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Abstract: The meta-analysis aimed to compare the preoperative apparent diffusion coefficient (ADC)
values between low-grade meningiomas (LGMs) and high-grade meningiomas (HGMs). Medline,
Cochrane, Scopus, and Embase databases were screened up to January 2022 for studies investigating
the ADC values of meningiomas. The study endpoint was the reported ADC values for LGMs and
HGMs. Further subgroup analyses between 1.5T and 3T MRI scanners, ADC threshold values, ADC
in different histological LGMs, and correlation coefficients (r) between ADC and Ki-67 were also
performed. The quality of studies was evaluated by the quality assessment of diagnostic accuracy
studies (QUADAS-2). A χ2-based test of homogeneity was performed using Cochran’s Q statistic
and inconsistency index (I2). Twenty-five studies with a total of 1552 meningiomas (1102 LGMs
and 450 HGMs) were included. The mean ADC values (×10−3 mm2/s) were 0.92 and 0.79 for
LGMs and HGMs, respectively. Compared with LGMs, significantly lower mean ADC values for
HGMs were observed with a pooled difference of 0.13 (p < 0.00001). The results were consistent in
both 1.5T and 3T MRI scanners. For ADC threshold values, pooled sensitivity of 69%, specificity of
82%, and AUC of 0.84 are obtained for differentiation between LGMs and HGMs. The mean ADC
(×10−3 mm2/s) in different histological LGMs ranged from 0.87 to 1.22. Correlation coefficients (r) of
mean ADC and Ki-67 ranged from −0.29 to −0.61. Preoperative ADC values are a useful tool for
differentiating between LGMs and HGMs. Results of this study provide valuable information for
planning treatments in meningiomas.

Keywords: ADC; DWI; MRI; meningioma; meta-analysis

1. Introduction

Meningiomas are the most common benign intracranial tumors and account for more
than 30% of all brain tumors [1]. The 2016 World Health Organization (WHO) classification
of central nervous system tumors divides meningiomas into three grades based on the
invasive and histopathological features [2]. Eighty percent of meningiomas are grade I
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benign meningiomas, referred to as low-grade meningiomas (LGMs); the remaining are
grade II atypical meningiomas and grade III malignant meningiomas, referred to as high-
grade meningiomas (HGMs) [2]. Most LGMs are slow-growing tumors and usually do
not cause clinical symptoms. In contrast, the HGMs show a higher risk of recurrence and
lead to higher morbidity and mortality. The recurrence rates were 14.8%, 49.4%, and 69.7%
in grades I, II, and III meningiomas, respectively, and overall 5-year survival was 92%
for grade I, 78.5% for grade II, and 44% for grade III meningiomas [3,4]. The treatment
planning of meningiomas is highly associated with tumor grading. Surgical resection is
considered appropriate for LGMs, whereas adjuvant radiotherapy is recommended for
HGMs [5,6]. Thus, correct preoperative prediction of tumor grades for meningiomas is
crucial in clinical practice.

Diffusion-weighted magnetic resonance imaging (DWI) and apparent diffusion coeffi-
cient (ADC) value is a noninvasive, easily accessible technique that has been widely used
as a tumor imaging biomarker [7]. It reflects the mobility of water molecules in a specified
time, which provides biomedical information of the tumor microstructure [8]. High DWI
signal and low ADC value usually indicate the water restriction phenomenon caused by
high tumor cellularity [7,8]. Therefore, this technique is widely used to predict tumor char-
acterization noninvasively in several types of brain tumors [9]. Several studies described
the correlation of ADC values and the grading of meningiomas [10–15]. Some authors
reported lower ADC values in HGMs compared to those in LGMs, which highlights that
ADC could be a useful imaging marker to differentiate the grades of meningiomas [10–15].
However, other studies revealed inconsistent findings [16–19].

A recent meta-analysis [20] performed a literature search (i.e., Medline and Scopus)
in 2019, which demonstrated an overlap in ADC values between LGMs and HGMs
despite a higher ADC value in the LGMs, suggesting that ADC may not accurately
predict the proliferation potential of the meningiomas. More evidence was presented
after 2019 [14,15,19,21–23], and updating the latest evidence is imperative. The aim of
this meta-analysis was to systematically review the latest evidence from four databases
(Medline, Cochrane, Scopus, Embase) and explore the ability of ADC values to differentiate
LGMs and HGMs.

