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Abstract

Since neutralizing antibodies (NAb) targeting the human cytomegalovirus (HCMV) penta-

mer complex (PC) potently block HCMV host cell entry, anti-PC NAb induction is thought to

be important for a vaccine formulation to prevent HCMV infection. By developing a vaccine

strategy based on soluble PC protein and using a previously generated Modified Vaccinia

Ankara vector co-expressing all five PC subunits (MVA-PC), we compared HCMV NAb

induction by homologous immunization using prime-boost vaccine regimen employing only

PC protein or MVA-PC and heterologous immunization using prime-boost combinations of

PC protein and MVA-PC. Utilizing a recently isolated anti-PC NAb, we produced highly pure

soluble PC protein that displayed conformational and linear neutralizing epitopes, interfered

with HCMV entry, and was recognized by antibodies induced by HCMV during natural infec-

tion. Mice vaccinated by different immunization routes with the purified PC protein in combi-

nation with a clinically approved adjuvant formulation elicited high-titer and durable HCMV

NAb. While MVA-PC and soluble PC protein either alone or in combination elicited robust

HCMV NAb, significantly different potencies of these vaccine approaches were observed in

dependence on immunization schedule. Using only two immunizations, vaccination with

MVA-PC alone or prime-boost combinations of MVA-PC and PC protein was significantly

more effective in stimulating HCMV NAb than immunization with PC protein alone. In con-

trast, with three immunizations, NAb induced by soluble PC protein either alone or combined

with two boosts of MVA-PC increased to levels that exceeded NAb titer stimulated by MVA-

PC alone. These results provide insights into the potency of soluble protein and MVA to elicit

NAb by the HCMV PC via homologous and heterologous prime-boost immunization, which
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may contribute to develop clinically deployable vaccine strategies to prevent HCMV

infection.

Introduction

Since human cytomegalovirus (HCMV) is a leading cause of birth defects in newborns and

complications in immunologically vulnerable individuals such as transplant recipients and

AIDS patients, developing a vaccine to prevent HCMV infection is considered a major public

health priority [1, 2]. Yet, an HCMV vaccine candidate that would be considered for licensure

remains elusive [3]. The absence of HCMV animal models, poorly understood immune corre-

lates of protection, incomplete protection by naturally acquired immunity, and difficulties of

conducting sufficiently powered vaccine trials are a number of obstacles that complicate

HCMV vaccine development [3, 4]. Despite these impediments, promising findings for the

feasibility of an effective HCMV vaccine candidate have been obtained with an approach

based on envelope glycoprotein gB combined with MF59 adjuvant, showing partial efficacy

to prevent primary infection of young women or adolescent girls and ability to reduce viremia

in solid organ transplant recipients [5–7]. While the protective mechanisms of gB/MF59

remain largely unknown, the gB/MF59 clinical trials may suggest that a vaccine strategy with

enhanced ability to stimulate virus-specific immunity could significantly alter the outcome of

HCMV infection and disease.

As neutralizing antibodies (NAb) interfere in vitro with glycoprotein-mediated virus entry

into host cells, NAb are thought to contribute to the prevention of HCMV infection [8, 9]. Yet,

in vivo data that supports this conclusion remain relatively sparse [10–12]. Early studies based

on inhibition of fibroblast (FB) entry by FB-adapted HCMV laboratory strains such as AD169

and Towne identified gB as a major NAb target [13]. In recent years, however, it has been rec-

ognized by studies using more “clinical-like” HCMV strains including TB40/E, TR, and

VR1814 with intact cell tropism that NAb responses blocking HCMV entry into many non-FB

cell types target in majority a pentamer complex (PC) composed of gH, gL, UL128, UL130,

and UL131A [14–16]. While this complex is dispensable for FB entry, it is required for virus

entry into epithelial cells (EC), endothelial cells, monocytes/macrophages, and other cell types

considered important for virus dissemination and transmission [14, 17–19]. In contrast to

NAb targeting gB, gH, or gO epitopes that broadly interfere with HCMV host cell entry, NAb

recognizing predominantly conformational epitopes of the UL128/130/131A subunits of the

PC are highly potent in preventing HCMV entry into cell types such as EC, though they are

unable to prevent FB infection [16, 20, 21]. In addition, we have shown that PC-specific NAb

potently interfere with HCMV entry into primary placental cytotrophoblasts, indicating that

these antibodies could be important to block vertical transmission [21]. These findings suggest

that induction of PC-specific NAb could be particularly important for a vaccine candidate to

prevent congenital HCMV infection.

