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In simulating realistic neuronal circuitry composed of diverse types of neurons, we need an
elemental spiking neuron model that is capable of not only quantitatively reproducing spike
times of biological neurons given in vivo-like fluctuating inputs, but also qualitatively repre-
senting a variety of firing responses to transient current inputs. Simplistic models based on
leaky integrate-and-fire mechanisms have demonstrated the ability to adapt to biological
neurons. In particular, the multi-timescale adaptive threshold (MAT) model reproduces and
predicts precise spike times of regular-spiking, intrinsic-bursting, and fast-spiking neurons,
under any fluctuating current; however, this model is incapable of reproducing such spe-
cific firing responses as inhibitory rebound spiking and resonate spiking. In this paper, we
augment the MAT model by adding a voltage dependency term to the adaptive thresh-
old so that the model can exhibit the full variety of firing responses to various transient
current pulses while maintaining the high adaptability inherent in the original MAT model.
Furthermore, with this addition, our model is actually able to better predict spike times.
Despite the augmentation, the model has only four free parameters and is implementable
in an efficient algorithm for large-scale simulation due to its linearity, serving as an element
neuron model in the simulation of realistic neuronal circuitry.
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INTRODUCTION
A mathematical model of a single-neuron that is capable of accu-
rately reproducing diverse spiking behaviors of biological neurons
is required for simulating real neuronal circuitry (Diesmann et al.,
1999; Izhikevich, 2004; McIntyre et al., 2004; Markram, 2006;
Brette et al., 2007; Gewaltig and Diesmann, 2007; Izhikevich and
Edelman, 2008; Plesser and Diesmann, 2009; Rossant et al., 2011).
The leaky integrate-and-fire (LIF) neuron models, which had been
regarded as a simple toy model of a single-neuron, have sig-
nificantly developed in the direction of quantitatively analyzing
electrical properties of real neurons by enhancing their adaptabil-
ity to data (for a review of the LIF model, see Burkitt, 2006). Spike
response models (SRMs; Gerstner and van Hemmen, 1992; Gerst-
ner, 1995) based on linear integration of input currents have been
successful in not only reproducing the data but also predicting
the precise spike times for new inputs (Kistler et al., 1997; Ger-
stner and Kistler, 2002; Jolivet et al., 2004, 2006; Kobayashi and
Shinomoto, 2007). Furthermore, non-linearity has been intro-
duced to the model in a systematic manner and its suitability
has been tested in typical neurons (Fourcaud-Trocmé et al., 2003;
Izhikevich, 2003; Brette and Gerstner, 2005; Badel et al., 2008).

Given the idea that a good spiking neuron model can pre-
dict neuronal firings for new fluctuating inputs, the Interna-
tional Competition on Quantitative Single-Neuron Modeling was
organized [International Neuroinformatics Coordinating Facility
(INCF), 2009]. In the competition, spike neuron models were
assessed based on their quantitative performance in accurately
predicting spike times (Mainen and Sejnowski, 1995; Jolivet et al.,

2008; Gerstner and Naud, 2009). The simplistic integrate-and-fire
models described above displayed higher performance than the
complicated biophysical neuron models of Hodgkin–Huxley type
(Hodgkin and Huxley, 1952). Among the winning models, the
multi-timescale adaptive threshold (MAT) model (Kobayashi
et al., 2009; Shinomoto, 2010) performed best in prediction. This
model was one of the simplest models and is based on the linear
leaky integration of input currents with a moving threshold.

The criterion for assessing the spiking neuron model is not
unique; in addition to quantitative reproducibility, neuron mod-
els are expected to possess the ability to manifest various firing
patterns of biological neurons, as represented by the 20 different
firing responses to transient currents demonstrated by Izhikevich
(2004). In this respect, the complicated biophysical Hodgkin–
Huxley models are capable of representing such a variety of firing
responses, whereas the simple LIF models (including the MAT
model) are incapable of reproducing diverse responses. Izhikevich
(2003) proposed a simplistic non-linear model that can express
this diversity. More recently, Mihalas and Niebur (2009) proposed
a linear integrate-and-fire model that can produce a fairly rich
variety of firing responses.

In this study, we apply improvements to the MAT model so that
it is able to handle the 20 qualitative firing responses introduced
by Izhikevich (collectively known as Izhikevich’s table), including
inhibitory rebound spiking and resonate spiking. Our improved
MAT model must not negatively impact the strong adaptability
and predictability that the original MAT model possesses. Here
the difficulty is that any model tends to be intractable when large
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degrees of freedom for diversity are added. In accordance with the
wisdom of Occam’s razor, we refrain from defining a large num-
ber of parameters; instead, we augment only one parameter, and
then observe whether the model becomes both capable of covering
various firing patterns while maintaining its strong quantitative
predictive performance.

In this paper, we first provide a full analysis of the dynamics
of the original MAT model, and describe our enhanced model
by introducing the voltage dependent term. Next, we examine the
model to determine whether it is capable of reproducing the entire
set of qualitative features. Finally, we examine the augmented
model to determine whether it possesses the ability to precisely
predict spike times of biological neurons.

DYNAMIC CHARACTERISTICS OF THE ORIGINAL MAT MODEL
Before extending the MAT model, we first analyze the dynamic
characteristics of the original MAT model, which consists of two
parts: the non-resetting leaky integrator and the MAT (Kobayashi
et al., 2009). Figure 1 illustrates the dynamics of the MAT model.

