
A [4Fe-4S]-Fe(CO)(CN)-L-cysteine intermediate is the first 
organometallic precursor in [FeFe] hydrogenase H-cluster 
bioassembly

Guodong Rao1, Lizhi Tao1, Daniel L. M. Suess1,2, and R. David Britt1,*

1Department of Chemistry, University of California, Davis, CA 95616, USA

2Current address: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 
MA 02139, USA

Abstract

Biosynthesis of the [FeFe] hydrogenase active site (the “H-cluster”) requires the interplay of 

multiple proteins and small molecules. Among them, the radical S-adenosyl-methionine enzyme 

HydG, a tyrosine lyase, has been proposed to generate an Fe(CO)2(CN) moiety-containing 

complex that is eventually incorporated into the H-cluster. Here we describe the characterization 

of an intermediate in the HydG reaction: a [4Fe-4S][(Cys)Fe(CO)(CN)] species, termed “Complex 

A”, in which a CO, a CN− and a cysteine (Cys) molecule bind to the unique “dangler” Fe site of 

the auxiliary [5Fe-4S] cluster of HydG. Identification of this intermediate—the first 

organometallic precursor to the H-cluster—validates the previously hypothesized HydG reaction 

cycle and provides a basis for elucidating the biosynthetic origin of other moieties of the H-cluster.

Graphical Abstract:

Biosynthesis of the [FeFe] hydrogenase active site H-cluster requires several Fe-S proteins that 

perform poorly understood reactions. Now, a reaction intermediate trapped in the enzyme HydG is 

shown to contain a [(Cys)Fe(CO)(CN)] species, the first organometallic Fe moiety en route to the 

catalytic H-cluster.
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[FeFe] hydrogenases catalyze the efficient interconversion between H2 and H+/e− and are 

involved in many metabolic processes that balance the redox potentials in cells.1 There is 

also considerable interest in their application in biofuel cells.2,3 The active site of [FeFe] 

hydrogenases, the H-cluster, consists of a canonical cysteine (Cys)-bound [4Fe-4S]H 

subcluster linked to a [2Fe]H subcluster in which the two Fe centers are coordinated by CO, 

CN−, and a bridging azadithiolate ligand (Fig. 1a).4,5 The unique structural features and 

catalytic activity of the H-cluster have stimulated interest regarding its biosynthesis.2,6–12 

Recent studies have demonstrated that assembly of the [2Fe]H subcluster requires several 

iron-sulfur cluster-containing maturases: HydE, HydF, and HydG (Fig. 1a).13–21 Among 

them, HydG is a bifunctional radical S-adenosyl-methionine (SAM) enzyme that cleaves its 

substrate tyrosine (Tyr) to generate CO and CN− (Fig. 1b)16,22–24 and forms an 

Fe(CO)2(CN) moiety-containing organometallic precursor that is eventually incorporated 

into the H-cluster (Fig. 1c).25

These two reactions are carried out by HydG using two Fe-S clusters with distinct roles.
8,16,24–30 A SAM-binding [4Fe-4S]RS (RS = radical SAM) cluster bound near the N-

terminus initiates the radical chemistry that leads to Tyr cleavage. Upon one-electron 

reduction of the [4Fe-4S]RS cluster, SAM is cleaved to a 5’-dAdo radical, which likely 

abstracts an H atom from the amino group31 of Tyr. This induces Cα-Cβ cleavage to give a 

4-hydroxybenzyl radical (4-OB•),27 along with dehydroglycine (DHG) which is in turn 

converted into CO and CN− through mechanisms under investigation (Fig. 1b). Near the C-

terminus, HydG harbors a unique [5Fe-4S] auxiliary cluster, recently identified by X-ray 

crystallographic analysis with support from biochemical and spectroscopic studies.32 The 

auxiliary cluster contains a high spin “dangler” Fe2+ (S = 2) chelated by a bridging Cys 

molecule by which it is linked to a conventional [4Fe-4S]+ cluster (S = 1/2) through the 

cysteine S, forming an S = 5/2 resting state in the reduced form (Fig. 1c).32,33 The dangler 

Fe and the bridging Cys were shown to be labile towards chelating agents such as EDTA and 

CN−.32,33 Several species have been identified in the HydG reaction in addition to Tyr 

cleavage product (p-cresol): stopped-flow Fourier transform infrared (SF-FTIR) 

spectroscopic studies indicated the sequential formation of two CO/CN−-containing Fe 

complexes,25 and electron paramagnetic resonance (EPR) spectroscopic studies revealed the 

presence of a [4Fe-4S]aux-CN species with the synthon built upon the dangler Fe 

presumably released (Fig. 1c).33

Taken together, these results lead to a hypothesized mechanistic framework of HydG (Fig. 

