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Abstract: Processing of fish in aquaculture generates considerable amounts of by-products that
remain underused and/or unexploited. We evaluated the nutritive content of fish by-products (head,
gills, intestines, trimmings, bones, and skin) from meagre and gilthead sea bream fish species reared
in Greece in order to estimate their nutritional value for future development of high added-value
products. The proximate composition of the fish samples (total protein, total lipid, ash, moisture,
and macro-element content) was determined using the Association of Official Analytical Chemists
(AOAC) and International Organization for Standardization (ISO) official methods. The content of
fatty acids was determined using capillary gas chromatography, and the protein profile was estimated
employing scientific orbitrap mass spectrophotometer methodology. The nutrient composition of fish
by-products presented fluctuations among the different by-products. Skin was the most significant
protein source, trimmings and bones were high in calcium, and the head, intestines, and bones were
a good source of lipids. The most abundant lipid acids found in by-products were oleic, palmitic,
linoleic, and eicosenoic acids, whereas the most abundant proteins were adenosine triphosphate (ATP)
synthase subunit epsilon, mitochondrial nicotinamide adenine dinucleotide (NADH) dehydrogenase,
and mitochondrial cytochrome b-c1 complex subunit 8. These data suggest that by-products constitute
valuable sources of nutrients and could therefore be exploited in accordance with the principles of
a circular economy.

Keywords: fish waste; circular economy; sea bream; meagre; nutrient content; proximate composition;
proteomics; aquaculture

1. Introduction

Processing of fish generates by-products (bones, skin, head, viscera), which may constitute up
to 15% of fish weight when gutting and scaling or even up to 70% of fish weight when filleting [1].
According to Food and Agriculture Organization of the United Nations (FAO) report, 9.1 million tons
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of fish waste are estimated to be discarded annually [2]. Thus, fish by-products have become a global
concern and also threaten the sustainability of fish aquaculture. Fish by-products are, in most cases,
either incorporated into animal feed or biofuels, i.e., low added-value products, or incinerated and
discarded, thus increasing the energy consumption, financial cost, and environmental impact of their
management process [3].

There are emerging exploitation opportunities for fish by-products. Producers’ demand for
natural ingredients of high nutritional value is currently being reported in accordance with the public’s
nutritional requirements [4]. These natural ingredients may derive from food by-products produced
along the agri-food chain. A database containing the nutritional composition and alternative uses
of food waste [5] demonstrates that in order to valorize underutilized food materials, the complete
characterization of their nutrient composition and properties is required. Fish by-products may be
an important source for such ingredients. For example, protein, hydrolysates, peptides, and fatty
acids [6–11] have been determined in fish by-products and linked to antihypertensive, antioxidant,
and antimicrobial activities [12–15].

Research on the exploitation of fish by-products for the development of high added-value products,
such as novel foods, constitutes a financial and nutritional challenge which will significantly ameliorate
the aquaculture sector’s performance, in regard to sustainability. To address this challenge, a systematic
approach to the study of fish-products is required with country-specific information in order to
address a variety of factors, such as fish species, size, and environmental conditions that affect nutrient
composition [16,17].

There are limited data from aquaculture units in Greece, despite the size and penetration of the
industry. Greek aquaculture exports 80% of its production to 32 countries [18]. Species of interest
include gilthead sea bream (Sparus aurata), sea bass (Dicentrarchus labrax), and meagre (Argyrosomus
regius) [19]. Limited data on the fatty acid content of farmed meagre fillet and its by-products [20] and
gilthead sea bream and sea bass fillet [21] are available. Thus, there is a gap in the nutritional content
of the by-products of those fish species, which creates a barrier to their potential exploitation.

The purpose of this study was to evaluate the nutritional content of fish by-products from meagre
and gilthead sea bream produced during fish filleting procedures to provide insight into their possible
future uses. Specifically, in a series of filleting by-products from meagre and gilthead sea bream fishes
of different size classes, the contents of total protein, fat, hydration, ash, and main minerals were
determined, and their fatty acid and protein profiles were characterized.

2. Materials and Methods

2.1. Chemicals and Reagents

All chemicals and reagents were of analytical grade and were purchased from Sigma–Aldrich
(Merck KGaA, Darmstadt, Germany) and Merck (Merck KGaA, Darmstadt, Germany).