The dynamics of the non-resetting leaky integrator is given by

τm
dV

dt
= −V + RI (t ), (1)

where V (t ) and I (t ) are the model potential and input current, and
τm and R are parameters representing the leak time constant and
input resistance, respectively. The model assumes a spike when
V (t ) reaches a threshold value indicated by θ(t ). In this model,
V (t ) is not reset as in the standard LIF model (Stein, 1965, 1967),
but instead, threshold θ(t ) is increased, and then decays toward
its resting value. In standard adaptive threshold models, the spike
threshold θ(t ) decays with a single exponential function (Geisler
and Goldberg, 1966; Brandman and Nelson, 2002; Chacron et al.,
2003), but the present model contains multiple exponential decays,
given by

θ(t ) =
∑

k

H (t − tk ) + ω, (2)

H (t ) =
L∑
j

αj exp
(−t

/
τj
)

, (3)

FIGURE 1 | Dynamics of the multi-timescale adaptive threshold (MAT)

model. The model potential V (t ) (blue) is obtained from input current I(t )
(green) with the non-resetting leaky integration given in Eq. 1. If the model
potential hits threshold θ(t ) (red), the model assumes a spike and increases
the threshold. The adaptive threshold θ(t ) decays toward resting value ω

with multiple timescales according to Eqs 2 and 3.

where tk is the kth spike time, L is the number of threshold time
constants, τj is the jth time constant, αj is the weight of the jth
time constant, and ω is the resting value. In addition, to avoid
singular bursting, the neuron is not allowed to fire within an
absolute refractory period τR even when the membrane poten-
tial exceeds the threshold. If the membrane potential lies above
the threshold after the period τR , the model assumes another
spike.

The model is therefore fully specified by the parameters {τm ,
R, τR , τj , αj , (j = 1, 2,. . ., L), ω}. We inherit many of the para-
meter values adopted in the original MAT model of L = 2, as
R = 50 MΩ, τR = 2 ms, τ1 = 10 ms, and τ2 = 200 ms, which were
determined using experimental data obtained by current injection
experiments on cortical neurons, including regular-spiking (RS),
intrinsic-bursting (IB), and fast-spiking (FS) neurons (Kobayashi
et al., 2009). Here, the multiple timescales are regarded as respec-
tively expressing different biological ionic currents, such that
10 ms represents fast transient Na+ current and delayed rectifier
K+ current, and 200 ms represents non-inactivating K+ current,
hyperpolarization-activated cation current, and Ca2+-dependent
K+ current (Koch, 1999; Hille, 2001). The only one parameter
that we modified from the original MAT model is the mem-
brane time constant; we changed it from τm = 5 to 10 ms. This
is because the time constant fitted to the present data turned out
to be 11.7 ms, the original time constant 5 ms is too small com-
pared to the widely accepted range of membrane time constant
10–20 ms (McCormick et al., 1985; Yang et al., 1996), and the
spike time prediction performed with τm = 10 ms gave rise to the
highest predictive performance among the choices of 5, 10, 11.7,
15, and 20 ms.

The MAT model is capable of reproducing a variety of spike
responses manifested by a broad class of cortical neurons, includ-
ing RS, IB, and FS neurons. Furthermore, the MAT model is
capable of demonstrating repeated burst firing called “chattering”
(CH; Gray and McCormick, 1996). To examine the basic capabil-
ity of the model in expressing a wide variety of qualitative firing
features, we first use bifurcation theory (Hoppensteadt and Izhike-
vich, 1997) to investigate the firing response of the original MAT
model given a constant current injection.

Using bifurcation analysis, we find that the model parameter
space can be divided into domains in which the model exhibits
qualitatively different dynamic behavior, as represented by type
I or II excitability, which is defined according to whether the
frequency–current (f–I ) relationship is continuous or discontinu-
ous at the threshold current, respectively (Hodgkin, 1948; Rinzel
and Ermentrout, 1989), and bursting (Izhikevich, 2007). Figure 2
depicts the allocation of the three domains on a plane of parame-
ters α1 and α2, which is obtained by sectioning a three-dimensional
parameter space at a given residual parameter ω.

Because the MAT model is equipped with the resetting oper-
ation in addition to an ordinary differential equation, a standard
bifurcation analysis cannot be directly applied to the model; how-
ever, an apt analogy can be found for its bifurcation phenomena.
Figure 3A depicts the features of phase dynamics in a plane
spanned by ω and α2 at a given positive value of α1. The geo-
metric representation of the model dynamics, called the phase
plane analysis, is given in the figure.
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TYPE I EXCITABILITY
In the upper part of the phase diagram of Figure 3A, α2 ≥ 0, H (t )
is a monotonic decreasing function (Figure 3B), and the peri-
odic firing is initiated with the saddle-node bifurcation at IR = ω.
Accordingly, the frequency of the oscillation increases continu-
ously from zero, as demonstrated by the continuous f–I curve
shown in Figure 3C.

We can analyze the model dynamics by decomposing θ(t ) − ω

into two variables, θ1(t ) = ∑
k

α1exp[ − (t − tk)/τ1] and

θ2(t ) = ∑
k

α2exp[ − (t − tk)/τ2], and drawing the trajectory in

the plane of (θ1, θ2). Since these variables satisfy differential equa-
tions dθ1/dt = −θ1/τ1 and dθ2/dt = −θ2/τ2, we can obtain the
differential equation for the trajectory of (θ1, θ2) by eliminating
time t as

FIGURE 2 | Phase diagram in the α1–α2 plane. The MAT model is capable
of exhibiting not only type I (yellow region) and type II (blue region)
excitabilities, but also repeated burst firing (red region). Mathematically
unfeasible region is indicated in gray. The respective boundaries between
different phases are given by α2 = 0 and Eqs 13–15 (see the text for details).

dθ2

θ2
= τ1

τ2

dθ1

θ1
, (4)

which leads to

|θ2| = c |θ1|τ1/τ2 , (5)

where τ1/τ2 = 10/200 = 0.05 for the original choice of two
timescales, and c is an integration constant.