1c),33 in which CO and CN− bind to the dangler Fe in the auxiliary cluster to generate a 

discrete [(Cys)Fe(CO)2(CN)]− complex as the reaction product. In this mechanism, it has 

been suggested that Cys serves, at a minimum, to deliver the [Fe(CO)2(CN)]+ moiety to the 

next maturase, and that the Cys ligand in this complex may be further processed to install 

the azadithiolate bridging ligand.33 These proposals were supported by evidences that Cys 

binds the auxiliary [4Fe-4S] cluster,33 and that Cys is required for generating organometallic 

Fe(CO)x(CN)y intermediates.34 However, it has not been demonstrated that the Cys-chelated 

dangler Fe is the site of organometallic complex formation; i.e., there has not been any direct 

observation of the proposed [4Fe-4S][(Cys)Fe(CO)x(CN)y] species. We reasoned that the 

first organometallic intermediate proposed—[4Fe–4S][(Cys)Fe(CO)(CN)], termed 

“Complex A” (Fig. 1c)—could serve this purpose. In particular, we expected such a species 
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to adopt an S = 1/2 ground state in its reduced form, owing to the low spin S = 0 dangler 

Fe2+ that results from the binding of the strong field π-acid ligands CO and CN−, leaving the 

S = 1/2 [4Fe–4S]+
aux cluster as the sole source of paramagnetism.

In this paper, we report the spectroscopic characterization of Complex A trapped during 

HydG turnover. The EPR spectroscopic studies herein establish the connectivity between the 

C-terminal auxiliary [4Fe-4S] cluster, the bridging Cys molecule, the dangler Fe, and the CO 

and CN− ligands in Complex A, and thereby provide direct evidence that the first 

organometallic precursor to the H-cluster is a HydG-bound [4Fe-4S][(Cys)Fe(CO)(CN)] 

species. In addition, a dicyano analogue of Complex A, [4Fe-4S][(Cys)Fe(CN)2], was 

generated non-enzymatically, which further demonstrates the formation of Fe(CO)x(CN)y 

species on the dangler Fe site.

Results

Intermediates in the HydG reaction with one equivalent of Tyr.

When the HydG reaction was performed by using excess dithionite and SAM, but only one 

equivalent Tyr, and freeze-quenched at 24 s (the “standard condition”, see Methods), the 

resulting sample exhibited a complex set of signals near g ~ 2 in its continuous wave (CW)-

EPR spectrum (Fig. 2a, top black trace). Simulation of this spectrum reveals three species 

(Fig. 2a, Supplementary Information): species 1 (red trace) with g = [2.058, 1.922, 1.882] is 

assigned to Complex A for reasons we discuss below; species 2 (blue trace) with g = [2.009, 

1.881, 1.842] originates from the SAM-bound [4Fe-4S]+
RS cluster, as previously 

established;26,27 and species 3 (green trace) with g = [2.044, 1.942, 1.904], the origin of 

which is currently unknown. The spectral composition of the 24 s reaction sample was 

further confirmed by deconvolution of its Q-band electron spin-echo detected EPR spectrum 

(Fig. 2b) and the corresponding pseudo-modulated spectrum (Supplementary Fig. 1).

In determining the identity of species 1, we considered the following observations. First, the 

intensity of EPR signal from species 1 decreases as the reaction proceeds (Supplementary 

Fig. 2 and 3), which is consistent with the kinetics of Complex A in our previous SF-FTIR 

studies.25 Second, the intensity of this signal also decreases with increasing equivalents of 

Tyr (Supplementary Fig. 4), which explains why it was not as obvious in previous studies in 

which 10~15 equivalents of Tyr were used.27 Third, the temperature profile of species 1 is 

similar to that of a typical S = 1/2 [4Fe-4S]+ cluster (Supplementary Fig. 5). Fourth, 

compared in Supplementary Table 1 are the g tensors for several HydG auxiliary cluster-

derived species. The g tensor of species 1 is distinct from that of the resting state of HydG 

auxiliary cluster that has a ground state of S = 5/2 (geff = [9.5, 4.7, 4.1, 3.7]). It is also 

different from two other S = 1/2 species observed previously: the cyanide bound HydG 

auxiliary cluster ([4Fe-4S]+
aux-CN, g = [2.09, 1.94, 1.93]) observed in the prolonged 

reaction (20 min) sample,32,33 and the dangler Fe-deficient HydG auxiliary cluster ([4Fe-4S]
+

aux-Cys, g = [2.064, 1.895, 1.865]).33 These facts suggest that species 1 could be Complex 

