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ABSTRACT
Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change
with stem cell differentiation and differs between various somatic cell types. These changes in
nuclear architecture are associated with the regulation of gene expression and genome function in
a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit
stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction
whereby extracellular mechanical forces activate several well characterized signaling cascades of
cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the
nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state
in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This
review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a
role for the nucleus as a rheostat in tuning the cellular mechano-response.
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Introduction

Mechanical forces influence the growth and form of
practically all tissues in the human body. To survive
routine physical exertion and its associated stresses,
load bearing tissues such as bone and cartilage are
stiff, while some non-load bearing tissues such as
brain and marrow are effectively shielded from exter-
nal mechanical loads. Tissue level deformations are
transferred via the extracellular matrix (ECM) to cells
residing within. The nature of the cell’s interaction
with the ECM determines the extent of deformation
experienced; which may be damped or amplified.1

Likewise, it is the nature of nuclear interactions with
the cytoskeleton which dictates the extent of nuclear
deformation in response to a given cellular strain.2

Mechanotransduction is the conversion of mechan-
ical stimuli into an intracellular biochemical response.
To date, the majority of mechanotransduction
research has focused on the perception of mechanical
forces at and across the cell membrane to induce sig-
naling pathways originating in the cytoplasm.2,3 How-
ever, a spate of recent research has identified various

mechanisms through which the nuclear envelope and
its associated proteins directly respond to mechanical
perturbations; summarised in some recent reviews.4-6

The origin of the mechanotransduction response
within the cell likely directs the nature of the biochem-
ical response in a pathway specific manner. This
review provides an overview of the current under-
standing of the role of the nucleus and nuclear enve-
lope in mechanosensing and mechanotransduction.
We then address the concept that the interplay in con-
nectivity and mechanical properties between the
nucleus and cytoplasm provides a mechanism to
direct the origin of mechanotransduction within the
cell to tailor mechanosensitivity.

Physically connecting the extracellular matrix
with the nucleus

Force transmission and mechanotransduction at the
cell membrane

The cell’s interaction with its environment, be it
bound to ECM, a neighboring cell, or suspended in
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fluid, dictates both the nature of an applied mechani-
cal stimulus, and the cellular machinery involved in
subsequent mechanotransduction. At the cell surface,
signaling is typically induced by mechanical forces
which deform the plasma membrane along with its
associated membrane-bound proteins and cytoskeletal
elements (Fig. 1).3,7 There are various structures at the
plasma membrane with mechanotransduction roles
specific to aspects of the mechanical environment.
Cell-ECM interactions are typically mediated through
focal adhesion-based integrin adhesions,8,9 while cad-
herin-based adhesions mediate cell-cell junctions.10

Mechanosensitive ion channels,11,12 G-protein cou-
pled receptors,13 and changes in lipid

microdomains14,15 also act to convey mechanical sig-
nals across the plasma membrane.

Mechano-sensation at the plasma membrane leads
to downstream nucleocytoplasmic shuttling of various
transcription regulators. Canonical Wnt/b-catenin
signaling is one such pathway.16 It involves the trans-
location of stabilised b-catenin to the nucleus where it
associates with transcription factors including T cell
factor (TCF) and lymphoid enhancer-binding factor
(LEF) to regulate the transcription of target genes
prominently associated with differentiation and pro-
liferation.17 The Hippo pathway tumor suppressor
proteins, Yes-associated protein (YAP) and transcrip-
tional coactivator with PDZ-binding motif (TAZ),

Figure 1. Force transmission and mechanotransduction from the extracellular matrix (ECM) to the nucleus. Schematic illustration of the
various connections facilitating force transmission and mechanotransduction across the cell’s plasma membrane and nuclear envelope.
External forces are transmitted across the plasma membrane via integrins attached to ECM, or cadherins at cell-cell junctions. These
forces induce a range of local cytoplasmic mechanotransduction pathways. Additionally, force propagation through the cytoskeleton to
the LINC complex facilitates the activation of additional mechanotransduction pathways in the nucleus. Deformation of both plasma
and nuclear membranes changes ion channel and nuclear pore complex (NPC) permeability facilitating import and export of various sig-
naling molecules. Mechano-responses are indicated in gray with dashed arrows. It is not possible to include every putative mechano-
transduction pathway in this figure and only those covered in this review are included.
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have recently been found to mediate mechanical cues
via their translocation to the nucleus in response to
Rho and actomyosin tension.18,19 Crosstalk between
these factors adds a further layer of complexity and
fine-tuning to these signaling pathways. For example,
a context-dependent switch in chemo/mechanotrans-
duction has been observed via crosstalk between the
Rho pathway effector, myocardin-related transcrip-
tion factor (MRTF-A; also known as MAL or
MKL1), TAZ, and transforming growth factor-b
(TGF-b)-regulated Smad nuclear translocation.20