2. Materials and Methods
2.1. Search Strategy

We searched the Medline, Cochrane, Scopus, and Embase databases from their in-
ception dates until January 2022. The Boolean operator “OR” was used to cover similar
concepts, while “AND” was used to intersect different concepts. The keywords below
were applied to search for eligible records: (“meningioma*” or meningioma [MeSH term])
and (“apparent diffusion coefficient” or ADC or “Diffusion Magnetic Resonance Imaging
[MeSH term]” or “diffusion weighted imaging” or DWI). Subject headings (i.e., MeSH
terms in Medline) were also adopted in the current literature search. Additional records
were screened by reviewing the reference lists of the relevant studies.

2.2. Selection Criteria

Prospective or retrospective studies with patients receiving brain MRI evaluation
for meningiomas were included. The inclusion criteria were imaging that must have
been performed before surgery or treatments, and the results had to include the mean
ADC values with standard deviation in low-grade and high-grade meningiomas. Letters,
comments, editorials, case reports, proceedings, reviews, and personal communications
were excluded.

2.3. Study Selection and Data Extraction

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
2020 guidelines were applied [24]. The following data were extracted from studies that
met the selection criteria: the name of the first author, year of publication, study design,
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1.5T or 3T MRI, number of participants in each group, histological tumor grades, mean
and standard deviation of ADC values in the LGMs and HGMs, b-values of DWI, ADC
measurement methods, threshold values of ADC between LGMs and HGMs, and the
correlation coefficient (r) between mean ADC and Ki-67 index.

2.4. Quality Assessment

The quality of included studies was assessed using the Quality Assessment of Diag-
nostic Accuracy Studies (QUADAS-2) [25]. The risk of bias in each study was reported as
“low,” “unclear” or “high” in the following domains: patient selection, index test, reference
standard, and flow and timing. The assessments were performed by two independent
reviewers, and a third reviewer was consulted for any uncertainty.

2.5. Statistical Analysis

Differences in mean with 95% confidence interval (CI) were calculated for each indi-
vidual study and for those studies pooled. A χ2 test of homogeneity was performed, and
the inconsistency index (I2) and Q statistics were determined. By assuming heterogeneity
across the studies based on a previous meta-analysis [20], a random-effects model was used
for outcome assessment, regardless of the finding of statistical heterogeneity. Pooled effects
were calculated, and a two-sided p-value < 0.05 was considered statistically significant.
Sensitivity analysis was evaluated for the outcomes using the one-study-removed test. The
analyses were performed using Comprehensive Meta-Analysis (version 3.0) and Review
Manager (version 5.4.1) statistical software. For subgroup analysis in ADC threshold values,
diagnostic test accuracy and the summary receiver operating characteristics (sROC) were
performed using R statistical software (version 4.1.1). Pooled sensitivity, specificity, and
area under sROC (AUC) were calculated using the bivariate random-effects model [26,27].

3. Results
3.1. Literature Search and Study Characteristics

Figure 1 displays the PRISMA flow chart of the study acquisition. Initially, the search of
the databases produced 1322 citations. After removing 451 duplicates, 871 publications were
screened for eligibility according to the titles and abstracts. The screening process yielded
79 potentially eligible articles for full-text review. A total of 54 studies were excluded due to
lack of DWI analysis (n = 38), overlapping data (n = 3), no reported mean ADC (n = 6), no
reported standard deviation (n = 5), or review article (n = 2). Finally, 25 studies published
from 2001 to 2021, and involving 1552 patients, were included for the present meta-analysis
(Figure 1). The baseline characteristics of all included studies are summarized in Table 1.
For the included 25 studies, 18 studies were conducted using a retrospective design, while
7 studies were conducted using a prospective design. Sixteen of the 25 studies used 1.5T
MRI [10,11,14–16,19,21,23,28–35], six studies used 3T MRI [13,22,36–39], two studies used
both 1.5T and 3T MRI [40,41], and one study used 1T MRI [17]. Among the 1552 patients,
1102 patients were diagnosed as LGMs, while 450 patients were diagnosed as HGMs.

Table 1. Baseline characteristics of the 25 studies included in the meta-analysis.

Study Study Design MRI ROI b Value LGMs HGMs
Tesla (s/mm2) Numbers Mean ADC SD Numbers Mean ADC SD

(×10−3 mm2/s) (×10−3 mm2/s)

Filippi (2001) Prospective 1.5T Single 0,1000 13 1.03 0.29 4 0.53 0.12
Hakyemez (2006) Prospective 1.5T Single 0,1000 32 1.17 0.21 7 0.75 0.21
Nagar (2008) Retrospective 1.5T Single 0,1000 23 0.88 0.08 25 0.66 0.13
Pavlisa (2008) Prospective 1.5T Single 0,500,1000 21 0.94 0.06 5 0.92 0.09
Toh (2008) Prospective 3T Single 0,1000 9 0.96 0.17 3 0.79 0.13
Santelli (2010) Retrospective 1T Single 0,800 79 0.96 0.19 23 0.92 0.09
Sanverdi (2012) Retrospective 1.5T Single 0,500,1000 135 0.99 0.4 42 0.84 0.10
Bano (2013) Prospective 1.5T Single 0,1000,2000 18 1.04 0.12 8 0.64 0.05
Gupta (2013) Retrospective 1.5T Single 0,1000 32 0.83 0.11 14 0.70 0.09

3T Single 0,1000 34 0.82 0.12 14 0.68 0.12
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Table 1. Cont.