A. In what follows, we test this hypothesis by employing electron nuclear double resonance 

(ENDOR) and hyperfine sublevel correlation (HYSCORE) spectroscopy to probe the 

structure/ligand environment of species 1 using isotopically labeled Tyr (13C and 15N), Cys 

(3-13C), and Fe (57Fe).
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13CO/13C15N in Complex A.

HydG-catalyzed cleavage of isotopically labeled Tyr (13C and 15N) generates 13C/15N 

labeled Fe(CO)x(CN)y intermediates (Fig. 1c and Fig. 3a).25,33 In Fe(CO)x(CN)y 

intermediates, the dangler Fe to which CO and CN− are bound is proposed to be a 

diamagnetic, low spin Fe2+ center; as such, the electron spin density is expected to reside 

primarily on the [4Fe-4S]+
aux cluster, and the 13CO, 13CN, C15N hyperfine coupling 

interactions (HFI) are expected to be small, making these I = 1/2 nuclei good targets for 

Mims-ENDOR (Supplementary Methods).

The Mims-ENDOR spectrum recorded at g = 1.922 of a sample generated under the 

standard condition (vide supra) using U-13C9-Tyr as the substrate exhibited a sharp doublet 

centered at the Larmor frequency of 13C, with a splitting of ~0.27 MHz (Fig. 3b). To clarify 

which EPR species contribute to the 13C ENDOR signals, we collected field-dependent 13C 

Mims-ENDOR spectra (Fig. 3b) under optimized conditions (Supplementary Fig. 6), at field 

positions indicated by the arrows shown in Fig. 2b. Mims-ENDOR signals (Fig. 3b) were 

not observed at g = 1.851 (the rightmost arrow, Fig. 2b) where only species 2 (SAM-bound 

[4Fe-4S]+
RS cluster) is present, but were observed at g = 1.882 (the second rightmost arrow, 

Fig. 2b) where both species 1 and 2 are present while species 3 is not present (Fig. 3b), 

clearly indicating that these ENDOR signals arise from species 1. Consistent with this 

assignment, the 13C Mims-ENDOR signals were observed across the absorption envelope of 

species 1 (Fig. 2b, g = 2.055 to 1.882; Fig. 3b).

To clarify which carbon(s) in Tyr give rise to the observed 13C ENDOR signals, we prepared 

reaction samples under the standard condition using selectively 13C-labeled Tyr, specifically 

either 1-13C-Tyr which generates 13CO, or 2-13C-Tyr which generates 13CN− (Fig. 3a). 

Interestingly, 13C Mims-ENDOR spectra of these two samples recorded at g2 (1.922) of 

species 1 were nearly indistinguishable, and the signals were not observed when SAM is not 

present (Supplementary Fig. 7), ruling out its origin from any unreacted Tyr species bound 

to the clusters. Further field-dependent 13C Mims-ENDOR measurements indicate that the 

HFI from 13CO ([0.10, 0.30, 0.27] MHz, Fig. 3c) and 13CN− ([0.15, 0.30, 0.28] MHz, Fig. 

3d) are almost identical, and that they both contribute to the ENDOR spectra in Fig. 3a 

where both 13CO and 13CN− HFI are detected. Based on these 13C Mims-ENDOR 

experiments, we conclude that species 1 corresponds to Complex A as observed by FTIR 

spectroscopic studies.25

We also looked for the evidence for C15N− binding to the dangler Fe by probing the 15N HFI 

(generated from [U-13C9, 15N]-Tyr). The small 15N HFI, observed in X-band HYSCORE 

spectra of the reaction sample (Supplementary Fig. 8), further supports our assignment of 

species 1 as Complex A.

Bridging Cys molecule in Complex A.