Force transmission through the nuclear membrane

Mechanically induced gene expression changes are often
brought about through indirect biochemical signaling
initiated at the cell surface or through cytoskeletal stiff-
ening. However, force can also be transmitted from the
plasma membrane, via the cytoskeleton, directly to the
nucleus, allowing the nuclear membrane and its associ-
ated proteins to respond directly (Fig. 1). This process
does not require biochemical signaling and can occur
over much shorter time scales (»1 ms versus 5–10 s).2

To sense extracellular force, the nucleus must be physi-
cally coupled to membrane bound adhesive complexes.
Maniotis et al. first demonstrated the existence of a
mechanical link between the plasma membrane and the
nucleus.21 Integrin-bound microbeads or micropipettes
were perturbed resulting in cytoskeletal filament reori-
entation, nuclei distortion and nucleoli redistribution.
These findings suggest that an externally applied force
could not only deform the nucleus, but induce reorgan-
isation of its genomic contents, potentially regulating
gene expression. This force propagation is mediated by
both intermediate filaments and F-actin, and requires
some cytoskeletal prestress.21,22

A specialized anchoring structure exists at the
nuclear envelope known as the linker of nucleoskeleton
and cytoskeleton (LINC) complex which contains
nesprins, sun and lamin proteins,23 and provides a
functional link between the support structures of the
cytoplasmic and nucleoplasmic compartments
(Fig. 1).24 Nesprin-1 and nesprin-2 on the outer
nuclear membrane (ONM) connect to actin fila-
ments,25,26 in addition to dynein and kinesin, motor
proteins of the microtubule network.27,28 Nesprin-3
binds plectin which connects to networks of intermedi-
ate filaments.29 On the inner nuclear membrane
(INM), Sad1 and UNC84 (SUN) domain proteins,

Sun1, Sun2 and Sun3 interact with the nuclear pore
complex,30 lamin A,31,32 and chromatin33 in the nucle-
oplasm. Nesprins span the ONM, and via a luminal
Klarsicht/Anc-1/Syne-1 homology (KASH) domain,
interact with SUN domains; establishing the LINC
complex and maintaining the perinuclear space.34

On the nucleoplasmic side of the INM lies the lamina.
This structural network of intermediate filaments is
composed largely of A and B type lamins and the pro-
teins that associate with them, the lamin-associated pro-
teins and lamin receptors (Fig. 1). The mechanical and
functional properties of the lamina vary greatly among
cell types depending on the relative ratios of different
lamin isoforms, and are related to source tissue stiff-
ness.35,36 Cells lacking lamins A and C have fragile
nuclei that are more deformable under mechanical
strain, exhibit altered mechanotransduction signaling,
abnormal condensation of chromatin, an abnormal dis-
tribution of nuclear pore complex’s (NPCs) and reduced
viability.37-39 Lamins interact with chromatin either
directly or through histones and other lamin-associated
proteins including emerin, lamin B receptor (LBR), het-
erochromatin protein 1 (HP1), barrier-to-autointegra-
tion factor (BAF), LEM domain-containing protein 3
(LEMD3), and several lamin associated polypeptide-2
(LAP2) isoforms.40 These interactions can occur at the
periphery and interior of the nucleus. Tethering of
peripheral chromatin to the nuclear lamina occurs in
specific genomic regions termed lamina-associated
domains (LADs), typified by repressive heterochroma-
tin which reduces transcription factor accessibility
resulting in low gene expression levels (Fig. 1).41,42 Lam-
ins also impact gene expression through their interac-
tion with transcription factors affecting proliferation,
differentiation and apoptosis.40,43 Furthermore, muta-
tions in the gene encoding A-type lamins (LMNA) have
been associated with at least 8 different diseases collec-
tively termed laminopathies, including Hutchinson Gil-
ford Progeria syndrome and Emery Dreifuss Muscular
Dystrophy.44 A-type lamins have been linked to the
maintenance and regeneration of several mesenchymal
tissues and have been proposed to be regulators of mes-
enchymal stem cell regeneration.45 Lamin A and SUN
proteins also mediate an interaction with emerin, an
integral transmembrane protein which is found on both
the ONM and INM. Emerin, like lamin A, has several
functions in the nucleus including the indirect regula-
tion of gene expression, RNA processing and chromatin
dynamics.46
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Nuclear mechanotransduction