2.2. Fish Sample Collection and Preparation

A total of 36 individuals of meagre and 60 individuals of gilthead sea bream, of two different
size classes (small and large), were obtained from the pilot-scale cage farm of the Hellenic Centre
for Marine Research (HCMR) in Crete, Greece, in June 2017. The size class (small and large) was
defined by the weight of the fish; small fishes were assumed to have a body weight less than 300 g
for meagre and less than 200 g for gilthead sea bream. Fishes were fed with commercial feed pellets
(Irida S.A., Arta, Greece) consisting of fishmeal, maize gluten, fish oil, sunflower flour, and soy flour.
The chemical composition of the pellets was as follows: 43.0% crude protein, 17.0% crude fat, 2.7%
crude fiber, 8.2% ash, 8.5% moisture, 1.15% total P, 1.5% total Ca, Vit. A 10.000 IU, Vit. D3 2.000 IU,
Vit. E 400 mg, Vit. C 500 mg, choline 750 mg. Among the 36 individuals of meagre, 6 large fish
had a mean body weight of 1256.45 ± 232.32 g and 30 small fish had a mean body weight of 235.76
± 38.45 g. Among 60 individuals of gilthead sea bream, 16 large fish had a mean body weight of
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403.47 ± 72.92 g and 44 small fish had a mean body weight 160.16 ± 30.79 g. After measuring the
morphometric characteristics of each fish, we examined six different by-products: head, gills, intestines,
trimmings, bones, and skin. These different by-products were kept separately in tightly packaged
polypropylene bags at −80 ◦C. To perform the analysis, the same types of by-product categories from
different individuals were pooled together to obtain a sample of approximately 100 g, following the
methodology of previous studies [22–26]. For this purpose, more than 72 pooled samples of fish
by-products were obtained (2 fish species, 2 sizes of each species, 6 fish by-products, 3–4 individual
pool replicates). Specifically, pooling of by-products was performed according to their six categories,
species and size class, providing triplicates for a total of 24 different sample categories. All samples
were lyophilized for 48 h (Telstar Cryodos 50, Telstar, Terrassa, Spain) and then homogenized with
a knife mill for 10 s at a revolution speed of 10000 rpm (Retsch ZM 200, Retsch, Hahn, Germany).
Homogenized powders were stored at −80 ◦C until further analysis.

All fishes were reared at the pilot scale in the growing facilities of HCMR. The installations are
licensed facilities for operations of breeding and experimentation use of fish issued by the Region
of Crete, General Directorate of Agricultural and Veterinary No 3989/01.03.2017. The breeding
and experimental facilities were registered with the following approval codes: EL91-BIObr-03 and
EL91-BIOexp-04. The fish samples were collected from groups reared under normal conditions and
after harvesting, were euthanized using ice water. The personnel that performed the sampling has
degrees accredited by the Federation of European Laboratory Animal Science Associations (FELASA)
on the “care and use of laboratory animals” for persons carrying out procedures on animals, designing
procedures and projects, taking care of animals, and killing animals.

2.3. Proximate Composition

The proximate composition of the different fish by-product samples was determined using the
following Association of Official Analytical Chemists (AOAC) [27] and International Organization for
Standardization (ISO) methods. The moisture content of samples was determined using a vacuum oven
(AOAC 952.08) prior to sample lyophilization. The samples were kept in properly sealed containers
and carefully resuspended after thawing to avoid any losses. Total ash determination was conducted
according to AOAC 938.08, and the total fat content according to AOAC 948.15. The nitrogen content
was determined using an automated Kjeldahl apparatus (Kjeltec 8100, Foss Analytical, Hilleroed,
Denmark) following the procedure described in ISO 5983-2:2005 [28]. The total protein content was
calculated by multiplying the nitrogen content by a conversion factor of 6.25. Total carbohydrates were
determined by subtracting the sum of the ash, fat, and protein contents from 100 [29]. All analyses
were conducted in triplicates. The results for the moisture content are expressed as g/100 g of sample,
whereas those for ash, protein, fats, and carbohydrates as g/100 g of dry matter.

2.4. Mineral Analysis

Macro-elements (Ca, Na, K, Mg) were determined in the different fish by-product samples.
The lyophilized samples were digested with HNO3 65% supra pure, and H2O2 30% was subsequently
added according to the procedures described in Milanov et al. [30]. Measurement of the macro-elements
K, Na, Ca, and Mg was performed by atomic emission spectrometry, employing a Varian SpectrAA 200
(Varian, Mulgrave, Australia) instrument. All analyses were conducted in triplicate. The results are
expressed as mg/g of dry matter. The percentages of recommended dietary allowances (RDA) and
adequate intake (AI) were calculated based on the suggestions of the European Parliament and of the
Council [31] and in accordance with the study of Montowska et al. [32].

2.5. Preparation of Samples for Fatty Acid and Protein Profile Analyses

For the determination of protein and fatty acid profiles, lyophilized samples of heads, skin, bones,
trimmings, and gills were pooled together according to the two different species. The intestines
were excluded from the pooled samples in order to minimize the variation in the case of non-fully
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fastened fishes. The nutrient profiles of the two final pooled samples of meagre and gilthead sea bream
by-products were further analyzed and characterized according to the following methods.

2.6. Fatty Acid Profile

Fatty acids were determined in the above samples according to AOAC 996.06. Fat was extracted
from fish samples using acidic hydrolysis, and after methylation, the fatty acid methyl esters (FAMEs)
were quantitatively measured by capillary gas chromatography (Simadzu GC-2010 Plus, Simadzu
Corporation, Kyoto, Japan) against a triglyceride (triundecanoin C11:0) internal standard. Separation of
FAMEs was accomplished on a DB-wax capillary column (30 m × 0.25 mm i.d., 0.25 µm film thickness,
Agilent). Helium was used as a carrier gas at a constant linear velocity of 30 cm/s. The split ratio was
set at 1/10. Oven temperature was maintained at 100 ◦C for 1 min, programmed at 25 ◦C/min to 100 ◦C
and after 1 min, it was raised to 240 ◦C at a rate of 5 ◦C/min and held for 2 min. Then, the temperature
was raised to 250 ◦C at a rate of 5 ◦C/min and held for 10 min. Inlet and Flame Ionization Detector
(FID) temperatures were set to 250 ◦C and 270 ◦C, respectively. Peak identification and response
factor calculation were accomplished using a FAME standard mixture (Supelco 37 Component FAME
mix, Sigma–Aldrich, Darmstadt, Germany). Calculations were performed according to AOAC 996.06.
The results were expressed as g/100 g of dry matter.