As a result of these discoveries, we and others have developed promising vaccine strategies

to augment HCMV NAb induction in different animals models by eliciting immunity target-

ing the PC [22–25]. Most of these strategies enabling enhanced HCMV NAb induction

employed subunit vaccine approaches based on recombinant protein or viral vectors, which

avoids or reduces safety concerns and issues of production that are potentially associated with

vaccine approaches based on live-attenuated or replication-defective HCMV strains or other

approaches utilizing whole HCMV virion components. We recently developed a vaccine

approach to elicit high-titer and durable HCMV NAb in mice and rhesus macaques by a
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Modified Vaccinia Ankara vector (MVA) co-expressing all five PC subunits, referred to as

MVA-PC. In this study, we developed a vaccine strategy based on soluble PC protein and com-

pared HCMV NAb induction in mice by homologous and heterologous prime-boost vaccine

approaches using soluble PC protein and MVA-PC. Our results highlight the potency of these

subunit vaccine approaches to stimulate high-titer NAb responses by the HCMV PC depen-

dent upon prime-boost immunizations schedule.

Materials and methods

Cells and viruses

ARPE-19, MRC-5, and baby hamster kidney cells (BHK-21) (American Type Culture Collec-

tion [ATCC]) were maintained and propagated by standard procedures. HCMV TB40/E

expressing GFP was derived from TB40/Ewt-GFP BAC DNA, a kind gift from T. A. Shenk and

E. A. Murphy (Princeton University, NJ) [26]. The construction and generation of MVA-PC

was described previously [27]. HCMV strain TB40/E and MVA-PC virus stocks were prepared

as described previously following virus propagation of ARPE-19 or BHK-21 cells, respectively

[21, 27, 28].

Protein expression and purification

Soluble PC protein was produced using HEK 293-6E cells (NRC-BRI, Montreal, Canada) fol-

lowing co-transfection of five plasmids encoding the individual PC subunit genes within a

pTT5 vector (NCR-BRI). HCMV gH was truncated at 714 amino acids, adding a C-terminal

6xHis tag. The signal peptide from each subunit was replaced with HIV gp120 signal peptide

[29]. Cells were transfected according to manufacturer protocol [30] and supernatant collected

120 hours later. Secreted PC was captured on Ni2+-NTA resin (GE Healthcare, Pittsburgh, PA)

and the eluate was further purified using a proprietary monoclonal antibody recognizing a

conformational epitope on UL128/130/131A (12E2, [21]) bound to a HiTrap NHS-Activated

HP sepharose column (GE Healthcare). After capturing, PC protein was eluted with 3M

MgCl2 then immediately performed a buffer exchange to 20 mM Tris pH 8.0, 150 mM NaCl

followed by gel filtration using a GE Superdex 200 10/300G column. Protein concentration

was assessed via Bradford assay and presence of all five subunits was verified via SDS-PAGE

followed by Coomassie staining analysis.

Antibody depletion

Microtiter wells (Costar) were coated overnight with purified PC (5 μg/ml) in bicarbonate/car-

bonate buffer (100 mM, pH 9.6). Wells were blocked with 1% BSA/PBS. Intravenous immuno-

globulins (IvIg, Privigen, CSL Behring, Marburg, Germany) were diluted to 200 μg/ml in 0.5%

BSA/PBS. HCMV seropositive (Lots BM204360 [Seracare 60] and BM204371 [Seracare 71])

and negative (Lot BM216642 [Seracare neg]) sera (SeraCare Life Sciences, Oceanside, CA)

were diluted 1:50 in 0.5% BSA/PBS to approximate an IgG concentration of 200 μg/ml. To

deplete PC-specific antibodies, IvIg and sera were serially incubated five times for one hour in

the coated wells. Mock depletion was performed using wells coated with bicarbonate/carbon-

ate buffer and blocked with 1% BSA/PBS.