While several mechanotransduction pathways have
been identified with their origins in the cytoplasm,
recent work has identified the existence of mechano-
transduction pathways intrinsic to the nucleus. Specif-
ically, the ability of the nucleoskeleton to dynamically
remodel in response to applied mechanical stress.
Lamin A/C levels have been shown to scale with tissue
stiffness, with modulation enhancing substrate stiff-
ness directed differentiation,36 suggesting a central
role for this protein in mechanotransduction.47,48 Bux-
boim et al. demonstrated that matrix stiffness couples
to myosin-II activity to promote lamin A/C dephos-
phorylation at Ser22.49 Lamin A/C is highly phosphor-
ylated during mitosis as the lamina is disassembled to
facilitate cell division.50,51 On stiff substrates, cell
spread area and myosin-II activity are high, resulting
in high cytoskeletal pre-stress and flattening of nuclei.
This high nuclear pre-stress state is associated with
downregulation of lamin A/C phosphorylation,
decreasing lamin A/C solubility and strengthening of
the lamina (Fig. 1). Lamin A/C reorganisation has
been observed in cells exposed to shear stress.52 When
shear stress was applied to isolated nuclei, a decrease
in phosphorylation at Ser390 was also observed, sug-
gesting that lamin A/C conformation is mechanosen-
sitive, with tension suppressing the affinity of
phosphorylation associated enzymes.36 Similarly,
under conditions of high cell contractility with apical
actin stress fibers and an intact LINC complex in
fibroblasts on rigid substrates and during MSC osteo-
genesis, Ihalainen et al. showed that the Ig-domain of
lamin A/C is more concealed in the basal than apical
nuclear envelope, providing additional evidence of a
conformational change in lamin A/C under cytoskele-
tal compressive force.53 This is consistent with other
findings demonstrating a vertical polarization of lamin
A/C in the presence of high cytoskeletal tension and
actin cap stress fibers.54 Furthermore, the level of
lamin A/C drives the translocation of the lamin-pro-
moting transcription factor, retinoic acid receptor g

(RARG), to the nucleus, so that lamin A/C protein lev-
els feedback into lamin A/C transcription.36,47

Another INM protein, emerin, interacts with both
lamin A/C and chromatin, and also mediates nuclear
stiffening in response to mechanical perturbations.
Guilluy et al. demonstrated that pulses of force applied
via magnetic tweezers to beads attached to nesprin-1

on isolated nuclei could induce emerin mediated
nuclear stiffening.55 Tyrosine phosphorylation of
emerin in response to force triggers a rearrangement
of the LINC complex which reinforces its connection
with lamin A/C (Fig. 1). Emerin also has a role in
mechanosensing through its modulation of nuclear
actin polymerisation, which controls nuclear export
and transcriptional activity of MRTF-A.56,57

Small forces, in the low piconewton range, which
are too low to induce protein unfolding may still trig-
ger nuclear mechanotransduction. Local dynamic
force applied to integrins and transmitted via an intact
and tense actin cytoskeleton to the nuclear envelope
has been shown to result in direct displacements of
Cajal body-associated protein complexes.58 Similarly,
chromatin remodelling in response to mechanical per-
turbation has been demonstrated on timescales pre-
ceding MRTF-A nuclear transport, suggesting a direct
impact of nuclear deformation on chromatin struc-
ture.59 Recently, Tajik et al. demonstrated that direct
stretching of chromatin leads to transcription upregu-
lation.60 Using magnetic twisting cytometry of a bead
attached to the plasma membrane, they observed that
subsequent transmission of force through the actin
cytoskeleton and LINC complex led to chromatin
deformation and force-induced upregulation of a
GFP-tagged transgene. This mechanoregulation of
chromatin dynamics and histone acetylation is likely
to be further moderated by lamin A/C level and
organization.61,62