2.7. Protein Profile

For the determination of their protein profile, the above pooled by-product samples were
dissolved in radioimmunoprecipitation assay (RIPA) buffer, supplemented with complete protease
and phosphatase inhibitor cocktail. Then, the specimens (n = 3 for each pooled sample) were sonicated
at 15 s bursts three times with a digital sonifier (Branson Ultrasonics, Branson, Danbury, Connecticut).
The homogenate was then centrifuged at 16,000× g for 10 min at 4 ◦C, and 150 µL of the supernatant
was added to methanol:chloroform (at ratio of 4:3 %v/v) for protein precipitation. Following vortex
and centrifugation (16,000× g for 1 min), the supernatant was carefully discarded and an additional
400 µL of methanol was added. The mixture was centrifuged at 16,000× g for 2 min, and methanol was
carefully discarded. The pellet was dissolved in 82 µL of 8 M urea in 0.4 M NH4HCO3 solution and
then measured with a NanoDrop (2000/2000c Thermo Scientific, Fisher Scientific, Wilmington, DC,
USA) to obtain the same amount of total protein from all the samples. Dithiothreitol (DTT) was then
added to the resultant sample at a ratio of 10:1 %v/v (sample:DTT), and the mixture was incubated in
the dark in an oven (Isotemp Incubator, Fischer Scientific, Wilmington, DE, USA) at 37 ◦C for 30 min.
Subsequently, 8 µL of iodoacetamide (100 mM) was added to alkylate the sample, which was further
diluted with mass spectrometry grade H2O in order to adjust the urea concentration to lower than 2 M.
The sample was then enzymatically digested with Lys C (at 1:50 enzyme:protein ratio) at 37 ◦C for
16 h. The digestion continued with trypsin (at a 1:50 enzyme:protein ratio), and the sample was left in
the incubator at 37 ◦C for 7 h. The digestion reaction was quenched with trifluoroacetic acid at a final
10% concentration, and the sample was then desalted with C18 UltraMicroSpin columns (The Nest
Group Inc., Southborough, MA, USA) according to the manufacturer’s protocol. The eluate was
subsequently dissolved in a mixture of 98% mass spectrometry-grade H2O, 0.1% formic acid, and 2%
acetonitrile. Peptide concentration was determined for all samples and diluted accordingly to 0.05µg/µL
with 0.1% FA; then 5 µL of each sample was loaded onto the column for Liquid Chromatography
with Mass Spectrometry (LC MS/MS ) analyses. Data collection for label-free quantitation (LFQ)
proteomics was carried out on a mass spectrometer (Thermo Scientific Orbitrap Fusion) connected to
a Ultra-performance Liquid Chromatography (UPLC) system (Waters nano ACQUITY) equipped with
a Waters Symmetry® C18 180 µm × 20 mm trap column and a 1.7-µm, 75 µm × 250 mm nano ACQUITY
UPLC column (35 ◦C). Data processing of collected LFQ was performed similarly to the methodology
published by the Keck Mass Spectrometry & Proteomics Resource [33]. For the addition of quantitative
information to our proteomic results, the Exponentially Modified Protein Abundance Index (emPai)
score was employed, which is proportional to the protein content of a protein sample [34].
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2.8. Statistical Analysis

Statistical analysis was performed using the SPSS package, version 16.1 (SPSS Inc, Chicago, IL,
USA). We deemed statistical significance at α = 0.05. Morphometric characteristics of the different fish
as well as the percentage of weight of the different by-products are expressed as the mean ± standard
deviation (SD); for these variables, normality was confirmed graphically with histograms (Figures
S1–S6, Supplementary Material), and the differences between two different size classes (large and small)
and two different species (meager and gilthead sea bream) were tested using Student’s t-test (unpaired
analysis). The nutrient content is presented as the mean ± SD, and the non-parametric Mann–Whitney
test was used to statistically compare values between two groups due to the small sample size.

3. Results

The studied sample consisted of 36 and 60 individuals of meagre and gilthead sea bream,
respectively. They were classified according to their body size into large and small fishes. Specifically,
the meagre sample consisted of 6 large individuals of mean length 53.8 ± 3.9 cm, and 30 small
individuals of mean length 26.9 ± 1.8 cm. Accordingly, the gilthead sea bream sample consisted of 16
large fish of mean length 28.3 ± 1.7 cm and 44 small fish of mean length 21.4 ± 1.5 cm.