Given a current I, the MAT model generates a spike if the state
(θ1, θ2) is in the “firing region,”

θ1 + θ2 � IR − ω, (6)

and if an absolute refractory period τR has expired from the
last spike. When the model generates a spike, the state is shifted
according to

(θ1, θ2) → (θ1 + α1, θ2 + α2) . (7)

Figure 4A shows the trajectory for the case of type I excitabil-
ity. The origin (θ1, θ2) = (0, 0) remains as a stable fixed point,
or a stable node, if it lies outside the firing region. If the firing
region contains (θ1, θ2) = (0, 0), the stable node disappears and
the repetitive firing, or the limit cycle of oscillation, starts.

The period of limit cycle oscillation T is determined by the
condition that the shifted state (θ1 + α1, θ2 + α2) will come back
to the initial state (θ1, θ2) after the relaxation for a period T. This
condition is represented by a set of equations

θ1 = (θ1 + α1) exp
(−T

/
τ1
)

,

θ2 = (θ2 + α2) exp
(−T

/
τ2
)

,

θ1 + θ2 = IR − ω.

(8)

By eliminating θ1 and θ2 from these equations, we obtain the
equation that determines the period of oscillation T,

α1

eT/τ1 − 1
+ α2

eT/τ2 − 1
= IR − ω. (9)

A B C

FIGURE 3 | Bifurcation diagram of type I/II excitabilities. (A) Phase
diagram in the ω–α2 plane for arbitrary positive value of α1 and geometric
representation of the model dynamics. The MAT model exhibits saddle-node
bifurcation and saddle-node off invariant circle bifurcation in the upper and
lower parts of the phase diagram, α2 ≥ 0 and α2 < 0, respectively. (B) The

corresponding dynamics of adaptive threshold θ(t ). (C) The f –I curve. The
firing frequency induced by a constant input current increases from zero in
the type I phase α2 ≥ 0, while it exhibits a hysteresis in the type II phase,
α2 < 0. The model parameters for type I: α1 = 15, α2 = 3, and ω = 5, and for
type II: α1 = 15, α2 = −0.05, and ω = 5.
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A B

FIGURE 4 | Dynamics of type I and type II firing. Geometric
representation of the firing dynamics in the plane of
(θ1, θ2) ≡ (

∑
k α1e−(t−tk )/τ1 ,

∑
k α2e−(t−tk )/τ2 ). (A) Type I. (B) Type II. Once the

state point meets the boundary of the firing region θ1 + θ2 ≤ IR − ω (red
solid lines), the state (θ1, θ2) is reset to (θ1 + α1, θ2 + α2) (green dashed
lines). The state returns to the initial position along the trajectory (green
solid line) given by Eq. 5 (gray dashed line). The origin (θ1, θ2) = (0, 0)
remains as a stable fixed point [a purple closed circle in (B)] if it is outside
the firing region. The model parameters for (A): α1 = 10, α2 = 1 and
IR − ω = 0.5, and for (B): α1 = 10, α2 = −0.2 and IR − ω = −0.5.

The f–I curve can be obtained by solving this equation for
given current I. In a limit of large T, the second term in the
left-hand-side dominates, and the equation is approximated as
α2e−T/τ2 ≈ IR − ω, and thus giving

f = 1

T
≈ 1

τ2 log
(

α2
IR−ω

) . (10)

TYPE II EXCITABILITY
In the lower part of ω − α2 phase diagram of Figure 3A, α2 < 0,
the system exhibits a bifurcation that corresponds to the saddle-
node off invariant circle bifurcation for an ordinary differential
equation system. In this parameter range, H (t ) expresses a dent
in response to a single spike (Figure 3B), which makes the system
bistable, exhibiting both the resting state and autonomous repet-
itive firing. The bistability induces a hysteresis in the f–I curve
(Figure 3C), with a finite frequency gap induced by the dent in
H (t ).

The equation for determining the frequency–current relation,
Eq. 9, also holds for this case of α2 < 0. The points of difference
from the case of α2 > 0 are that the trajectory giving a repetitive
firing cycle can coexist with the stable fixed point (θ1, θ2) = (0, 0)
(Figure 4B), and that the limit cycle trajectory disappears before
the frequency f = 1/T vanishes.

BURST FIRING
For the parameter range of α1 < 0 and α2 > 0, Kobayashi et al.
(2009) have shown that the MAT model is capable of exhibiting
the burst firing. Here, we analyze the bursting in terms of the
trajectory of the state (θ1, θ2). Figure 5 depicts a closed loop tra-
jectory in which the burst firing is repeated with intermissions of
the relaxation periods. In the case of α1 + α2 < 0, the occurrence
of a spike rather lowers the threshold. If the state (θ1, θ2) still
remains in the firing region after the absolute refractory period

A

B

FIGURE 5 | Dynamics of bursting. (A) The time dependence of dynamic
threshold θ(t ) and the resulting burst firing. (B) Geometric representation of
the bursting dynamics in the plane of (θ1, θ2) ≡ (

∑
k α1e−(t−tk )/τ1 ,∑

k α2e−(t−tk )/τ2 ). Once the state point meets the boundary of the firing
region (a red solid line), the system starts to repeat spiking (black crosses),
resetting (red dashed lines) and short relaxation for τR = 2 ms (green
curves). After escaping from the firing region (an open square), the system
enters relaxation period (a gray dashed line). The model parameters:
α1 = −0.8, α2 = 0.5 and IR − ω = 0.5.