ELISA

Microtiter wells (Costar) were coated overnight with proprietary anti-gH monoclonal anti-

body 21E9 [21] (1 μg/ml) diluted in bicarbonate/carbonate buffer (100 mM, pH 9.6). Wells

were blocked with 5% skim milk and incubated with 2 μg/ml purified PC protein in PBS. In-
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house developed mouse monoclonal antibodies (1B2, 54E11, 21F6, 12E2, 13B5, 18F10, 62–11,

2–80 [21]) and anti-gH AP86 [31] were biotinylated using EZ-Link NHS-PEG4-biotin bio-

tinylation kit (Thermo) following manufacturer’s instructions and added to the wells at a

concentration of 10 μg/ml. Streptavidin-HRP was used at a dilution of 1:3000. Wells were

developed with 3,3’,5,5’-tetramethylbenzidine (Thermo). Absorbance at 450 nm was read

using FilterMax F3 (Molecular Devices, Sunnyvale, CA). For the analysis of PC-specific

human serum antibodies, the same protocol described above was used to coat the wells with

the purified PC. Depleted and mock-depleted samples were 2-fold serially diluted in 2.5%

skim milk starting from a dilution of 50 μg/ml (or 1:200 for serum samples) to 0.4 μg/ml (or

1:25600 for serum samples). Anti-human IgG horseradish peroxidase conjugate (Promega,

Madison, WI) was used 1:2000. For the analysis of PC-specific binding antibodies in mouse

serum, the same protocol was used but serum samples were diluted four-fold from 1:800 to

1:204,800. Anti-mouse IgG horseradish peroxidase conjugate (Sigma-Aldrich, St. Louis, MO)

was used at a dilution of 1:2,000. Half-maximal binding of antibodies (EC50) was derived by

plotting absorbance at 450 nm as a function of the logarithm of serum dilution to obtain a sig-

moidal curve analyzed using the four-parameter logistic (4PL) nonlinear regression model

(Prism 7; GraphPad Software, San Diego, CA).

Mouse immunization

The IACUC of the Beckman Research Institute of City of Hope approved protocol #98004

assigned for this study. All study procedures were carried out in strict accordance with the rec-

ommendations in the “Guide for the Care and Use of Laboratory Animals of the National

Institutes of Health”. BALB/c mice (Jackson Laboratory, Bar Harbor, ME) were intramuscu-

larly (i.m.), intraperitoneally (i.p.), or subcutaneously (s.c.) immunized three times four weeks

apart with 1 μg of purified PC admixed with a squalene-based oil-in-water nano-emulsion

(AddaVax, InvivoGen, San Diego, CA). In the prime-boost experiment, groups of five BALB/c

mice were primed with MVA-PC (5x107 PFU, i.p.) or purified PC (1 μg admixed with Adda-

Vax, i.p.), and boosted one or two times with the same dose of purified PC or MVA-PC,

respectively. A third and fourth group of animals received two or three immunizations with

MVA-PC or purified PC alone following the same schedule. Mice were bled at week 0, 3, 7, 11

and at various time points afterwards.