In addition to direct mechanical perturbations the
nucleus also responds to mechano-chemical stimula-
tion via osmotic loading. We have shown that hypo-
tonic challenge induces chromatin expansion and
nuclear swelling while hyperosmotic challenge induces
rapid chromatin condensation,63 which is associated
with increased nuclear stiffness.64 Enyedi et al. have
recently revealed, in zebrafish, a mechanism whereby
the nuclear membrane acts to instigate a mechano-
transduction pathway directing an inflammatory
response to tissue damage.65 Tissue damage causes
osmotic cell and nucleus swelling at the wound mar-
gin. The swelling-induced nuclear membrane stretch
activates an inflammatory signaling cascade through
altered enzyme-lipid interactions, in a manner medi-
ated by lamin A/C associated nuclear membrane ten-
sion.65 These studies demonstrate that the nucleus can
respond directly to mechanical perturbation, with
alterations in both gene regulation and nuclear
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mechanical properties independent of cytoplasmic
biochemical and cytoskeletal responses.

Nuclear mechanics associated with cell function

The mechanical properties of the nucleus are a func-
tion of the nucleoplasm, chromatin, and the nuclear
lamina. The chromatin filled nucleoplasm is softer
and more viscous than the lamina, and both structures
exhibit power-law rheology, lacking any characteristic
timescale, when nuclei are subjected either to micropi-
pette aspiration or indented by atomic force micros-
copy.66 The nucleoplasm behaves as a Maxwell
material, in that it possesses both viscous and elastic
properties, and through particle nano-tracking of a
100 nm bead undergoing Brownian motion, was
found to have a Young’s modulus of 36 Pa.67 To put
this into context, bone marrow stiffness ranges from
200–700 Pa, while muscle tissue stiffness is approxi-
mately 10 kPa.36 However, another study that applied
force to a 500 nm bead positioned in the nucleoplasm
using magnetic tweezers obtained a Young’s modulus
of 250 Pa,68 suggesting that mechanical properties
may depend on the length scale and cell type in which
they are measured. The nucleus as a whole, when
tested using micropipette aspiration69,70 or unconfined
compression71 exhibits solid viscoelastic behavior with
Young’s moduli on the kilopascal range; values 1–2
orders of magnitude higher than that of nucleoplasm.
The structural stiffness of the nucleus is predomi-
nantly derived from the nuclear lamina, with individ-
ual components of the nuclear lamina conferring
specific mechanical properties. While B-type lamins
contribute to nuclear integrity, lamins A and C are the
most important contributors to nuclear mechanical
properties.72 Lamin A/C levels increase with host tis-
sue stiffness, such that cells residing in stiff tissues
exhibit high lamin A/C:lamin B stoichiometry and
increased nuclear stiffness on micropipette aspiration.
Through investigation across a range of cell types,
Swift et al. demonstrate that B type lamins dominate
the elastic response while lamins A and C dominate
the viscous response.36 Cells deficient in lamin A/C
demonstrate defective nuclear mechanics and
mechanotransduction.37,73

In addition to lamin A/C, chromatin organization
also regulates nuclear mechanics. Induction of chro-
matin condensation in embryonic stem cells (ESCs)
using Ca2C and Mg2C resulted in significantly

stiffened nuclei with large decreases in creep compli-
ance.74 Heo et al. also demonstrated that chromatin
condensation induced in response to hyperosmotic
shock or short-term dynamic tensile strain (10 min)
in MSCs led to an increase in nuclear stiffness.64 In
addition to condensation, nuclear stiffness can also be
modulated via chromatin tethering to the nuclear
envelope. Schreiner et al. demonstrated in fission
yeast—which lack a nuclear lamina—that chromatin
tethers to the nuclear membrane contribute signifi-
cantly to nuclear stiffness by restricting chromatin
flow in response to cytoskeletal forces in vivo, and in
isolated nuclei perturbed with optical tweezers.75

Nuclear mechanics and mechanotransduction in
disease

Nuclear mechanics and nucleo-cytoskeletal coupling
play a key role in cellular mechanosensing. Aberrant
nuclear mechanics—often associated with mutations
in lamins and LINC complex components—lead to
altered nuclear activity, impaired structural dynamics,
aberrant mechanosensing and cell signaling which are
associated with a growing range of disease scenarios
including muscular dystrophy, dilated cardiomyopa-
thy, premature aging, hearing defects and cancer.76,77