τR , the neuron generates another spike. The neuron repeats this
resetting until the state escapes from firing region.

The burst firing of N spikes brings the state point (θ1, θ2) to

(
θ1e−NτR/τ1 + α1

N∑
n

e−nτR/τ1 , θ2e−NτR/τ2 + α2

N∑
n

e−nτR/τ2

)
.

(11)
For instance, the burst firing of two spikes starts with the

condition of

α1 exp
(−τR

/
τ1
)+ α2 exp

(−τR
/
τ2
)

< IR − ω. (12)

This condition determines the boundary between the type I
and burst firing regions. In the case of IR − ω = 0 as in Figure 2,
this is

α2 < −exp
(
τR
/
τ2 − τR

/
τ1
)
α1. (13)

UNFEASIBLE REGION
In the burst firing region, the number of spikes contained in each
burst increases by decreasing α1. By decreasing α1 further, the sys-
tem enters an unfeasible region in which the system cannot escape
from the firing region. The boundary of this unfeasible region is
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given by taking the limit N → ∞ in Eq. 11 and comparing it with
firing condition of Eq. 6. This is given by

α2 = −1 − e−τR/τ2

1 − e−τR/τ1
α1. (14)

In the type II firing region, the firing frequency increases by
decreasing α2. Because the firing frequency should be bounded by
1/τR due to the refractory period, the condition of the firing fre-
quency reaching 1/τR determines the boundary between the type
II and unfeasible region. In the case of IR − ω = 0, the condition
becomes

α2 = − eτR/τ2 − 1

eτR/τ1 − 1
α1. (15)

In the limit of τ2 > τ1 � τR , the boundary between the unfea-
sible region and the burst firing region (Eq. 14) and the boundary
between the unfeasible region and the type II region (Eq. 15)
asymptotically approach to a single straight line, α2 = −(τ1/τ2)α1.

AUGMENTATION OF THE MAT MODEL WITH VOLTAGE
DEPENDENCY
We have shown above that the MAT model is capable of exhibit-
ing basic dynamic characteristics, such as type I/II excitability and
burst firing, but we show in the next section that the original model
is not sufficiently flexible to exhibit a richer variety of responses
of biological neurons to transient input currents, summarized as
Izhikevich’s table (Izhikevich, 2004).

The reason that the original MAT model cannot represent a
variety of firing responses to dynamic input current is that the
adaptive threshold does not depend on the present state of voltage.
Therefore, we suggest extending the adaptive threshold dynam-
ics of the MAT model by adding a term representing the voltage
dependency of the form

θ(t ) =
∑

k

H (t − tk) + β

∫
K (s) · dV

dt
(t − s) ds + ω, (16)

where β is a parameter for controlling the voltage dependency, and
K (s) is an α-function kernel of timescale τV ,

K (s) = s exp
(−s

/
τV
)

. (17)

This dependency of the spiking threshold on the derivative of
membrane voltage was actually observed in biological neurons
(Azouz and Gray, 2000) and is considered to have resulted from
activation/inactivation dynamics of voltage-gated sodium chan-
nels (Naundorf et al., 2006; Platkiewicz and Brette, 2011), or the
backpropagation of axonal spike to the soma (Yu et al., 2008). The
timescale τV of the influence of dV /dt dependency is estimated as
a few ms (Azouz and Gray, 2000); we fixed this time constant at
5 ms. Thus, the tunable parameter for this voltage dependency is
only the coefficient β.

Due to the linear kernel integration with the alpha function
kernel, the numerical integration of this model can be expedited
by rewriting the evolution equation into a set of differential equa-
tions. By rewriting the evolution equation in this way, it is possible

to implement the algorithm of exact subthreshold integration
(Morrison et al., 2007; Plesser and Diesmann, 2009), which we
discuss in the Section “Appendix.”

VARIETY OF FIRING RESPONSES REALIZED BY THE
ORIGINAL AND AUGMENTED MAT MODELS
In this section, we consider numerous transient input current
types, including step currents, ramp currents, and a set of short
current pulses, and we examine whether the original and aug-
mented MAT models are capable of handling the 20 qualitative
firing responses defined by Izhikevich (2004).

ORIGINAL MAT MODEL
We found that the original MAT model is capable of reproducing
9 of the 20 basic firing responses, as shown in Figures 6A–I. More
specifically, the model produces basic tonic spiking in response to a
step current (Figure 6A), frequency adaptation (Figure 6B), inte-
grator (Figure 6C), class 1 (type I) excitability (Figure 6D), class 2
(type II) excitability (Figure 6E), and bistability (Figure 6F). The
terms class 1/2 are used in the original paper by Hodgkin (1948),
whereas they are also referred to as type I/II in terms of the con-
nection to bifurcations (Rinzel and Ermentrout, 1989). For the
type II parameter region shown in Figure 2, the threshold may
exhibit a dent after a spike, which can be interpreted as depo-
larizing after-potential that helps the occurrence of a successive
spike (Figure 6G). In the region of bursting shown in Figure 2,
the MAT model exhibits tonic bursting to a step current injection
(Figure 6H). Given parameters near the boundary between the
bursting and type I regions of Figure 2, the model shows burst
firing only at the onset of a step current injection, and then starts
tonic spiking (Figure 6I).