Neutralization assay

For the inhibition of HCMV entry study, a neutralization assay was performed as previously

described [21, 25, 28]. Briefly, ARPE-19 cells were seeded at 1.5x104 cells/well in a clear-bot-

tom 96-well plate (Corning). Approximately 24 h later, the medium in every plate was replaced

with 50 μl per well of fresh growth medium. Purified PC, NAb 62–11 and 1B2 [21] were 2-fold

serially diluted starting from 300 μg/ml, 100 μg/ml and 2 μg/ml respectively. PC and NAb dilu-

tions were mixed with complete growth medium containing approximately 9,000 PFU of

HCMV TB40/E and incubated for 2h at 37˚C. The mixture was transferred to the cells in

duplicate wells. After 48 hours, cells were fixed and IE-1 immunostaining performed using

Vectastain ABC kit (Vector Laboratories, Burlingame, CA) according to the manufacturer’s

instructions. NAb concentration inhibiting 50% of the virus infectivity (IC50) was also calcu-

lated as previously described [21]. For the analysis of the HCMV-specific NAb response in

immunized mice, the same protocol was used. Mouse serum starting dilution was 1:50. For the

evaluation of HCMV NAb in human serum products, depleted and mock-depleted IvIg start-

ing dilution was 50 μg/ml, while depleted and mock-depleted human serum dilution started

from 1:200.
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Statistical analysis

GraphPad Prism software version 7 (GraphPad Software Inc., San Diego, CA) was used to

compare NAb and binding antibody titers between vaccine groups by statistical analysis using

multiple t-test.

Results

Production and characterization of soluble HCMV PC protein

Using a mammalian expression system optimized for protein production [32] and affinity

chromatography utilizing a previously isolated PC-specific NAb [21], we produced monodis-

perse and highly pure protein complexes that were composed of all five PC subunits (Fig 1A

and 1B). SDS-PAGE analysis of the purified protein under denaturing and reducing condi-

tions showed five protein bands that were consistent with previously described molecular

weight values of the HCMV PC subunits (~85 KDa for gH; ~35 KDa for gL; ~15 KDa for

UL128; ~35 KDa for UL130; and ~18 KDa for UL131A) [33, 34]. ELISA binding using a panel

of recently isolated monoclonal NAb provided evidence that the purified protein presented a

variety of conformational and linear neutralizing epitopes located within the UL128/130/131A

subunits or gH (Fig 1C) [21, 28]. In addition, when the purified protein was used in relatively

high concentration compared to two previously isolated NAb targeting epitopes of the UL128/

130/131A subunits and gH it effectively interfered with HCMV infection of ARPE-19 EC [21],

suggesting that it can saturate receptor binding on these cells, thereby blocking HCMV infec-

tion (Fig 1D) [35]. Moreover, the purified protein depleted binding antibodies (Fig 1E) and

EC-specific NAb (Fig 1F) in commercially available human HCMV antisera and intravenous

hyperimmune globulin preparations (IvIg), indicating that it binds PC-specific antibodies

induced by HCMV during natural infection. These results indicated that we produced highly

pure soluble PC protein that displayed conformational and linear neutralizing epitopes, inter-

fered with HCMV entry, and was recognized by antibodies induced by HCMV in infected

individuals.

HCMV NAb induction by soluble PC protein in mice

In order to determine the immunogenicity of the purified PC protein to stimulate HCMV

NAb responses, we evaluated HCMV NAb induction in Balb/c mice following different routes

of immunization with the soluble PC protein in combination with an adjuvant (AddaVax)

comparable to the clinically approved adjuvant MF59. Balb/c mice were immunized three

times with the adjuvanted PC protein by either i.m., i.p., or s.c. route and NAb were measured

over a period of 28 weeks by standard microneutralization assay against HCMV strain TB40/E

on ARPE-19 EC and MRC-5 FB. As shown in Fig 2, the purified PC protein stimulated robust

and durable NAb that blocked HCMV infection of both EC (Fig 2A) and FB (Fig 2B) [22, 25],

indicating that a vaccine approach using the PC stimulates NAb targeting the UL128/130/

131A subunits that specifically block EC entry, and gH-specific NAb that block both FB and

EC entry [21, 22]. While NAb remained undetectable after primary immunization, EC- and

FB-specific NAb were detectable after the first boost in all vaccine groups and reached peak

levels following the second boost. After reaching peak levels, NAb titer declined, but then

remained stable at relatively high levels until the end of the experiment. While EC-specific