Table 1 summarizes the six different by-products (head, gills, intestines, trimmings, bones, skin)
as a percentage of the total weight for the two different species and the two different size classes.
Comparing the sizes of the fish, no differences were observed for the percentage of head, gills, bones,
and skin. However, the percentage of intestines relative to the total fish weight was lower in large
fishes (4.78 ± 0.84%) compared to small ones (6.44 ± 1.33%), (p < 0.001). The percentage of trimmings
relative to the total fish weight was 1.79 ± 0.69% in small fishes, exceeding the corresponding value
for large fishes (1.64 ± 0.18%), (p = 0.007). No statistically important differences were observed
between the two different size classes for the total by-product percentage. When comparing the two
species, no differences were observed for the percentage of head, gills, intestines, and skin. However,
the percentage of trimmings was lower in the meagre (1.48 ± 0.30%) compared to the gilthead sea
bream (1.94 ± 0.61%), (p < 0.001), whereas that of bones was higher in meagre (7.65 ± 1.60%) than in
gilthead sea bream (5.00 ± 0.66%), (p < 0.001). Finally, the total by-product percentage was different
between the two fish species (p < 0.001); meagre by-product yield percentage was higher (43.06 ±
3.24%) than that of gilthead sea bream (38.26 ± 1.90%).

Table 2 present the nutrient composition (mean values) of the by-product samples (head, gills,
intestines, trimmings, bones, skin) of the two size classes (large and small) for meagre and gilthead sea
bream. No statistically significant differences, either between fish species or size classes, were observed
for the different by-products based on the measured moisture, ash, total fat, total protein, carbohydrate,
calcium, sodium, potassium, and magnesium contents. The mean values on a dry weight basis of
all fish by-products for protein, fat, and ash contents were calculated. Specifically, the mean protein
content was 44.27 ± 13.35%, the mean fat content was 26.48 ± 15.97%, and the mean ash content was
20.78 ± 14.44%.

The content of minerals, i.e., calcium (Ca), potassium (K), magnesium (Mg), and sodium (Na), in
the different by-products is presented in Table 3. No statistical differences were observed between the
two different size classes or between the two species with respect to the different minerals. Percentages
of RDA and AI for Ca, K, Mg, and Na were calculated for all the different by-products for the content
of 100 g of dried sample. By-products such as trimmings presented a valuable source of Ca, with RDA
percentage reaching 466% for meager and 424% for gilthead sea bream fishes. The RDA percentage of
Na did not exceed 39% for meagre and 45% for gilthead sea bream. Skin was a source of potassium,
i.e., reaching 20% and 18% for meagre and gilthead sea bream, respectively. The Mg percentage was
110% of the RDA for meagre gill samples and 104% for gilthead sea bream trimming samples.
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Table 1. Percentage weight 1 of the six different by-products (intestines, gills, trimmings, head, skin) of meagre and gilthead sea bream in two different size classes.

g By-Product/100 g
Fish

Large Meagre (n = 6) Small Meagre (n = 30) Large Gilthead Sea Bream
(n = 16)

Small Gilthead Sea Bream
(n = 44) P1 P2

Mean SD Mean SD Mean SD Mean SD

Head 18.74 3.27 17.09 1.74 18.49 1.42 16.70 1.27 0.09 0.61
Gills 3.18 0.31 3.01 0.32 2.54 0.27 2.42 0.22 0.58 0.38

Intestines 5.07 0.53 7.44 0.95 4.49 0.90 5.44 0.87 <0.001 0.08
Trimmings 1.65 0.19 1.32 0.29 1.62 0.19 2.27 0.63 0.007 <0.001

Bones 8.76 3.09 6.53 0.76 4.95 0.47 5.04 0.72 0.50 <0.001
Skin 6.25 1.68 7.06 1.06 6.35 1.04 6.22 0.99 0.38 0.43
Sum 43.65 4.84 42.46 2.41 38.45 2.06 38.07 2.08 0.98 <0.001

1 Results are presented as the mean (SD) for normally distributed variables; P1 and P2 denote statistical significance between the two different size classes and between the two fish species,
respectively; p-values derived through independent Student’s t-test with α = 0.05.

Table 2. Mean data for the nutrient composition of by-product samples (head, gills, intestines, trimmings, bones, skin) of meagre and gilthead sea bream fishes in two
different size classes (large and small).

By-Product Nutrient Composition

Meagre

(g/100 g) *
Head Gills Intestines Trimmings Bones Skin

Large Small Large Small Large Small Large Small Large Small Large Small
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Moisture 64.0 0.5 68.9 0.7 68.3 0.2 74.3 0.4 73.0 0.2 59.2 0.4 63.1 0.7 57.0 0.1 63.2 0.7 40.6 0.2 58.4 0.3 65.3 0.2
Ash 20.95 0.37 21.27 1.04 15.59 0.98 19.18 0.32 4.77 0.08 2.25 0.05 49.12 1.91 48.51 2.55 21.00 0.58 23.30 1.23 20.24 0.53 15.23 1.06

Protein 40.41 0.16 47.50 1.25 45.62 0.16 48.46 0.32 59.62 0.08 29.79 0.64 45.87 0.91 45.98 1.92 32.07 0.25 36.41 0.13 75.16 1.87 75.15 0.03
Fat 28.88 1.60 23.34 0.74 19.71 1.33 21.31 0.45 17.09 0.19 54.05 4.94 3.00 1.50 4.35 0.69 34.96 0.10 31.07 2.10 6.12 0.42 9.61 1.60