Mutations in the LMNA gene, which encodes lamins
A and C, cause a variety of human diseases termed
laminopathies, including Hutchinson-Gilford progeria
syndrome (HGPS), dilated cardiomyopathy, limb-gir-
dle muscular dystrophy, and Emery-Dreifuss muscu-
lar dystrophy (EDMD).78 Mutations in lamin A/C can
alter nuclear stiffness and disrupt LINC complex func-
tion, causing prominent defects in cardiac and skeletal
muscle.79-81 For example, the EDMD lamin mutation
L535P leads to an increased resistance to strain specifi-
cally in muscle nuclei, although this response can be
rescued through inhibition of lamin prenylation via
depletion of farnesyl diphosphate synthase gene (fdps-
1).81 HGPS is associated with a lamin mutation which
increases the nuclear lamina thickness and stiffens the
nucleus to reduce nuclear deformation.82 Further-
more, sporadic use of this cryptic splice site in lamin
A facilitates a slow build-up of features reminiscent of
HGPS in otherwise healthy aged cells.83

In addition to nuclear stiffness, appropriate nucleo-
cytoskeletal coupling is essential for cell migration in a
range of processes including development, wound
healing, inflammation, and cancer metastasis.84,85
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Dynamic positioning of the nucleus during migration
on 2D substrates in vitro requires cytoskeletal forces.84

However, the cell and nucleus face additional obstacles
to migration in 3D environments where dense fibrous
ECM and tight interstitial spaces often create constric-
tions smaller than the nucleus, so that deformation of
the relatively large and stiff nucleus becomes a rate-
limiting step.86 Nuclear stiffening of cancer cells,
through induction of the HGPS lamin mutation,
reduces both cell migration, and nuclear deformation
in response to micropipette aspiration.87 Interestingly,
this suggests that aged cells with accumulation of this
HGPS associated lamin mutation may resist meta-
static cancer migration. Expression of lamin and
LINC complex components may be downregulated in
cancer.88 Recently, in an in vitro model of tumor cell
migration through confined spaces, depletion of lamin
A was observed to increase the incidence of nuclear
envelope rupture.89 In agreement with this, others
have demonstrated that nuclear envelope rupture
occurs in regions with reduced or defective lamin
B.90,91 Such ruptures require proficient DNA repair
mechanisms, and the resulting genomic instability
may promote cancer progression.89,92 Accordingly,
targeting of this process may present an opportunity
for the development of anti-metastatic drugs. Another
nuclear regulated mechanosensing mechanism has
recently been implicated in tumor cell invasiveness.
Navarro-Lerida et al. have shown that impeded Rac1
nuclear export—which drives nuclear actin polymeri-
sation controlling nuclear shape and organization—
alters the cytoplasmic ratio of Rac1 and Rho, increas-
ing cytoplasmic RhoA signaling and driving tumor
invasion.93

Stem cell differentiation

Cellular biophysical properties have been shown to
provide a biomarker reflecting the differentiation sta-
tus of both ESCs and adult MSCs.94,95 Using digital
holographic microscopy (DHM) and an optical laser
trap, subcellular structure and compliance of differen-
tiating myeloid precursor cells has been monitored.94

A reduction in phase density observed during mono-
cyte and neutrophil differentiation was associated
with an increase in cell compliance, while macrophage
differentiation was associated with an increase in both
phase density and cell stiffness. Using video particle
tracking microrheology, Chen et al. showed that

osteogenic induction increased both elastic and vis-
cous moduli of differentiating MSCs, while adipogenic
induction decreased both moduli.95 Alterations to cell
mechanics inevitably impact the nucleus, both struc-
turally and mechanically. Again using particle tracking
microrheology in stem cells of varying multipotency,
Lozoya et al. demonstrate that nuclear shape is a
quantifiable discriminant of the mechanical properties
of the perinuclear cytoskeleton, such that the relation-
ship between nuclear shape and perinuclear mechani-
cal properties can be used to discriminate between
stem cell types.96 These findings suggest that structural
connections between the nucleus and cytoskeleton
exhibit reciprocal mechanical properties. As the stiff-
est organelle in the cell, the nucleus plays a central
role in defining cell mechanics, particularly in stem
cells which have a relatively large nucleus:cytoplasm
ratio.97 ESCs express very low levels of A-type lamins
which increase as the cell differentiates.98,99 Chroma-
tin is typically diffuse within ESC nuclei, but con-
denses into higher order structures as cells
differentiate.100 Both lamin A/C and chromatin con-
densation contribute to the increased nuclear mechan-
ical properties exhibited by ESCs as they progress
toward differentiation.74