Having assigned species 1 to Complex A, we then looked for evidence of the bridging Cys 

in this species. To this end, we selectively installed 3-13C-Cys in the bridging position of the 

auxiliary [5Fe-4S] cluster of HydG using our previously established protocol (Fig. 3a, see 

Methods).33 When the reaction was performed using this 3-13C-Cysbridge-labeled HydG and 
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U-13C9-Tyr at standard condition, the 13C Mims-ENDOR spectra of the resulting sample 

showed the same small 13C HFI (aiso = 0.23 MHz, Fig. 3e, red trace) from 13CO/13CN, as 

observed with unlabeled HydG (Fig. 3b, vide supra). In addition, a second set of 13C 

ENDOR signals with a larger hyperfine splitting was observed (Fig. 3e, simulated with blue 

trace), which must originate from the labeled 13C on the bridging Cys. A similar field-

dependent 13C Mims-ENDOR study (vide supra) reveals that this set of signals appears 

concurrently with the 13CO/13CN− signals (Fig. 3e, from g = 2.055 to g = 1.882), which 

indicates that it also originates from species 1, i.e., Complex A.

The ENDOR of 3-13C-Cysbridge in Complex A can be simulated using a 13C hyperfine 

tensor of A = [1.00, 0.20, 1.00] MHz (Fig. 3e, blue trace), with aiso = 0.73 MHz and T = 

−0.27 MHz (sign relative to aiso). Importantly, this 13C HFI is distinct from that reported for 

the Cys-bound HydG auxiliary cluster, [4Fe-4S]+
aux-[3-13C-Cys] (A = [0.83, 0.83, 1.03] 

MHz).33 The dipolar component of this 13C HFI in Complex A (|T| = 0.27 MHz) 

approximately corresponds to a distance between the labeled carbon and the nearest Fe in 

the [4Fe-4S]aux cluster of ~4 Å (Supplementary Information). This distance is broadly 

consistent with the proposed structure of Complex A in which the Cys C3 carbon is 

separated from the [4Fe-4S] cluster by a bridging thiolate sulfur atom.

Dangler 57Fe in Complex A.

We next sought to verify the presence of the dangler Fe in Complex A and to clarify its spin 

state by measuring the 57Fe HFI. A sample of 57Fedangler-labeled HydG was generated using 

a previous established protocol33 (Fig. 3a) and was subjected to the standard reaction 

conditions to generate the 57Fedangler-labeled Complex A (Fig. 4c). The Q-band HYSCORE 

spectrum of this sample collected at g = 2.05 reveals crosspeaks on the antidiagonal line 

centered at the 57Fe Larmor frequency (1.63 MHz at 1186 mT, Fig. 4a). These signals are 

not present in the corresponding natural abundance spectrum recorded under the same 

conditions (Fig. 4b) and must therefore be attributed to the dangler 57Fe.

Field-dependent HYSCORE spectra were collected and simulated to extract the 57Fe HFI 

tensor, which is nearly isotropic with A = [0.45, 0.30, 0.50] MHz, aiso = 0.42 MHz, and a 

major |T| ~ 0.07 MHz (Fig. 4d). The spin density on the dangler 57Fe is estimated as follows:
35 a Fermi contact (aiso) of 0.42 MHz corresponds to 0.056% spin density in the 4s orbital, 

and the anisotropic contribution (|T| ~ 0.067 MHz) gives a spin density of 0.24% in 3d 
orbitals, adding up to a total spin density of ~0.3% on the dangler 57Fe. The small 57Fe spin 

density validates the diamagnetic nature of the dangler Fe upon binding to CO/CN−, and is 

consistent with the small 13C HFI detected for 13CO/13CN−. In the point dipole 

approximation, the dipolar part of 57Fe HFI corresponds to a distance between the dangler 

Fe and the nearest Fe in the [4Fe-4S] cluster of ~4 Å (Supplementary Information). For 

comparison, the same distance in the X-ray crystal structure of HydG is 4.1 Å (PDB ID 

code: 4WCX32). Due to the likely structural changes upon CO/CN− binding (and the 

bridging Cys molecule was absent in the X-ray structure), this HYSCORE-derived distance 

is reasonably consistent with the X-ray crystallographic structure, and it suggests that the 

dangler Fe is close to the [4Fe-4S]aux cluster in Complex A.
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The 57Fe we observed in Complex A has the smallest 57Fe HFI that has been reported to 

date. A few other examples of weak 57Fe HFI are summarized in Table 1: a reaction 

intermediate of LipA has 57Fe aiso = 1–2 MHz between a formally diamagnetic [4Fe-4S]2+ 

cluster and an carbon-centered organic radical;36 the distal Fe in the Hox-CO state of [FeFe] 

hydrogenase H-cluster has 57Fe aiso = 0.8 MHz (from Desulfovibrio desulfuricans DdH37) 

or 1.3 MHz (from Chlamydomonas reinhardtii HydA138 reconstituted with synthetic 

[57Fe2(adt)(CO)4(CN)2]2-); the Ni-A, Ni-B and Ni-C states in [NiFe] hydrogenase from 