Carbohydrates 9.76 1.65 7.89 1.78 19.08 1.66 11.05 0.63 18.52 0.22 13.91 4.98 2.01 2.59 1.16 3.27 11.97 0.64 9.22 2.44 1.01 0.01 0.99 0.01

Gilthead
Sea Bream

(g/100 g) *
Head Gills Intestines Trimmings Bones Head

Large Small Large Small Large Small Large Small Large Small Large Small
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Moisture 57.3 0.7 62.4 0.2 66.6 0.3 62.9 0.8 67.1 1.0 57.15 0.5 48.6 0.1 53.1 0.2 53.3 0.7 74.5 0.8 53.0 0.5 61.2 0.1
Ash 18.11 1.24 21.39 1.33 16.60 0.40 17.49 0.30 3.57 0.06 2.62 0.07 45.76 2.29 47.26 0.73 26.62 0.10 27.70 0.58 6.02 0.17 4.36 0.17

Protein 32.40 0.45 37.19 0.67 31.49 0.42 38.50 1.47 37.23 0.75 26.87 0.35 41.85 1.00 45.10 2.30 34.02 0.98 40.74 1.57 43.16 0.89 49.67 0.11
Fat 37.08 4.19 28.76 0.47 37.46 1.16 26.69 0.23 43.19 0.35 55.12 0.98 5.45 0.09 4.09 0.33 30.56 0.11 21.47 0.54 46.39 3.45 45.94 0.54

Carbohydrates 12.41 4.39 12.66 1.56 14.45 1.30 17.32 1.52 16.01 0.83 15.39 1.04 6.94 2.50 3.55 2.44 8.80 0.99 10.09 1.75 4.43 3.56 0.03 0.02

* ash, protein, fat, and carbohydrate contents are expressed on a dry weight basis; carbohydrates were calculated by difference; no statistically significant differences were observed
between the different by-products, either between fish species or size classes.
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Table 3. Data of mineral composition of by-product samples (head, gills, intestines, trimmings, bones, skin) of meagre and gilthead sea bream fishes in two different
size classes (large and small) and the RDA and AI percentages.

By-Product Nutrient Composition

Meagre

(mg/g)
Head Gills Intestines Trimmings Bones Skin

Large Small Large Small Large Small Large Small Large Small Large Small
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Calcium (Ca) 5.02 0.72 8.59 1.13 5.88 0.23 6.80 0.12 0.61 0.04 0.58 0.10 12.82 0.34 46.58 1.34 6.39 0.93 9.58 0.57 5.59 0.71 3.90 0.08
Sodium (Na) 4.07 0.37 4.92 0.56 5.52 0.13 5.92 0.27 2.53 0.12 2.12 0.57 5.87 0.99 3.72 0.43 3.46 0.11 2.76 0.73 4.42 0.28 3.15 0.17

Potassium (K) 6.31 1.05 8.30 0.87 8.55 1.06 9.34 0.77 8.92 1.03 4.86 1.13 6.92 1.02 6.65 0.66 7.62 0.24 8.92 0.23 8.46 1.03 9.33 1.12
Magnesium (Mg) 0.24 0.19 1.34 0.44 1.37 0.17 3.52 0.82 2.51 0.55 1.49 0.67 0.71 0.04 2.46 0.25 0.67 0.13 0.45 0.12 0.43 0.03 0.76 0.32
% RDA/AI (Ca) * 50 86 59 68 6 6 128 466 64 96 56 39
% RDA/AI (Na) * 27 33 37 39 17 14 39 25 23 18 29 21
% RDA/AI (K) * 13 18 18 20 19 10 15 14 16 19 18 20

% RDA/AI (Mg) * 8 42 43 110 78 47 22 77 21 14 13 24

Gilthead
Sea

Bream

Calcium (Ca) 8.59 0.43 5.62 1.02 4.52 0.72 7.59 0.33 0.24 0.09 0.67 0.25 42.38 0.11 11.49 0.45 9.23 0.34 7.92 1.10 2.10 0.92 0.50 0.02
Sodium (Na) 3.68 0.21 3.28 0.21 4.26 0.82 4.54 0.72 3.01 0.79 2.39 1.01 6.81 0.35 6.08 0.26 3.43 0.14 3.79 0.99 3.52 0.13 1.34 0.22

Potassium (K) 6.47 0.92 6.40 1.02 7.04 0.11 8.16 0.13 4.65 0.15 7.83 1.73 7.09 0.13 8.09 1.00 6.92 0.88 8.35 0.37 7.44 0.32 8.66 0.64
Magnesium (Mg) 0.86 0.43 0.28 0.29 0.64 0.31 2.49 0.46 1.61 0.17 2.84 0.12 3.34 1.04 0.77 0.25 0.33 0.06 0.30 0.09 0.58 0.36 2.10 0.03
% RDA/AI (Ca) * 86 56 45 76 2 7 424 115 92 79 21 5
% RDA/AI (Na) * 25 22 28 30 20 16 45 41 23 25 23 9
% RDA/AI (K) * 14 14 15 17 10 17 15 17 15 18 16 18

% RDA/AI (Mg) * 27 9 20 78 50 89 104 24 10 9 18 66

* Mineral concentration was calculated as mg/g of dry matter; RDA/AI percentages for the content of 100 g of dried sample were calculated based on the following values: 1000 mg for Ca,
4700 mg for K, 329 mg for Mg, and 1500 mg for Na [31].
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The fatty acid content of the pooled samples from by-products of meagre and gilthead sea bream
fishes is shown in Table 4. The majority of the fatty acid concentrations were statistically different
between the two fish species. The most abundant fatty acids in the by-products from both fish species
were oleic (18:1), palmitic (16:0), linoleic acid (18:2), and eicosenoic (20:1) acids. The total fatty acid
content as well as the content of saturated, monounsaturated, and polyunsaturated fatty acids was
significantly higher in the gilthead sea bream by-products.