NAb were generally significantly higher in i.p and i.m vaccinated animals than in s.c immu-

nized animals (p<0.01), FB-specific NAb titer of the different vaccine groups converged over

time and were comparable at week 28. Consistent with the difference in EC-specific NAb titer

measured between the vaccine groups, binding antibodies in animals immunized with the PC
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Fig 1. Characterization of soluble PC protein. A. Size exclusion chromatography (SEC) on HCMV PC purified from cell

supernatant with a 12E2 IgG resin. B. SDS-PAGE analysis of PC 12E2 affinity purification eluate and SEC fractions

collected in (A) under reducing conditions. kDa = kilo Dalton; FT = flow through, T = test eluate, P = final prep eluate. C.

ELISA binding of PC- and gH-specific NAb to the purified PC. NAb targeting different epitopes of the UL128/130/131A

subunits (1B2, 54E11, 21F6, 13B5) or gH (18F10, 62–11, 62–100, AP86) were tested in saturating amounts to bind the

purified PC protein via ELISA. Error bars represent difference in binding of three independent experiments. D. Inhibition of

EC entry by purified PC protein. Serial dilutions of purified PC protein or, anti-PC NAb 1B2, or anti-gH NAb 62–11 were pre-
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protein via i.p and i.m route exceeded those in animals immunized with the PC protein via s.c

route (Fig 2C). As anticipated, mice vaccinated with adjuvant only did not develop measurable

HCMV antibody responses. These results demonstrated that the purified soluble PC protein

was highly immunogenic in mice to stimulate robust and durable HCMV NAb and binding

antibody responses following different routes of immunization.

Comparison of vaccine strategies to stimulate NAb by the HCMV PC

To compare the potency of soluble PC protein and MVA-PC to elicit HCMV NAb via homol-

ogous and heterologous immunization, we evaluated HCMV NAb induction in mice by MVA-

PC and adjuvanted PC protein either alone or combined using two and three dose immuniza-

tion schedules. Balb/c mice were two or three times i.p vaccinated with the different prime-boost

combinations and EC-specific NAb were measured against HCMV TB40/E by standard assay

over a period of 16 weeks. I.p. immunization was chosen over traditional i.m immunization for

consistency with previous immunization studies using MVA-PC in mice [25]. While robust

HCMV NAb were induced by homologous and heterologous vaccination using MVA-PC and

soluble PC protein, marked differences in the potencies of these vaccine approaches to stimulate

HCMV NAb were observed following two or three immunizations (Fig 3). Two immunizations

using the MVA-PC vector either alone or combined with soluble PC protein stimulated robust

and comparable HCMV NAb responses that significantly exceeded those induced by two immu-

nizations with PC protein alone. In contrast, using a three-dose immunization schedule, NAb

induced by soluble PC protein alone and NAb induced by MVA-PC combined with two boosts

of PC protein increased to levels of comparable magnitude that exceeded NAb titer stimulated

by MVA-PC alone. Overall lowest HCMV NAb titers using a three-dose immunization schedule

were elicited by PC protein boosted twice with MVA-PC. Of note, all PC protein immunizations

were performed with 1μg of protein based on previous reports using the PC as vaccine antigen

in mice [23, 36]. Higher amounts of the PC protein could have potentially enhanced the induc-

tion of HCMV NAb [22]. Also, the use of adjuvants other than AddaVax could have led to

improved immunogenicity of the PC protein. Yet, previous studies found only minor differences

in the potency of a variety of clinically approved adjuvant formulations including MF59 in elicit-

ing HCMV NAb by soluble PC protein [22]. In sum, our results indicated that homologous and

heterologous prime-boost vaccination using subunit vaccine approaches based on recombinant

protein and MVA stimulates robust NAb by the HCMV PC dependent upon immunization

schedule.