Desulfovibrio gigas have 57Fe aiso = 0.8–1.4 MHz between a formally diamagnetic Fe2+ and 

the Ni center.39,40 In all cases, the 57Fe coupled to paramagnetic centers are either formally 

diamagnetic, or have very small spin density.

Taken together, the 13C and 57Fe HFI values demonstrate that Complex A is comprised of a 

low-spin dangler Fe2+ center bound to a CO and a CN−, and that it is covalently linked to the 

[4Fe-4S]aux cluster through a bridging Cys molecule. Clarifying the structure of this 

intermediate provides direct evidence that HydG generates [Cys][Fe(CO)x(CN)y] species as 

the reaction product(s). Interestingly, Complex A is an unusual S = 1/2 [5Fe-4S] cluster, 

with the only similar example being the sirohaem-[5Fe-4S] cluster in which the sirohaem 

iron (with CO or CN− bound) is weakly coupled to a [4Fe-4S] cluster through a bridging 

Cys residue.41–43 In this regard, Complex A also shares some similarity with the recently 

identified hydride state (Hhyd) of the [FeFe] hydrogenase in which two low-spin Fe2+ centers 

are linked to a paramagnetic [4Fe-4S]+ cluster through a bridging Cys residue.44–46

Dicyano analogue of Complex A.

We further tested the possibility of generating Complex A and its analogs in non-enzymatic 

manners, that is, by incubating HydG with CO and/or CN− and comparing the corresponding 

EPR signals to species 1. Although such attempts to generate Complex A have not yet 

proven fruitful, we were able to generate a cyanide adduct of HydG (Fig. 5a). In a cyanide 

titration experiment, we observed a new S = 1/2 species on CW-EPR upon addition of 12 eq. 

of K13CN to HydG, and the signal intensity reached a maximum when 50 eq. of K13CN was 

added (Supplementary Fig. 9). The CW-EPR spectrum of the “HydG + 50 eq. K13CN” 

sample is simulated with three species, the most abundant new species among which (Fig. 

5b, red trace) has g = [2.054, 1.927, 1.879], almost identical to that of Complex A 

(Supplementary Table 1). Based on this g tensor similarity, we tentatively assigned this EPR 

species to the dicyano analog of Complex A, [4Fe-4S][(Cys)Fe(CN)2] (Fig. 5a), though a 

[4Fe-4S][(Cys)Fe(CN)(L)] structure cannot be ruled out (L is a different ligand that 

completes the octahedral coordination sphere of the dangler Fe). 13CN− binding to dangler 

Fe was further ascertained by field-dependent 13C Mims-ENDOR studies (Fig. 5c). The 

observed ENDOR signals, simulated with a 13C HFI of A = [0.20, 0.30, 0.30] MHz (Fig. 5c, 

red trace), are also similar to the 13CO/13CN− signals in Complex A, but distinct from that in 

the previously reported [4Fe-4S]aux-13CN species (A = [−5.0 −4.0 0.9] MHz).32 Observation 

of this cyanide adduct provides further evidence that the dangler Fe site is involved in the 

formation of Fe(CO)x(CN)y species.
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Discussion

Using insights from previous work and results in this study, the molecular-level mechanism 

of H-cluster biosynthesis may be summarized as follows. The radical SAM cluster of HydG 

initiates cleavage of Tyr into p-cresol and DHG—a CO/CN− precursor. At the auxiliary 

cluster of HydG, CO/CN− add to a dangler Fe to generate a [4Fe-4S][(Cys)Fe(CO)(CN)] 

intermediate, as demonstrated here. A second Tyr cleavage-generated CO/CN− pair further 

converts this intermediate into a [Fe(CO)2(CN)]-moiety containing complex, proposed to be 

[(Cys)Fe(CO)2(CN)]. Two equivalents of the latter Fe complex may be processed by HydE 

to generate the azadithiolate bridging ligand from the bound Cys fragment, followed by 

further processing on HydF to form the H-cluster-like 2Fe precursor. Alternatively, the 

azadithiolate ligand may be sourced from other molecular precursors. At the end of this 

cascade, HydF is thought to deliver a 2Fe subcluster to apo-hydrogenase to give active 

hydrogenase.