Table 4. Fatty acid content (g/100 g) of the pooled by-products from meagre and gilthead sea
bream fishes.

Fatty Acids
Meagre

(Argyrosomus regius)
Gilthead Sea Bream

(Sparus aurata) p

Mean SD Mean SD

14:0 0.63 0.08 1.40 0.27 <0.05
15:0 0.06 0.004 0.10 0.01 <0.05
16:0 3.19 0.001 4.85 0.003 0.08
16:1 0.94 0.002 2.23 0.003 <0.001
17:0 0.05 0.01 0.08 0.02 0.19
18:0 0.71 0.01 0.78 0.05 0.91
18:1 6.63 0.001 11.34 0.01 <0.05

18:2 n-6 2.60 0.12 4.24 0.18 0.11
18:3 n-6 0.03 0.37 0.07 1.06 <0.001
18:3 n-3 0.47 0.002 0.81 0.02 <0.05
18:4 n-3 0.15 0.003 0.31 0.02 <0.05

20:0 0.07 0.07 0.09 0.21 0.39
20:1 n-9 1.14 0.03 1.53 0.09 0.32
20:2 n-9 0.02 0.01 0.09 0.02 <0.001
20:2 n-6 0.13 0.13 0.20 0.37 0.12
20:3 n-6 0.04 0.004 0.09 0.03 <0.05
20:3 n-3 0.12 0.02 0.14 0.04 0.35
20:4 n-6 0.04 0.01 0.09 0.02 <0.001
20:4 n-3 0.10 0.03 0.26 0.02 <0.001
20:5 n-3 0.23 0.01 0.42 0.02 <0.05

22:1 1.09 0.04 1.30 0.13 0.58
22:2 n-6 - - 0.03 0.001 <0.05

23:0 0.04 0.01 0.10 0.02 <0.001
22:5 n-3 0.26 0.04 0.70 0.23 <0.001
22:6 n-3 0.30 0.05 0.53 0.15 <0.05

Total Fatty Acids 19.15 2.62 31.86 7.85 <0.05
SFA 4.84 0.69 7.45 1.71 0.05

PUFA 4.60 0.67 8.16 2.11 <0.05
MUFA 9.71 1.27 16.25 4.05 <0.05

Fatty acids are expressed as g/100 g of the lyophilized sample; p presents the differences between the two fish species.

Mean data of the proteomic profile of meagre and gilthead sea bream fish by-product samples are
presented in Table 5. The determination of the abundance of each protein was derived through the
application of the emPAI score [34]. The most abundant proteins identified in meagre by-products
were adenosine triphosphate (ATP) synthase subunit epsilon, mitochondrial nicotinamide adenine
dinucleotide (NADH) dehydrogenase 1 beta subcomplex subunit 1, 60S ribosomal protein L35a,
cytochrome c oxidase, and mitochondrial cytochrome c. For gilthead sea bream by-products, the most
abundant proteins were mitochondrial cytochrome b-c1 complex subunit 8, mitochondrial cytochrome
c oxidase subunit 6B1, and NADH dehydrogenase, with an emPAI score higher than 0.85.
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Table 5. Protein profile data of meagre and gilthead sea bream fish by-product samples.

Meagre (Argyrosomus regius)

Protein Name Protein ID * MW emPAI

ATP synthase subunit epsilon. mitochondrial XP_010742784.1 5730 4.97
NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1 XP_019118827.2 6895 1.75

60S ribosomal protein L35a XP_010748069.1 12,478 1.38
cytochrome c oxidase subunit 5B. mitochondrial XP_010737425.2 14,265 1.13

cytochrome c oxidase subunit 6B1 XP_010734575.1 10,226 1.01
U6 snRNA-associated Sm-like protein LSm2 XP_010737833.1 10,846 0.93

calcineurin subunit B type 1 XP_010728630.1 19,248 0.77
RNA-binding protein 8A isoform X1 XP_010747091.1 19,985 0.73

glutathione S-transferase omega-1 XP_010742490.3 27,659 0.7
histidine triad nucleotide-binding protein 1 XP_010741018.2 13,526 0.7