Discussion

By developing a vaccine approach employing soluble HCMV PC protein and utilizing a previ-

ously generated MVA vector co-expressing all five HCMV PC subunits (MVA-PC), we com-

pared homologous and heterologous prime-boost vaccine approaches to stimulate NAb by the

HCMV PC in mice. Our results suggest that these vaccine approaches confer significantly dif-

ferent potencies to stimulate HCMV NAb dependent upon immunization schedule. While the

MVA-PC vector either alone or combined with soluble PC protein is significantly more potent

incubated with HCMV TB40/E and subsequently evaluated via microneutralization assay using ARPE-19 EC to determine

the protein/antibody concentration at which 50% HCMV infection was neutralized (NT50). E and F. Antibody depletion by

purified PC. Commercially available serum products of HCMV seropositive (Seracare 71 and 60) and seronegative

(Seracare neg.) individuals or intravenous hyperimmune globulins (IvIg) were serially incubated in ELISA plate wells coated

with the purified PC or with mock (1% BSA/PBS). Depleted and mock-depleted samples were tested by ELISA and

microneutralization to determine PC-specific binding antibodies (E) and NAb titer (NT50) that block TB40/E infection of

ARPE-19 EC (F), respectively.

https://doi.org/10.1371/journal.pone.0183377.g001
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Fig 2. Immunogenicity of purified PC protein to induce NAb and binding antibodies in mice. Balb/c

mice (n = 4) were immunized three-times by intramuscular (i.m.), intraperitoneal (i.p.), or subcutaneous (s.c.)

route with 1 μg of purified PC protein admixed with AddaVax adjuvant. Control animals (n = 3) were

immunized i.p. using AddaVax alone. Serum NAb titers (NT50) were evaluated against TB40/E on ARPE-19

EC (A) and MRC-5 FB (B) by microneutralization assay at multiple time points over a period of 28 weeks.
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than PC protein alone to elicit robust HCMV NAb by only two immunizations, soluble PC

protein either alone or combined with MVA-PC is more potent than MVA-PC alone to elicit

HCMV NAb by three immunizations. Cumulatively our results suggest that MVA-PC is suffi-

cient to stimulate robust EC specific NAb by only two immunizations, whereas soluble PC

protein alone is sufficient to promote HCMV NAb induction by three immunizations. In con-

trast to previous observations to enhance antigen specific immunity by prime-boost immuni-

zation using MVA and purified protein [37–39], heterologous vaccination using MVA-PC and

soluble PC protein does not appear to augment HCMV NAb induction, at least when consid-

ering the magnitude of the antibody titers. Whether this immunization approach improves the

stimulation of HCMV NAb in a different way for example by expanding the antibody epitope

specificity remains to be determined. These results provide first insights into the comparative

immunogenicity of MVA and soluble protein to stimulate anti-HCMV PC NAb by homolo-

gous and heterologous prime-boost vaccination, which could contribute to develop subunit

vaccine approaches for the prevention of HCMV infection.

Several observations made with in vitro studies, clinical samples, and animal models suggest

that NAb may play an important role in preventing congenital HCMV infection [11, 12, 21,

40–42]. Intriguingly, a recent study using a novel non-human primate model of congenital

rhesus CMV transmission showed that preexisting antibodies with high PC- and gB-specific

neutralizing activity can protect against congenital infection following aggressive virus chal-

lenge of seronegative pregnant dams [41]. This observation made with an animal model con-

sidered to be highly relevant for translational research may suggest that a vaccine candidate

able to elicit high-titer and durable NAb could reduce the risk of congenital HCMV infection

in seronegative pregnant women. While these studies highlight the potential necessity of anti-

body neutralizing function in preventing congenital HCMV infection, other antibody func-

tions such as antibody-dependent cell-mediated cytotoxicity or cellular immune responses

could contribute to the protection against congenital infection. Future studies should more

thoroughly characterize the different functions of antibodies targeting the HCMV PC and

investigate whether the PC affords immunogenicity to induce CD4+ or CD8+ T cells. In addi-

tion, the analysis of T cells may lead to a better understanding of the impact of modality, regi-

men, route of immunization, and adjuvant on the immunogenicity of homologous and

heterologous prime-boost vaccine approaches using the HCMV PC. Since T cells are the dom-

inant drivers to protect against HCMV disease in stem cell transplant recipients and NAb

appear not to contribute significantly to the protection against HCMV infection in these

patients [43, 44], a more detailed characterization of the immune responses that target the PC

may provide valuable insights into the use of this glycoprotein complex to develop a universal

HCMV vaccine candidate.