Study Study Design MRI ROI b Value LGMs HGMs
Tesla (s/mm2) Numbers Mean ADC SD Numbers Mean ADC SD

(×10−3 mm2/s) (×10−3 mm2/s)

Tang (2014) Retrospective 1.5T Single 0,1000 46 0.75 0.03 22 0.84 0.14
Surov (2015) Retrospective 1.5T Whole 0,1000 42 0.96 0.03 7 0.80 0.03
Baskan (2016) Retrospective 3T Single 0,1000 33 0.81 0.12 13 0.66 0.08
Hirunpat (2016) Retrospective 3T Single 0,1000 20 0.83 0.37 7 0.70 0.06
Abdel-Kerim (2018) Prospective 1.5T Single 0,1000 36 1.02 0.16 11 0.72 0.09
Aslan (2018) Retrospective 1.5T Single 0,1000 32 0.90 0.15 13 0.79 0.17
Azeemudin (2018) Retrospective 1.5T Single 0,1000 40 0.63 0.05 22 0.70 0.04

3T Single 0,1000 44 1.03 0.10 15 1.05 0.11
Gihr (2018) Retrospective 1.5T Whole 0,1000 28 0.99 0.14 9 0.78 0.07
Lin (2019) Prospective 3T Single 0,1000 78 0.85 0.16 15 0.77 0.10
Lu (2019) Retrospective 3T Single 0,1000 88 0.89 0.09 64 0.81 0.10
Rad (2019) Retrospective 1.5T Whole 0,1000 37 1.05 0.23 25 0.99 0.29
Ranabhat (2019) Retrospective 1.5T Single 0,90,1000 31 0.88 0.02 7 0.72 0.01
Ataly (2020) Retrospective 1.5T Single 0,1000 14 0.81 0.12 14 0.75 0.09
Bohara (2020) Retrospective 3T Whole 0,1000 45 0.89 0.10 14 0.89 0.15
Bozdag (2020) Retrospective 1.5T Single 0,1000 72 0.90 0.09 22 0.83 0.11
Borujeini (2021) Retrospective 1.5T Whole 0,500,1000 20 0.90 0.01 25 0.63 0.01

159
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3.2. Differences in ADC Values between LGMs and HGMs

The difference in ADC means of the two groups are summarized in Figure 2. Hetero-
geneity of the mean ADC values existed among the 25 studies (Q statistic = 655.51, I2 = 96%,
p < 0.00001). Pooled differences in mean ADC values (0.13, 95% CI = 0.09 to 0.17) indicated
that the ADC values were lower in HGMs than in LGMs (p < 0.00001, Figure 2), with mean
values of 0.79 × 10−3 mm2/s (95% CI = 0.78 to 0.81) and 0.92 × 10−3 mm2/s (95% CI = 0.90
to 0.93), respectively.

3.3. Subgroup Analysis for 1.5T and 3T MRI Scanners

Both 1.5T and 3T MRI scanners showed significant differences in mean ADC values
between LGMs and HGMs (Figure 3). The results of 1.5T MRI scanners showed that LGMs
had higher ADC values compared to HGMs (mean difference = 0.16, 95% CI = 0.10 to 0.22,
p < 0.00001; I2 = 99%; 16 studies; n = 954) (Figure 3a). Results for 3T MRI scanners also



Diagnostics 2022, 12, 630 5 of 11

showed that LGMs also had higher ADC values compared to HGMs (mean difference = 0.08,
95% CI = 0.04 to 0.13, p = 0.0004; I2 = 69%; 6 studies; n = 496) (Figure 3b).
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3.4. ADC Threshold Values for Differentiation between LGMs and HGMs

Six of the 25 studies reported threshold ADC values for differentiation between LGMs
and HGMs (Table 2) [10,23,29,32,33,37]. The forest plot and sROC curve (Figure 4) of the
six studies showed a pooled sensitivity of 69%, specificity of 82%, and AUC of 0.84.

Table 2. ADC threshold values for differentiation between LGMs and HGMs.