NADH dehydrogenase [ubiquinone] iron-sulfur protein 6. mitochondrial XP_027142854.1 13,890 0.68
fatty acid-binding protein. liver XP_010731481.1 13,998 0.67

gamma-aminobutyric acid receptor-associated protein-like 2 XP_010747638.1 14,628 0.64
prefoldin subunit 6 XP_010731190.1 14,578 0.64

acylphosphatase-2 isoform X1 XP_010745126.2 14,823 0.63
high mobility group protein B1 ADX06860.1 23,528 0.59

allograft inflammatory factor 1-like XP_027142939.1 16,708 0.54
hypoxanthine-guanine phosphoribosyltransferase. partial ASW22527.1 18,060 0.49

myeloid-derived growth factor XP_019112401.2 18,073 0.49
nucleoplasmin-3 XP_027133567.1 18,296 0.49

thioredoxin domain-containing protein 12 XP_010739874.1 19,055 0.46
translationally-controlled tumor protein XP_010747176.1 19,174 0.46

eukaryotic translation initiation factor 3 subunit G. partial AFU54186.1 30,487 0.43
proliferation-associated protein 2G4 XP_010747198.1 43,338 0.41

glutathione peroxidase 7 XP_010740942.1 21,100 0.41
uricase XP_010745371.2 34,496 0.38

dehydrogenase/reductase SDR family member 7C-A XP_010739765.1 34,007 0.38
lambda-crystallin homolog isoform X1 XP_010748901.2 35,361 0.37

T-complex protein 1 subunit epsilon XP_010731936.1 59,425 0.37
aldose reductase XP_019116037.1 35,655 0.36

histone-binding protein RBBP4 XP_010731001.1 47,510 0.36
eukaryotic translation initiation factor 3 subunit I XP_019115322.1 36,318 0.36

programmed cell death protein 10 XP_027130892.1 24,431 0.35
LRP chaperone MESD XP_010746988.1 24,919 0.34

erlin-2 isoform X1 XP_027133320.1 37,660 0.34
aspartyl aminopeptidase isoform X2 XP_010748612.3 52,042 0.33
adenylate kinase 4. mitochondrial XP_019125546.1 25,473 0.33

NADH dehydrogenase [ubiquinone] flavoprotein 2. mitochondrial XP_019124447.1 26,706 0.32
core histone macro-H2A.1 isoform X1 XP_010735833.1 39,251 0.32

mast cell protease 1A XP_010728896.2 26,502 0.32
RNA-binding protein FUS XP_010735714.2 43,968 0.29

prohibitin XP_010738397.1 29,782 0.28
aspartate—tRNA ligase. cytoplasmic XP_019124484.1 60,564 0.28

protein kinase C and casein kinase substrate in neurons protein 3 XP_027141505.1 45,435 0.28
eukaryotic translation initiation factor 3 subunit D isoform X1 XP_027141552.1 64,192 0.26

nucleophosmin XP_010729733.2 32,171 0.26
trimeric intracellular cation channel type A XP_027145915.1 32,271 0.26

uncharacterized protein LOC113746832 XP_027139706.1 33,344 0.25
pollen-specific leucine-rich repeat extensin-like protein 1 XP_010728080.2 33,127 0.25

WD repeat-containing protein 61 XP_010733492.1 33,241 0.25
homogentisate 1.2-dioxygenase XP_010754782.3 49,895 0.25

mitochondrial 2-oxodicarboxylate carrier isoform X1 XP_010742940.1 33,148 0.25
actin-related protein 2/3 complex subunit 2 XP_019118121.1 34,256 0.24

protein phosphatase 1B isoform X1 XP_010733968.1 52,276 0.24
uncharacterized protein LOC104934800 XP_010748848.3 34,731 0.24

tyrosine-protein kinase CSK XP_010731405.1 51,060 0.24
adenylosuccinate lyase XP_019121532.1 54,567 0.23

hydroxymethylglutaryl-CoA lyase. mitochondrial XP_010729592.3 35,462 0.23
eukaryotic translation initiation factor 4B isoform X1 XP_010751826.3 70,327 0.23

fructose-1.6-bisphosphatase 1 XP_010746269.1 36,921 0.22
ELAV-like protein 1 isoform X1 XP_010754002.1 38,262 0.21

O-acetyl-ADP-ribose deacetylase MACROD1 isoform X1 XP_010737474.3 39,367 0.21
ankyrin repeat domain-containing protein 34C XP_010727747.2 57,267 0.21

importin subunit alpha-3 XP_010736490.1 57,568 0.21
serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform X1 XP_010752215.1 60,014 0.2

calcium-binding protein 39 XP_010729707.1 39,843 0.2
26S proteasome non-ATPase regulatory subunit 4 XP_010739959.1 40,133 0.2

alkaline phosphatase AEL33276.1 59,799 0.2
mitochondrial cytochrome b-c1 complex subunit 8 ATN38476.1 9671 1.09
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Table 5. Cont.

Meagre (Argyrosomus regius)

Protein Name Protein ID * MW emPAI

mitochondrial cytochrome c oxidase subunit 6B1 isoform A ATN38445.1 10,139 1.02
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 AGV76781.1 17,214 0.88

very long chain acyl-CoA synthetase. partial AFP97557.1 46,175 0.27
mitochondrial NAD-dependent protein deacetylase sirtuin-3 AHX56275.1 48,263 0.26

carnitine palmitoyltransferase 2. partial AUN35172.1 68,338 0.24
mitochondrial ATP synthase mitochondrial F1 complex assembly factor 1 ATN38406.1 35,887 0.23

alkaline phosphatase AAP04486.1 57,515 0.21
cullin 5. partial AKN80426.1 52,490 0.15

mitochondrial Rho GTPase 1-A AGU38816.1 71,045 0.11
macrophage mannose receptor 1. partial AIT83004.1 114,777 0.07

insulin-like growth factor-I receptor b ALO75807.1 159,047 0.07
acetyl-CoA carboxylase alpha ANJ04915.1 176,414 0.04

* NCBI reference sequence; emPAI score according to Ishihama et al. [34].