AUGMENTED MAT MODEL
The original MAT model cannot complete the entire set of firing
responses, because the dynamics of the adaptive threshold is only
dependent on past spikes and does not depend on the present state
of the membrane voltage. To enable the MAT model to respond
variably to time-dependent input current, we have augmented the
adaptive threshold dynamics of the model by adding a term rep-
resenting the voltage dependency (using Eqs 16 and 17 above).
Figures 7A–K shows 11 firing patterns that are successfully real-
ized by our augmented MAT model; each firing pattern is listed
below. Due to the sensitivity to dV /dt, the augmented model can
exhibit phasic spiking or bursting; more specifically, the neuron
emits a spike or a burst of spikes only at the onset of a step current
injection (Figures 7A,B), exhibits delayed response to short pluses
(Figure 7C), shows rebound spiking or bursting (Figures 7D,E),
and exhibits threshold variability (Figure 7F).

Furthermore, our augmented MAT model can mimic sub-
threshold oscillation in which the dynamic threshold follows the
increases and decreases in voltage (Figure 7G). According to
the transient oscillation mimicked by the dynamic threshold, the
model may behave as a resonator, firing in response to a pair of
input pulses with a particular interval (Figure 7H); for detailed
conditions of such a resonator, please see the Section “Appen-
dix.” The dV /dt dependency induces an effect of accommodation
(Figure 7I). With our augmented model, the neuron is also able to

Frontiers in Computational Neuroscience www.frontiersin.org October 2011 | Volume 5 | Article 42 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Yamauchi et al. Augmented MAT model

A B C

D E F

G H I

FIGURE 6 | A variety of firing responses manifested by the original MAT

model. (A) basic tonic spiking; (B) frequency adaptation; (C) integrator; (D)

class 1 excitability; (E) class 2 excitability; (F) bistability; (G) depolarizing

after-potential; (H) tonic bursting; and (I) mixed mode. The blue bars indicate
the generated spikes. The red, blue and green traces represent the adaptive
threshold, the model potential, and the input current, respectively.

elicit spikes or bursts in response to inhibitory input, an approach
called inhibition-induced spiking or bursting (Figures 7J,K).

The model parameters and input conditions that were used
for reproducing these responses are summarized in Table 1. The
locations of these model parameters in the space of α1, α2, and
β are depicted in Figure 8. Some of the firing responses, such as
class 1 vs class 2, or integrator vs resonator are mutually exclusive
by definition. However, there are cases in which multiple firing
response types can be realized with the same set of model para-
meters solely by changing the input conditions. Such degeneracy
occurs, for instance, between phasic spiking, latency, threshold
variability, accommodation, and rebound spiking, or between
phasic bursting, rebound bursting, and tonic bursting.

REPRODUCING THE QUANTITATIVE FEATURES OF BIOLOGICAL
NEURONAL FIRING
It was reported that the original MAT model can reproduce the
qualitative features of four representative firing types, FS, RS, IB,
and CH neurons (Kobayashi et al., 2009). However, the model
does not necessarily account for them quantitatively. To be pre-
cise, the original MAT model is capable of reproducing FS, RS,
and CH firing, but the model should be augmented with the volt-
age dependent term in order to reproduce IB firing in a range of
biologically acceptable timescales. Here we demonstrate the typ-
ical parameter setting of the model in reproducing the biological
neuronal firing patterns.

FS neurons
They fire high-frequency tonic spikes with little or no fre-
quency adaptation. The original MAT model (β = 0) is capable
of reproducing the tonic firing of 200 Hz in response to a rec-
tangular current of 0.6 nA (McCormick et al., 1985) with the
model parameters of α1 = 10, α2 = 0, and ω = 15. Note that
even the multiple timescales are not necessarily needed for this
case, and the simple LIF model is enough to reproduce the
phenomena.

RS neurons
They fire tonic spikes with adapting frequency in response to rec-
tangular current, and have class 1 excitability. This can also be
represented by the original MAT model. For instance, the model
is capable of reproducing the situation in which the neuron is
injected a rectangular current of 0.6 nA and exhibits initial firing
frequency of 120 Hz as defined from the first interspike interval
and adapts the firing frequency to 30 Hz (McCormick et al., 1985)
with the parameters of α1 = 20, α2 = 2, and ω = 20. Having two
timescales is necessary for reproducing the frequency adaptation.

CH neurons
They fire high-frequency bursts of a few (<5) spikes with relatively
constant inter-burst interval of 15–50 ms (Gray and McCormick,
1996). When reproducing CH firing by the original MAT model,
the inter-burst interval in the tonic bursting is determined by the
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FIGURE 7 | A variety of firing responses manifested by the augmented

MAT model. (A) phasic spiking; (B) phasic bursting; (C) latency; (D) rebound
spiking; (E) rebound bursting; (F) threshold variability; (G) subthreshold
oscillations; (H) resonator; (I) accommodation; (J) inhibition-induced spiking;
and (K) inhibition-induced bursting. Note that this entire set of firing

responses follows definitions in Izhikevich (2004). The blue bars indicate the
generated spikes. The red, blue, and green traces represent the adaptive
threshold, the model potential, and the input current, respectively. The gray
and orange traces are the value of dV /dt and the voltage dependent term,
respectively.

relaxation of the slow component. The MAT model can reproduce
tonic bursting of inter-burst frequency of 20 Hz and intra-burst
frequency of 500 Hz in response to a rectangular current of
0.6 nA, respectively (Nowak et al., 2003), with the parameters of
α1 = −2.5, α2 = 2, and ω = 28.