Study
ADC Threshold

Values
(×10−3 mm2/s)

Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%)

Nagar (2008) 0.80 96 82 86 95
Tang (2014) 0.70 29 94 67 75
Surov (2015) 0.85 73 73 33 97
Hirunpat (2016) 0.80 75 65 46 87
Abdel-Kerim
(2018) 0.79 81 92 75 94

Bozdag (2020) 0.89 56 82 91 36
PPV: positive predictive value. NPV: negative predictive value.
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3.5. Correlation Coefficients (r) between Mean ADC and Ki-67

Five studies reported a weak-to-moderate inverse correlation between mean ADC
values and Ki-67 index in meningiomas [10,13,23,32,34], with the correlation coefficient
ranging from −0.28 to −0.61 (Table 3).

Table 3. Correlation coefficients (r) between mean ADC and Ki-67.

Study r

Tang (2014) −0.34
Surov (2015) −0.61
Baskan (2016) −0.33
Gihr (2018) −0.32
Bozdag (2020) −0.29

3.6. Quality Assessment and Sensitivity Analysis

The results of quality assessment for all studies included in this meta-analysis are
shown in Supplementary Figure S1, and most studies showed an overall low risk of
bias. Sensitivity analysis was performed using one-study-removed analysis in which the
meta-analysis of the mean ADC values was performed with each study removed in turn
(Supplementary Figure S2). Differences between mean ADC values did not vary markedly
with the removal of each study, indicating that the data were not overly influenced by
each study.

4. Discussion

MRI is widely used for the evaluation of meningioma; however, no broad consensus
of conventional MRI findings that can distinguish HGMs from LGMs [42]. The aim of
this study was to evaluate the effectiveness of preoperative ADC values for differentiation
between low-grade and high-grade meningiomas. The present meta-analysis showed that
preoperative mean ADC values were significantly lower in HGMs than in LGMs, and
the results were consistent for both 1.5T and 3T MRI scanners. In subgroup analyses, a
good AUC was obtained in ADC threshold values for differentiation between LGMs and
HGMs. The mean ADC values in different histological LGMs and correlation coefficients
(r) between mean ADC and Ki-67 were also presented in this study.

According to the WHO 2016 classification, the grading of meningiomas is based on the
mitotic number and the invasive features. WHO grade I meningiomas are characterized
by less than four mitotic cells per 10 high power fields (HPF), no brain invasion, and less
than three of the following atypical features: increased cellularity, necrosis, prominent nu-
cleoli, sheeting, and the high nuclear-to-cytoplasmic ratio [2]. WHO grade I meningiomas
encompass nine histological subtypes, including meningothelial, fibroblastic, transitional,
psammomatous, angiomatous, microcystic, secretory, lymphoplasmacyte-rich, and meta-
plastic meningiomas [43]. In contrast, grade II and III meningiomas are defined as having
more mitotic cells (≥4) per 10 HPF, or brain invasion, or with more than three atypical
features [2]. Three histological subtypes (choroid, clear-cell, and atypical) were identified
in WHO grade II meningiomas, and another three subtypes (papillary, rhabdoid, and
anaplastic) were found in WHO grade III meningiomas [43].

The Ki-67 index is an important cellular proliferation marker, and a positive correlation
between the Ki-67 index and grading of meningiomas was reported [44]. Moreover, a higher
Ki-67 index is associated with poor prognosis and a higher risk of tumor recurrence in
meningiomas [45]. ADC values were shown to reflect the microstructural cellularity in
many tumors [7]. In fact, some authors reported that ADC values correlated inversely
with the Ki-67 proliferation index and are helpful in differentiating low and high-grade
meningiomas [10,12,13]. Tang et al. [10] reported an ADC value of 0.84 × 10−3 mm2/s
and Ki-67 of 2% in LGMs compared with an ADC of 0.75 × 10−3 mm2/s and Ki-67 of 9%
in HGMs. Five articles in the present meta-analysis reported an association between low
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ADC value and high Ki-67 in meningiomas [10,13,23,32,34]. Surov et al. [12] reported a
threshold ADC value of 0.85 × 10−3 mm2/s for differentiating between LGMs and HGMs,
with positive predictive value (PPV) and negative predictive value (NPV) of 33% and 97%,
respectively. Bozdag et al. [23] reported a higher cut-off value of 0.89 × 10−3 mm2/s with
PPV and NPV of 91% and 36% in a larger sample size. We first used six different studies to
evaluate the diagnostic test accuracy of threshold ADC values for differentiation between
LGMs and HGMs, and we obtained excellent accuracy with an AUC of 0.84. Although
most studies reported lower ADC values in HGMs, few studies revealed inconsistent
findings [10,41]. Tang et al. [10] and Azeemudin et al. [41] reported higher ADC values
in HGMs, which may be explained by the significantly higher ADC values in chordoid
meningiomas (WHO grade II) among all LGMs and HGMs [46]. The increased ADC values
in the chordoid subtype may be caused by the unique histopathologic features of mucoid
stroma and vacuolated cytoplasm, leading to a decreased nucleus-to-cytoplasm ratio [46].
Another possible explanation is that the ADC values are influenced both by perfusion and
diffusion effects [47]. HGMs usually have a higher degree of blood volume (perfusion),
which results in a higher ADC [10,48].

