM-15 in diseases appears to involve mechanisms as diverse as cell–cell 

interactions, cell-extracellular matrix (ECM) interactions and shedding activity. There is growing 

evidence of links between ADAM-15 and human diseases including cancer and atherosclerosis. It was 

reported that mRNA and/or protein levels of ADAM-15 are upregulated in multiple adenocarcinomas 

including cancer of the breast, stomach, lung, pancreas and prostate [83]. Horiuchi et al. reported that a 

deficiency of ADAM-15 in a mouse model for retinopathy resulted in reduced neovascularization [84]. 

Consistently, smaller tumors were formed in the ADAM-15-deficient mice after injection with 

melanoma cells [85]. Yamada et al. demonstrated that pancreatic cancer cells expressed significantly 

higher levels ADAM-15 mRNA than normal pancreatic epithelial cells [85]. Najy et al. [86] found that 

downregulation of ADAM-15 in the prostate cancer cell line, PC3 decreased migration and adhesion to 

specific extracellular matrix proteins. Using breast cancer cell lines, the same authors reported that 

ADAM-15 cleaved cadherin E after growth factor deprivation [87]. The cleaved cadherin E bound and 

transactivated HER2/HER3, resulting in increased migration and proliferation. Thus, enhanced 

HER2/HER3 signaling is a potential mechanism by which ADAM-15 could contribute to cancer 

progression. Sun et al. recently reported that ADAM-15 regulates endothelial permeability, which is 

considered as one of the key cellular processes in the development of inflammatory disorders, 

including atherosclerosis [88,89], diabetic complications [90] and inflammatory bowel disease [76]. In 

addition to RGD motif which has an ability to disturb integrin-mediated attachment on the cell surface, 

the RGD peptides are incorporated into cytoplasm and induce apoptosis [91]. Collectively, several 

RGD-containing proteins from venom toxins induced apoptosis, such as contortrostatin [92], 

rhodostomin [93] and salmosin [94]. Since these RGD peptides and RGD-containing proteins interact 

with integrins, the integrins may serve as targets for anti-cancer agents designed using RGD as a 

template. Several studies have shown the potential for these RGD proteins to function as integrin 

antagonists as well as antiagiogenic, antimetastatic and antithrombotic compounds leading to drug 

development for therapeutic usage [95–97]. 

9. Concluding Remarks 

The ddADAM-15 selectively modulates integrin-mediated cell adhesion and ASMC migration. The 

amino acid sequence in the putative disintegrin-like loop plays a crucial role in controlling the 

selectivity and specificity of the ADAM proteins in their interaction with particular integrins. The 

RGD-tripeptide in the putative disintegrin-like loop in ADAM-15 serves as an integrin recognition 

sequence since conversion of RGD into AGD reduced potency, inhibiting A375-SM cell adhesion to 

fibrinogen mediatedbyV3, and showed little/no activity inhibiting 41-mediated MOLT 4  

cell attachment.  
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Details of conformational changes in the RGD-tri-peptide within ddADAM-15 while interacting 

with integrins remain unclear. A putative binding model has been constructed based on the 3D 

structure of integrin V3 in complex, with a cyclic penta-peptide presenting the RGD sequence [98], 

where the RGD motif of ddADAM-15 is located at 64–66 aa (R64GD66) and fits a crevice between the 

propeller ( subunit) and A (1 subunit) domains on the 1-associated complex headpiece. 

Conversely, the RGD motif in atragin (538–540 aa according to the sequence number of atragin), 

located at the end of the 4 helix of the K-like domain, is inaccessible for integrin molecules implying 

that K-like domains bind to the integrin through a non-RGD region, such as the hypervariable region 

(HVR) [61,99]. In this review, we have mainly described the RGD-containing D-domain in ADAM-15 

interacting with integrins, the non-RGD-containing D-domains in other ADAMs are also reported to 

associate with integrins, e.g., ADAM-23 can bind to V3 [100] and ADAM-28 can interact 

with 41 [101]. However, the structural basis for these associations has yet to be defined. Therefore, 

further studies are required to analyze ddADAM-15, ADAM-15 and other ADAMs by X-ray 

crystallography to gain structural information and increase understanding of ADAM-integrin 

interaction. 
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