IB neurons
They generate a burst of three to five spikes at the beginning of a
strong depolarizing pulse of current, and then switch to tonic spik-
ing. Intra-burst frequency is low compared to CH neurons (Gray
and McCormick, 1996; Nowak et al., 2003). Though we demon-
strated that the original MAT model is capable of representing
the mixed mode (Figure 6I), the intra-burst frequency in this case
becomes 1/τR = 500 Hz, which is outside the biologically plausible
range (≤350 Hz; Nowak et al., 2003). Thus the MAT model has to
be augmented with the voltage dependent term to generate the
depolarizing wave evoked by the current injection (McCormick

et al., 1985). The augmented MAT model can reproduce the IB fir-
ing with frequencies of the burst and tonic modes of 300 Hz and
30 Hz, respectively (Nowak et al., 2003) with the model parameters
of α1 = 9, α2 = 0.3, β = −0.3, and ω = 28.

Other types of neurons
In addition to those four representative firing types, there are
more abundant firing responses (Kawaguchi, 1995; Kawaguchi and
Kondo, 2002; Markram et al., 2004; Izhikevich, 2007; Ascoli et al.,
2008). In the following, we show the parameter values with which
the augmented MAT model is capable of reproducing them.

The low-threshold spiking (LTS) neurons respond in a man-
ner identical to RS neurons to a prolonged suprarheobasic current
injection at depolarized potentials, and respond to current injec-
tions just greater than rheobase with a transient bursting of two
or more spikes with short (<20 ms) ISIs at hyperpolarized poten-
tials. The augmented MAT model is capable of reproducing the

Frontiers in Computational Neuroscience www.frontiersin.org October 2011 | Volume 5 | Article 42 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Yamauchi et al. Augmented MAT model

Table 1 | Model parameters and input currents used for reproducing firing patterns in Figures 6 and 7.

Firing patterns Model parameters Input currents

α1 α2 β ω

Tonic spiking 10 0 5 Ic = 0.15 nA

Adaptation 10 1 5 Ic = 0.15 nA

Integrator 10 0 5 Ip = 0.28 nA, Δp = 2 ms, IPIs = 8, 118, 13 ms

Class 1 excitable 15 3 5 dI/dt = 2.5 pA/s

Class 2 excitable 15 −0.05 5 dI/dt = 2.5 pA/s

Bistability 20 −0.4 5 Ic = 0.95 nA, Ip = + 0.20, −0.04 nA, Δp = 3, 15 ms, IPI = 22 ms

Depolarizing after-potential 25 −1 5 Ip = 0.2 nA, Δp = 5 ms

Tonic bursting −0.5 0.35 5 Ic = 0.15 nA

Mixed mode −0.8 0.7 5 Ic = 0.15 nA

Phasic spiking 10 0 −0.3 5 Ic = 0.08 nA

Phasic bursting −0.5 0.35 −0.3 5 Ic = 0.08 nA

Latency 10 0 −1 5 Ip = 0.58 nA, Δp = 0.5 ms

Rebound spiking 10 0 −2.5 5 Ip = −0.6 nA, Δp = 1 ms

Rebound bursting −0.5 0.35 −2.5 5 Ip = −0.6 nA, Δp = 1 ms

Threshold variability 10 0 −0.1 5 Ip = 0.2, −0.2, 0.2 nA, Δp = 2 ms, IPIs = 118, 13 ms

Subthreshold oscillations 10 0 0.1 5 Ip = 0.2 nA, Δp = 2 ms

Resonator 10 0 0.1 5 Ip = 0.36 nA, Δp = 2 ms, IPIs = 8, 118, 13 ms

Accommodation 10 0 −0.5 5 dI/dt = 1, 4.5 nA/s, Δramp = 90, 20 ms

Inhibition-induced spiking 20 0 2 5 Ip = −0.30 nA, Δp = 40 ms

Inhibition-induced bursting −0.5 0.35 2 5 Ip = −0.16 nA, Δp = 60 ms

The top 9 and the bottom 11 firing patterns are the ones represented by the original MAT model (β = 0) and augmented MAT model (β 	= 0), respectively. Ic is the

intensity of a constant current. Ip and Δp are the intensity and the duration of a pulse current. IPI is the inter-pulse interval. dI/dt and Δramp are the increasing rate and

the duration of ramp current.

response with the parameters of α1 = 10, α2 = 1, β = −0.2, and
ω = 25.

Phasic spiking or phasic bursting was observed from inhibitory
interneurons in the rat frontal cortex (Kawaguchi and Kondo,
2002). Our augmented MAT model can reproduce phasic spik-
ing and bursting in response to a rectangular current of 0.6 nA
with the parameters of α1 = 20, α2 = 1, β = −0.3, and ω = 35 and
α1 = −2.2, α2 = 2, β = −0.3, and ω = 35, respectively. By increas-
ing current intensity, the model with these sets of parameters can
generate tonic spiking or bursting.