4. Discussion

The exploitation of fish by-products may support the sustainability of aquaculture. High
by-product yields signify that a large part of fish is discarded and remains unexploited. In our
study, this yield was estimated to be 43% for meagre and 38% for gilthead sea bream. Some studies
have reported greater amounts of discards, i.e., up to 70–85% [15,35], while for finfish species such
as sea bream, cod, tuna, etc., the discards can reach 40–65% [36–39]. The discards mainly include
muscle-trimmings (15–20%), skin and fins (1–3%), bones (915%), heads (9–12%), viscera (12–18%),
and scales (5%) [40]. In the present study, these percentages were calculated as 1–2% for trimmings,
5–9% for bones, 6–7% for skin, 2–3% for scales, 5–7% for intestines, and 17–19% for heads. Small
variations can be attributed to the different fish species as well as processing, i.e., manual or mechanical.

In the present study, data on the composition of fish by-products were obtained. The nutrient
content of total protein, fat, ash, and minerals was demonstrated in fish by-products of all species, size
classes, and fish part categories. The mean values calculated on a dry weight basis of all fish by-products
for protein, fat, and ash contents are in accordance with previous studies on fish waste, estimating
a total protein content between 49.22 and 57.92% and a total ash content between 21.79 and 30.16%;
however, total fat was between 7.16 and 19.10%, which is slightly higher than our study [5,41,42].
The nutrient content of specific by-product categories is comparable to that of fish fillets. For meagre
fillets, the protein content was 75% of dry matter, the fat content was 19%, and the ash content was 5%.
Corresponding values for gilthead sea bream fillet were 57% protein, 40% fat, and 4% ash, calculated
on dry matter [21]. Some variation between the different categories exists although the differences were
not statistically significant in the present study. The study by Sinanoglou et al. [20] on the by-products
of meagre fishes showed that the skin had the highest protein concentration, followed by the head.

In the study reported herein, another important finding is the detailed characterization of the fatty
acid profile of fish by-products. For both species, oleic acid (18:1n-9) was the main monosaturated fatty
acid (MUFA) and predominated all fatty acids, followed by icosenoic acid (20:1n-9) and eurucic acid
(22:1). Palmitic acid (16:0) was the main saturated fatty acid (SFA). The principal polyunsaturated fatty
acid (PUFA) was linoleic acid (18:2n-6). These five fatty acids accounted for approximately 75% and
71% of total fatty acids for meagre and gilthead sea bream, respectively. These findings are similar to
those of studies conducted in Greece on gilthead sea bream by-product and fillet samples [20,25] and
on meagre [43]. According to Costa et al., meagre fillet was also high in docosahexaenoic acid (22:6n-3
or DHA). However, this was not abundant in our fish by-product samples [44]. This can be due to
possible differences in the fish diets.

To define the protein composition and content of meagre and gilthead sea bream by-products, we
exploited MS analysis for complex protein identification [45]. Among the identified proteins, only
ATP synthase subunit epsilon and cytochrome c oxidase, which were abundant in the meagre samples,
were significantly different between the species. This may suggest that these proteins are characteristic
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of meagre by-products. In addition, the sequence of these proteins was compared with bioactive
peptides already published [46]. Two of the peptides, 60S ribosomal protein L35a and mitochondrial
cytochrome b-c1 complex subunit 8, that were characterized as abundant in meagre and gilthead sea
bream by-products, were proved to have the sequence of leucine-tryptophan and valine-tyrosine,
respectively. According to Sato et al., these peptides from wakame showed an antihypertensive
effect [47].

The interpretation of our findings must consider the following limitations. The sampling was
conducted in a specific month; therefore, seasonality is a factor not considered in our experimental
design. Quantities of fish by-product samples were not adequate for the analyses of all the parameters
examined in the cases of gills and trimmings and in many small-sized fish regarding heads, intestines,
bones, and skins. Pooling of samples masks the potential variations between individuals [48]. Studying
the different by-products individually would demonstrate variations among different aquaculture
units, seawater environments, and processing procedures.

5. Conclusions

Our results suggest that fish by-products constitute an important and nutritionally valuable
source of proteins, fatty acids, and minerals since their composition is similar to those of fish fillet and
other food products recommended for consumption. Each by-product category has specific nutritional
features; thus, its potential exploitation depends on the desired specific nutritional characteristics of
the products that we wish to formulate. In the present study, skin had the highest protein content,
trimmings and bones were rich in calcium, and the head, intestines, and bones were a good source of
lipids. However, these results may vary between different fish species and conditions of cultivation.
Systematic information on different fish species and by-products is therefore necessary for the detailed
and accurate evaluation of their exploitation.
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