Throughout the differentiation process, epigenetic
modifications accumulate in the genome so that genes
associated with pluripotency and self-renewal are
silenced in favor of terminally differentiated genetic
programs.101 These epigenetic modifications are asso-
ciated with alterations in nuclear architecture and
chromatin organization. Live-cell confocal tracking of
the nuclear lamina identifies a highly flexible nuclear
architecture in mouse ESCs compared with a more
frozen chromatin assembly in terminally differentiated
primary mouse embryonic fibroblasts.102 This flexible
ESC nuclear architecture is characterized by correlated
spatio-temporal fluctuations in chromatin compaction
and nuclear area.103 Gene silencing and activation is
also often associated with physical movement of spe-
cific genes and chromosomes toward the transcrip-
tionally repressive nuclear periphery or toward the
center of the nucleus respectively.104,105 Recently, Rob-
son et al. have demonstrated that physical recruitment
of genes to the nuclear envelope by muscle-specific
nuclear envelope transmembrane proteins (NETs)
contributes1/3 to

2/3 of a gene’s normal repression dur-
ing myogenesis.106 Another recent study in Caeno-
rhabditis elegans embryos has identified a nuclear
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envelope associated chromodomain protein CEC-4,
which anchors heterochromatin through recognition
of methylated H3K9 to stabilize induced cell fate.107

These phenomena illustrate a role for chromatin orga-
nization in governing gene expression and highlight
the potential for nuclear deformations and shape
changes to impact genome function and cell fate.

While ESCs and their nuclei stiffen with differentia-
tion, recent studies have identified 2 distinct mechani-
cal states in pluripotent ESCs.108,109 A state of
increased mouse ESC stemness—a na€ıve pluripotency
state—has been identified through the inhibition of
mitogen-activated protein kinase (MAPK) and glyco-
gen synthase kinase 3 (GSK3).110 This is in contrast to
culture in the absence of these inhibitors when the
pluripotency state is primed for differentiation.111

Chalut et al. paired histone modification analysis with
optical stretching to show that na€ıve ESCs have a sig-
nificantly stiffer nucleus, coupled with a state of
increased chromatin condensation when compared
with ESCs in the lower nanog expressing primed
state.108 More recently, Pagliara et al. have further
demonstrated that the ESC nuclei in this primed pluri-
potency state exhibit auxetic mechanical properties:
that is they exhibit a cross-sectional contraction when
compressed and a cross-sectional expansion when
stretched.109 This behavior is at least partially driven
by chromatin decondensation as the ESC proceeds
from a na€ıve to primed state. This phenomenon has
implications for transcriptional regulation and sug-
gests that auxeticity could be a key mechanosensing
mechanism in the initial stages of ESC commitment.

While cell and nucleus mechanics change with dif-
ferentiation, these changes are further compounded
by extrinsic mechanical stimuli. Heo et al. have
recently shown that tensile strain applied to MSCs, at
levels associated with the induction of fibrochondro-
genic differentiation, induces rapid chromatin con-
densation within 10 min., which stiffened MSC nuclei
so they were less deformable when cells were
stretched.64 This mechanical induction of chromatin
condensation requires cellular contractility and is
mediated by an initial ATP release in response to
strain.112 While this condensation was transient, dissi-
pating over the course of 3 hours, repeated tensile
strain acted to stabilize the condensed chromatin state
to establish a mechanical memory in these cells.64

This structural encoding of chromatin in the nucleus
may sensitize these differentiating MSCs to future

mechanical loading events, defining the trajectory and
persistence of their lineage specification.

Interplay between nuclear and cytoplasmic
mechanotransduction

Cellular mechanosensing is dependent on the mechani-
cal properties of the cell and its components. As dis-
cussed above, the patency of cytoplasmic f-actin and
nucleoplasmic lamin A/C networks is critical to normal
mechanosensing. Aberrant mechanosensing occurs in
disease scenarios where one or both of these cellular
compartments exhibits altered mechanics, often stem-
ming from a mutation in a key structural protein. By
way of example, Guilluy et al. found that fibroblasts
expressing a phosphoresistant emerin mutant exhibited
less bundled actin filaments.55 This suggests that
nuclear adaption to force is critical to actin cytoskeleton
organization, demonstrating that structural elements
are physically interdependent. Changes in the relative
mechanical properties of the cytoplasm and nucleus
also occur in differentiation as a cell adapts to perform
a new and specific function. As discussed above, the
relationship between perinuclear mechanical properties
and nuclear shape provides a prospective basis for dis-
crimination between cell types, or assessment of differ-
entiation progression.96