The thalamocortical (TC) neurons are known to possess firing
regimes of tonic spiking and rebound bursting as in LTS neu-
rons, but their adaptation is smaller than LTS neurons (Llinás and
Jahnsen, 1982; Destexhe and Sejnowski, 2001). For instance, our
augmented MAT model can reproduce such a response with the
parameters of α1 = 10, α2 = 0, β = −0.2, and ω = 25. Although
inhibition-induced spiking or bursting (Figures 7J,K) is a specific
feature of TC neurons (Izhikevich, 2003), we have not found a set
of model parameters with which the model can realize both the
inhibition-induced firing and rebound bursting (see Table 1).

In contrast to TC neurons, a certain type of thalamic interneu-
ron does not have a burst regime, though they can fire rebound
spikes (Pape and McCormick, 1995). Except for rebound spiking,
this type of thalamic interneuron can fire high-frequency tonic
spikes without pronounced frequency adaptation, like FS neurons.
Our augmented MAT model can reproduce such a response with
the parameters of α1 = 5, α2 = 0, β = −0.1, and ω = 25. Note that

there is a different type of interneuron in thalamus that generates
robust action potential bursts after an inhibitory input (Bal and
McCormick, 1993), which our model cannot reproduce.

REPRODUCING AND PREDICTING BIOLOGICAL NEURONAL
RESPONSES TO FLUCTUATING CURRENTS
In the preceding section, we showed that our augmented MAT
model is capable of reproducing rebound spiking and a variety of
responses induced by threshold variability. As the number of para-
meters increases, in general, it is likely to become less capable of
accommodating the numerical data. In this section, we examine
whether the augmented MAT model still has the ability to pre-
dict biological spike times through the augmentation of voltage
dependency.

In our examination, we use publicly available data from the
International Competition on Quantitative Single-Neuron Mod-
eling 2009 [Gerstner and Naud, 2009; International Neuroinfor-
matics Coordinating Facility (INCF), 2009] in which the original
MAT model demonstrated the ability to predict spikes, and there-
fore won first place in the competition. The publicly available data
consisted of in vivo-like fluctuating input current and the voltage
responses of 13 trials recorded from a L5 pyramidal neuron.

We adjusted the model parameters to match the data of 10
randomly selected trials, and then validated the ability of our
augmented MAT model to predict the remaining 3 trials. We evalu-
ated average predictive ability by repeating this random sampling

Frontiers in Computational Neuroscience www.frontiersin.org October 2011 | Volume 5 | Article 42 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Yamauchi et al. Augmented MAT model

A

B

FIGURE 8 | Distribution of model parameters that realized a variety of

firing patterns. (A) Parameter values (α1, α2) of the original MAT model,
which are used to reproduce nine firing patterns in Figure 6. The colors of
the firing type regions are the same as Figure 2. (B) Parameter values (α1,
α2, β) of the augmented MAT model, which are used to reproduce 11 firing
patterns in Figure 7. The numerical values of the respective model
parameters are summarized inTable 1.

process 100 times. The adaptive capability of the model in pre-
dicting spike times was assessed using a coefficient measuring
the fraction of spikes that coincided in 4 ms between a model
spike train and a real biological spike train. Among various mea-
sures (including Victor and Purpura, 1996; Tsubo et al., 2004),
we adopted coincidence factor Γ as introduced in the competi-
tion (Jolivet et al., 2004, 2006, 2008; Kobayashi and Shinomoto,
2007).

Based on the above procedure, the predictive performance of
the original MAT model was 0.77, whereas the augmented MAT
model was 0.84, as summarized in Table 2. We also compared
the performance of these models using the different coincidence
windows ranging from 2 to 10 ms, and confirmed the consistent
superiority of the augmented MAT model to the original model.
Clearly, the augmentation does not cause predictive ability to dete-
riorate, but rather improves it. Figure 9 demonstrates the spike
prediction of the original and augmented MAT models. From the
sampling shown in the figure, both models attain similar predic-
tive performance in the stationary period of high input current
(17.5–18 and 20–21 s); however, the augmented MAT model is

Table 2 | Optimized parameters of the original and augmented MAT

models fitted to the biological data and their fitting and predictive

performances.

Original MAT Augmented MAT

α1 180 180

α2 1 3

β None 0.2

ω 21 15

Fitting performance Γ 0.80 0.84

Predictive performance Γ 0.77 0.84

more proficient than the original model in predicting spikes in
the period of weak input current (18.8–19.5 and 21–21.5 s) by
responding to small peaks of model potential.

DISCUSSION
Numerical simulations of realistic neuronal microcircuitry have
been primarily based on the Hodgkin–Huxley model (Traub et al.,
2005; Markram, 2006) or the LIF model (Diesmann et al., 1999;
Gewaltig and Diesmann, 2007). As noted by Izhikevich (2004),
these models typically have a conflict between biological reality
and computational efficiency. The non-linear model proposed by
Izhikevich (2004) and the linear model proposed by Mihalas and
Niebur (2009) would be exceptional models that evade such a
conflict.

The original MAT model possesses the strongest ability to
reproduce and predict precise spike times, but is unable to repro-
duce the full variety of firing responses demonstrated by Izhikevich
(2004). In this paper, we have proposed a revision of the MAT
model in which the full variety of firing responses given by Izhike-
vich (2004) is successfully reproduced. We thoroughly analyzed
the dynamic characteristics of the original model and augmented
model, the latter including a voltage dependency term. We also
showed that our augmented model does not decrease its predic-
tive ability in comparison to the original MAT model, but rather
improves quantitative predictive ability.