The present study showed consistent results in both 1.5T and 3T MRI scanners, which
means the differences in ADC values between LGMs and HGMs are not affected by different
magnetic field strengths of MRI. In six articles investigating the ADC values of different
histological LGMs, fibroblastic meningiomas showed the lowest mean ADC value, and
angiomatous meningiomas showed the highest mean ADC value. For HGMs, no studies in
the available literature reported the ADC values in different histological subtypes. Recently,
Meyer et al. [20] reported a meta-analysis reviewing studies from two databases (Medline
and Scopus) until November 2019, and the results showed that ADC might not accurately
predict proliferation potential and cellularity in the meningiomas, and no validated ADC
threshold can be recommended for distinguishing LGMs from HGMs. As compared with
1055 patients reported by Meyer et al. [20], the present study collected the latest studies
until January 2022 from four databases (Medline, Cochrane, Scopus, Embase), with a
total of 1552 meningioma cases. Six extra updated studies (2019–2022) were included
in the present meta-analysis. Meyer et al. [20] reported only weak inverse correlations
(r = −0.36) existing between ADC and Ki-67 in meningiomas, and significant overlap of
ADC values between LGMs and HGMs were observed. In contrast, the present meta-
analysis first reported significant differences in ADC values between LGMs and HGMs.
In clinical practice, the valuable ADC threshold value for differentiation between LGMs
and HGMs was first analyzed in the present study. The discrepancy between the two
meta-analyses can be explained by the additional 497 (497/1055, 47.1%) patients collected
in the six additional updated studies [14,15,19,21,23,39] in the present meta-analysis and by
searching two more databases (Cochrane and Embase). On the other hand, Ugga et al. [49]
recently reported a meta-analysis of radiomics and machine learning for the prediction of
intracranial meningioma grading based on preoperative MRI, and promising results with
an overall pooled AUC of 0.88 was obtained.

Histological grading is the current gold standard in terms of diagnosing and treat-
ing meningiomas [50]. Surgery is the classical first-line treatment for all meningiomas.
However, a wait-and-see strategy monitored by clinical and MRI follow-up should be
considered since most meningiomas (80%) are benign tumors with stable disease status.
For LGMs, the aim of surgery may be the relief of the clinical symptoms caused by mass
effects. Postoperative adjuvant radiotherapy should be used more conservatively because
all radiotherapeutic procedures have long-term side effects and might affect future treat-
ments [51]. However, WHO grade II and III meningiomas are aggressive tumors with high
recurrence rates, and aggressive tumor resection during primary surgery combined with
adjuvant radiotherapy of the tumor area may be more beneficial for these patients [3,52].
The present study is the first to report significant differences in ADC values between LGMs
and HGMs in a meta-analysis with large case numbers. The results provided valuable
information for the preoperative diagnosis and planning of treatments in meningiomas.
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There are still several limitations in our study. First, publication bias may exist because
studies with negative results were less likely to be published and were therefore not
included in the meta-analysis. The automatically calculated ADC values may be affected
by different vendors, applied b-values, and regions of interest (ROIs) (i.e., single ROI
or whole tumor measurement). The overall diagnostic test accuracy of ADC threshold
values for differentiation between LGMs and HGMs cannot be obtained due to the lack of
comprehensive raw data in each study. Finally, the association between ADC and cellularity
in meningiomas was not determined because the updated data reflecting new concepts
were not sufficient.

5. Conclusions

The present meta-analysis revealed that mean ADC values are significantly lower in
HGMs than in LGMs in both 1.5T and 3T MRI scanners. The threshold ADC values also
showed excellent accuracy for differentiation between LGMs and HGMs in subgroup analy-
sis. Therefore, preoperative ADC appears to be a useful noninvasive tool for differentiation
between LGMs and HGMs. The results of this study have the potential to offer valuable
information for the planning of treatments in meningiomas, including the extent of tumor
resection, implementation of adjuvant radiotherapy, and the appropriate time intervals for
MRI follow-up.
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