We propose that as a cell responds to a mechanical
stimulus or dramatically changes its function, as occurs
in differentiation and disease, it alters the mechanical
properties of both nucleus and cytoskeleton to provide
additional sensitivity to specific mechanosensation
machinery (Fig. 2). We have demonstrated that multi-
ple episodes of strain application to MSCs sensitize
these cells to future mechanical loading events.64 Suc-
cessive episodes of mechanical strain instil a state of
chromatin condensation which remains for at least 5 d
in the absence of strain. This state of enhanced chro-
matin condensation likely brings about an increase in
nuclear stiffness, which as a result of force balance
within the cell, may also increase cytoskeletal pre-stress.
This state of enhanced pre-stress may prime specific
mechanosensory machinery, both at focal adhesions
and in the nuclear interior, to subsequent mechanical
perturbations (Fig. 2).

Differential mechanical adaption to direct the source
of mechanosensing has been demonstrated elsewhere.
Talwar et al. demonstrate that differentiating ESC gene
expression is regulated through nuclear mechanical
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heterogeneity.113 Differentiation invoked nuclear stiffen-
ing, which was associated with increased lamin A/C
expression. When forced to spread on micro-patterned
substrates, these lamin A/C mediated changes in nuclear
stiffness drive nuclear localization of transcription co-
regulator MRTF-A. Driscoll et al. demonstrate that cyto-
skeletal contractility and connectivity with the nucleus
alters nuclear pre-stress and regulates the MSC response
to dynamic tensile stretch in terms of another transcrip-
tion co-regulator: YAP.114 The LINC complex was neces-
sary for YAP nuclear translocation in response to tensile
stretch.114 Another study by Uzer et al. demonstrates that
connectivity between the nucleus and cytoskeleton across
the LINC complex is critical to the sensation of extremely
low magnitude vibratory forces.115 Interestingly activa-
tion of FAK by highmagnitude substrate strain was unaf-
fected by LINC complex decoupling, suggesting that in
addition to external mechanical strains, MSCs can also
respond internally to vibratory signals enacted through
the LINC complex. Indeed, nuclear-cytoskeletal linkages
are key to effective crosstalk between the nucleus, cyto-
skeleton and plasmamembrane adhesions.114,116

In addition to alteration of transcription regulator
nuclear localization, the interplay between cytoskeletal
and nuclear mechanics also dictates chromatin
dynamics. Makhija et al. demonstrate, using isotropic
and elongated cell geometries, a link between cell

geometry and chromatin fluctuations where the inter-
play between active cytoskeletal forces and nuclear
rigidity from lamin A/C together regulate nuclear and
chromatin dynamics.62 Anisotropic nuclear deforma-
tion in response to extracellular forces is also regulated
by the interplay between cytoskeletal tension, and
nuclear architecture including both chromatin and
lamin A/C organization.117 Together, these studies
demonstrate that with alteration of nuclear-cytoskele-
tal connectivity and mechanics, it is possible for a cell
to change the site where a given mechanical stimulus
achieves its effect to tailor the mechano-response.

Conclusions

Recent studies have provided strong evidence that the
nucleus acts as a center for mechanotransduction in
addition to classical mechanosensors at the plasma
membrane. This raises the possibility that the cell,
through region specific alterations in mechanical
properties, can focus mechanical signals toward a par-
ticular mechanosensing apparatus. We propose that
with changes in cell function, as occur in disease and
differentiation, the nucleus acts as a rheostat to regu-
late cellular strain distributions by altering its own
compliance and resistance to force.

Mechanisms of mechanotransduction in the nucleus
are beginning to be unearthed, however, much remains
to be discovered in this area. While cell-type specific
relationships between nuclear shape and cytoskeletal
stiffness have been identified, the mechanisms which
differentially regulate nuclear compliance and cytoskel-
etal tension for a given cell type, or potential mechano-
sensory focus, remain to be explored. The tools
available for studying intracellular biomechanics are
improving, and our increased understanding of the
connection between physical stresses, nuclear architec-
ture and genome function leads to the recognition of a
new realm of cell signaling pathways comprising both
biophysical and biochemical events.
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