Many important questions about this process remain, including to which maturase enzyme 

the [(Cys)Fe(CO)2(CN)] complex is delivered; how the azadithionate bridge is formed and 

whether the HydG-derived [(Cys)Fe(CO)2(CN)] is a precursor to it; and at what point the 

first 2Fe center is formed. The results reported here provide a useful foundation for studying 

these important problems by definitively showing that HydG generates [Cys]

[Fe(CO)x(CN)y] species. Further deploying these in vitro selective isotope-labeling 

strategies and advanced spectroscopic methods should enable additional mechanistic 

insights to be gleaned.

Methods

Generation of 3-13C-Cysbridge and 57Fedangler labeled HydG.

This procedure is essentially the same to that for labeling the dangler Fe reported previously.
33 As-isolated HydG was concentrated to ~300 μM. Sodium dithionite, SAM, 3-13C-Cys 

was added to 3 mM, and EDTA to 600 μM (in that order). This mixture was incubated for 10 

min at room temperature, diluted by 10-fold with a buffer containing 3 mM dithionite, SAM 

and 3-13C-Cys, and concentrated to the original volume by using 30 kDa cutoff Amicon 

centrifugal filters. To the dangler Fe-removed protein was then added 57Fe2+ (see 

Supplementary Methods) to a final concentration of ~1 mM. This labeled protein sample 

was used immediately for HydG reactions.

The “standard condition” to generate HydG reaction mixture containing Complex A

As-isolated or labeled HydG was concentrated to ~800 μM. SAM and dithionite was added 

to a final concentration of ~8 mM. The reaction was initiated by transferring 60 μL of this 

solution into an EPR sample tube (Ka-band quartz tube with an outer diameter of 2.4 mm 

and inner diameter of 2.0 mm) and mixing with 10 μL of 5 mM Tyr (labeled as desired) at 

the bottom of the EPR tube. The final concentrations for HydG and Tyr were ~700 μM. For 

X-band samples, a 150 μL protein solution was mixed with 25 μL Tyr in an X-band tube. 

The reaction was mixed quickly by pipetting up and down once, rapidly transferred outside 

of the glovebox and freeze-quenched at different time points. With this procedure, we were 
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able to quench the reaction as early as 24 s. The EPR samples were stored in liquid nitrogen 

prior to analysis.

Generation of the di-CN analogue of Complex A.

As-isolated HydG was concentrated to ~600 μM. Sodium dithionite and SAM were added to 

a final concentration of 6 mM. To 50 μL of the enzyme solution was added 10 μL 60 mM 

K13CN solution. After brief mixing, the solution was transferred to EPR sample tubes 

mentioned above and frozen in liquid nitrogen prior to analysis.

Data availability.

The data collected in this study are available from the corresponding author upon request 

(including data presented in the main text and in the Supplementary Information).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
[FeFe] hydrogenase (HydA) H-cluster bioassembly. a, Maturation of apo-HydA. b, 

Proposed mechanism by which the radical SAM cluster of HydG cleaves Tyr into CO and 

CN−. c, Proposed mechanism by which the auxiliary cluster of HydG generates an 

Fe(CO)2(CN) synthon with Complex A as the intermediate. Note that the stereochemistry of 

the dangler Fe in Complex A is unclear. Isotopically labeled nuclei used in this study are 

shown in colors. Met = L-methionine; dAdoH = 5’-deoxyadenosine; other abbreviations are 

noted in the text. The spin states of the dangler Fe in Fe species are indicated as HS (S = 2) 

or LS (S = 0).
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Figure 2. 
Deconvolution of the HydG reaction EPR spectra. a, Top: X-band (9.4 GHz) CW-EPR 

spectrum of the 24 s HydG reaction sample (black trace), and the total simulation (magenta 

trace). Middle: simulation of the top black trace with three species: species 1 (Complex A, 

35%, red trace), species 2, (SAM bound [4Fe-4S]+
RS cluster, 43%, blue trace) and species 3 