The significant higher potency of MVA-PC compared to soluble PC protein in stimulating

HCMV NAb by only two immunizations may be associated with different PC antigen forms of

these vaccine approaches. In contrast to the approach using soluble PC protein, MVA-PC

expresses a membrane-associated form of the PC that is tethered via the gH transmebrane

domain (TM) to the surface of MVA-PC-infected host cells [25]. This suggests that a mem-

brane-associated form of the PC with gH TM is substantially more immunogenic in eliciting

HCMV NAb than a soluble form of the PC without gH TM. Our previous findings for the

immunogenicity of MVA-PC in comparison to an MVA vector expressing a soluble form of

Black triangles indicate immunizations. Bars represent 95% confidence interval of the geometric mean. PC-

specific binding antibody titers (EC50) at week 11 and 28 (C) were analyzed by ELISA. Differences between

groups were evaluated using multiple t-test (* = p�0.05, ** = p�0.01).

https://doi.org/10.1371/journal.pone.0183377.g002

Comparison of cytomegalovirus pentamer vaccine strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0183377 August 16, 2017 9 / 14

https://doi.org/10.1371/journal.pone.0183377.g002
https://doi.org/10.1371/journal.pone.0183377


Fig 3. Homologous and heterologous vaccination with MVA-PC and purified PC. BALB/c mice (n = 5)

were i.p. immunized with either MVA-PC alone (5x107 PFU), purified PC protein alone (1 μg, admixed with

AddaVax), or the indicated prime-boost regimen. Shown are NAb titers (NT50) following two (A and C) or

three (B and C) immunizations that were measured against HCMV TB40/E on ARPE-19 EC. Black triangles

indicate immunizations. Bars represent 95% confidence interval of the geometric mean. Floating bars in C
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the PC with deleted gH TM support this conclusion [25]. Membrane-associated PC for exam-

ple on MVA-PC-infected cells may be displayed in highly ordered or repetitive structures,

thereby promoting cross linking of B cell receptors and, hence, thymus-independent B cell

activation [45]. In addition, co-stimulatory molecules and antigen cross-presentation by

MVA-infected dendritic cells may enhance B cell activation by membrane-tethered PC [46].

Unlike immunization using MVA-PC, vaccination using soluble PC protein is not limited by

interference with vector immunity [47, 48], which could explain why soluble PC protein is

more potent than MVA-PC in eliciting HCMV NAb by three immunizations. Despite the dif-

ferences in immunogenicity of MVA-PC and soluble PC protein in stimulating HCMV NAb,

the observation that HCMV NAb responses were effectively boosted by combinations of these

two vaccine approaches suggest that a membrane-associated form and a soluble form of the

HCMV PC have similar antigenic structures.

Patient low compliance with multiple-dose vaccine schedules may compromise vaccine effi-

cacy by reducing the number of patients that complete the recommended immunization series.

Missed doses account for approximately two thirds of noncompliance [49], with vaccines

requiring more than three doses having the worse compliance rate [50]. Reduced numbers of

doses have been shown to improve compliance and consequently lower infection rate and

increase cost-effectiveness [51, 52]. For this reason, evidence-based decision making in public

health has led to reduced-dose schedules for hepatitis B, pneumococcal, and meningococcal

serogroup C vaccine programs [53]. Considering the significant higher potency of MVA-PC

compared to soluble PC protein in eliciting NAb responses by only two immunizations, a sub-

unit vaccine approach based on MVA to stimulate NAb by the HCMV PC maybe more com-

patible with patient compliance than an approach using adjuvanted protein.
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