(unknown structure, 22%, green trace). Bottom: the difference between the experimental 

spectrum and the total simulation. b, Q-band (34 GHz) electron spin-echo detected EPR 

spectrum of the 24 s reaction sample (black trace) and its simulated components: species 1 
(red trace), 40%; species 2 (blue trace), 31%; species 3 (green trace), 29%. The field 

positions used for 13C Mims-ENDOR measurements are indicated by arrows (from left to 

right, g = 2.055, 1.940, 1.922, 1.890, 1.882 and 1.851, respectively). Parameters for X-band 

CW-EPR: temperature, 10 K; microwave power, 0.02 mW (non-saturating); modulation 

amplitude, 0.5 mT. Parameters for Q-band measurements: temperature, 10 K; π/2 = 12 ns; τ 
= 300 ns.
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Figure 3. 
13C Mims-ENDOR spectra of the HydG reaction mixture generated under the standard 

condition. a, Overview of the strategies to selectively label HydG and HydG reaction 

intermediates. b-e, Field-dependent 13C Mims-ENDOR spectra of HydG reaction mixture 

generated by using U-13C9-Tyr + natural abundance (N.A.) HydG (b), 1-13C-Tyr + N.A. 

HydG (c), 2-13C-Tyr + N.A. HydG (d), and U-13C9-Tyr + 3-13C-Cysbridge, 57Fedangler-HydG 

(e). Labeled 13C nuclei are marked in red (from Tyr) and blue (from Cys). Labeled 57Fe 

nuclei are marked in green. Parameters for Mims-ENDOR: temperature, 10K; π/2 = 12 ns; τ 
= 300 ns; RF pulse = 30 μs. Parameters for simulation: g = [2.058, 1.922, 1.881]; A = [0.10, 

0.30, 0.27] MHz; Euler angle = [30, 30, 0]°(c); A = [0.15, 0.30, 0.28] MHz; Euler angle = 

[0, 30, 0]° (d); and A = [1.00, 0.20, 1.00] MHz; Euler angle = [60, 35, −60]° (e, blue trace). 

The red trace in e represents the total contributions from 13CO and 13CN HFI.
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Figure 4. 
57Fe HYSCORE spectra of HydG reaction mixture generated under the standard condition. 

Q-band (34 GHz) HYSCORE spectra of Complex A with 57Fedangler HydG (a) and natural 

abundance HydG (b) at g = 2.05. c, Depiction of Complex A with the labeled Fe marked in 

green. d, Field-dependent HYSCORE spectra of Complex A with 57Fedangler–labeled HydG 

(red contours) and the simulations (blue contours) using g = [2.058, 1.922, 1.882], A = 

[0.50, 0.35, 0.40] MHz and Euler angle = [0, 60, 0]°. Parameters for Q-band HYSCORE 

spectroscopy: temperature, 10 K; τ = 300 ns; π/2 = 12 ns; π = 24 ns. The time increment in 

both dimensions was 24 ns with 180 steps.
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Figure 5. 
Dicyano analogue of Complex A. a, Scheme showing the generation of the dicyano 

analogue. b, Top: CW EPR spectrum of HydG + 50 eq. KCN (black trace), and the total 

simulation (magenta trace). Middle: simulation of top black trace with three species 

(Supplementary Information): dicyano analogue (47%, red trace), SAM bound [4Fe-4S]+
RS 

cluster (32%, blue trace) and unknown structure (21%, green trace). Bottom: the difference 

between the experimental spectrum and the total simulation. c, Field-dependent 13C Mims-

ENDOR spectra (black trace) of the sample in b, simulated with g = [2.054, 1.927, 1.880], A 
= [0.20, 0.30, 0.30] MHz and Euler angle = [0, 30, 0]° (red trace). Parameters for X-band 

CW-EPR and Q-band ENDOR experiments were same as those in Fig. 2 and 3.
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Table 1.

Comparison of weak 57Fe hyperfine interactions in various Fe proteins.

57Fe species A 57Fe (MHz) [α, β, γ] (degree) ref

HydG Complex A [0.45, 0.30, 0.50] [0, 60, 0] this work

Ni-A state 1.0 - [39]

Ni-C state 0.8 - [39]

Ni-B state 0.8 - [40]

LipA intermediate
a [1.2, 1.4, 2.5] - [36]

[1.3, 1.0, 0.1] - [36]

Hox-CO Fed (HydA1) [−1.7, 2.8, 2.8] [0, 30, 90] [38]

Hox-CO Fed (DdH) [2.1, 2.1, −1.7] [0, 30, 90] [37]

a.
 Two sets of 57Fe HFI were observed from a [4Fe-4S] cluster.
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