VOLTAGE DEPENDENCY OF SPIKING THRESHOLD
The variability of spike threshold has been observed in numerous
physiological experiments (Azouz and Gray, 2000; Ferragamo and
Oertel, 2002; de Polavieja et al., 2005; Wilent and Contreras, 2005;
Naundorf et al., 2006), and Hodgkin–Huxley-style models that
can reproduce the threshold variability were proposed (Azouz and
Gray, 2003; Naundorf et al., 2006; McCormick et al., 2007; Colwell
and Brenner, 2009). More recently, Platkiewicz and Brette (2010)
deduced a threshold equation that explained the manner in which
the spike threshold varies with the membrane potential, depending
on ionic channel properties.

There are also simplified models that introduce voltage depen-
dency into the threshold in the LIF model (originally in Hill, 1936).
Dodla et al. (2006) proposed a model that explains post-inhibitory
facilitation by introducing the threshold depending on the instan-
taneous value of voltage with mono-exponential decay. Mihalas
and Niebur (2009) adopted this form of the voltage dependency
and demonstrated that the model was able to reproduce a wide
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FIGURE 9 | Model prediction for spiking response of a L5

pyramidal neuron to fluctuating current. The top column is a voltage
trace of the experimental data obtained from an L5 neuron (data #9,
Challenge A in the International Competition on Quantitative
Single-Neuron Modeling 2009). The middle and bottom columns are

spike times predicted by the original and augmented MAT models. The
model potential and adaptive threshold are depicted in blue and red,
respectively. Spikes are asterisked in blue or red, according to whether
they coincided with experimental data within 4 ms. Dotted lines
represent experimental spike times.

variety of firing responses to various transient current inputs.
Experimental research by Azouz and Gray (2000) indicated that
the spike threshold related inversely with the time derivative of
membrane potential. We incorporated this relationship straight-
forwardly into the threshold dynamics of the original MAT model
while preserving its linearity, succeeding in reproducing the variety
of firing patterns in Izhikevich’s table.

It would be worth noticing that the origin of the threshold
variability is still in controversy. A recent study suggested that the
threshold variability seen in experiments could be an artifact (Yu
et al., 2008); because spikes are initiated not in the soma but in the
axon initial segment, the threshold variability of the firing seen in
intracellular recordings can be largely attributed by its backprop-
agation to the soma. Contrariwise, Platkiewicz and Brette (2011)
asserted that the backpropagation cannot be the dominant cause
of the threshold variability; they suggested that sodium channel
inactivation is a strong candidate for the mechanism responsible
for the threshold variability.

COMPARISON WITH OTHER SIMPLISTIC SPIKE NEURON MODELS
To end our discussion, we compare our augmented MAT model
with other eminent simplistic spike neuron models. The Izhike-
vich model is a concise non-linear model that has succeeded
in demonstrating a diversity of firing responses by controlling
only a few parameters. The adaptive exponential integrate-and-
fire (AdEx) model (Brette and Gerstner, 2005), which combines
features of the exponential integrate-and-fire model (Fourcaud-
Trocmé et al., 2003) with the two-variable Izhikevich model, is

also able to account for a large variety of firing patterns (Naud
et al., 2008; Touboul and Brette, 2009). In comparison with these
models, a key strength of our augmented MAT model is its linear-
ity, which makes it straightforward to efficiently simulate a large
network of spiking neurons using the method of exact subthresh-
old integration (Morrison et al., 2007; Plesser and Diesmann,
2009).

The Mihalas–Niebur model is a tractable linear model that
describes burst firing in terms of after-potentials in a more
realistic manner than that of the MAT model, which mecha-
nistically repeats the regular firing given by a prefixed absolute
refractory period τR = 2 ms. The Mihalas–Niebur model is capa-
ble of demonstrating most firing responses, except for resonate
firing in Izhikevich’s table. The reason that the augmented
MAT model is able to reproduce resonate firing is that the
alpha function kernel naturally induces a delay in the voltage
dependency.

The original MAT model can be regarded as a subtype of
the SRM, which may describe arbitrary dependency of neuronal
excitability on previous spiking history within a linear framework
(Gerstner and Kistler, 2002). With an augmentation of voltage
dependency in the threshold equation, the augmented MAT model
can be considered as one expression of the Mihalas–Niebur model.
Indeed, the SRM or the Mihalas–Niebur model has a great ability
to adapt to experimental data due to its large degree of freedom.
However, such a high adaptability of the model sometimes causes
over-fitting to the finite data, and as a result, reduces its predictive
performance. Thus our model, which has a restricted number of
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free parameters, can be more competent in simulating neuronal
circuitry faithfully, given practically available data.
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APPENDIX
METHOD FOR EFFICIENTLY PERFORMING LARGE-SCALE SIMULATIONS
Given the linearity of the MAT model, numerical integration of input signals can be calculated exactly. Here we employ the simulation
method suggested by Morrison et al. (2007) that is applicable to the model described by linear differential equation

dy/dt = Ay + x , (A1)

where y(t ) is the variable vector and x(t ) is the input vector composed of impulses given by delta functions. Below, we show that our
augmented MAT model satisfies the conditions of Eq. A1; we also demonstrate explicit expressions of y(t ), x(t ), and A for two typical
cases where the shape of postsynaptic current (PSC) is a delta function, or an α-function.

The expression θ − ω can be decomposed into three variables: θ1(t ) = ∑
k

α1exp[ − (t − tk)/τ1]; θ2(t ) = ∑
k

α2exp[ − (t −
tk)/τ1]; and θV = β

∫
s exp(−s/τV ) · dV

dt (t − s) ds, where is the kth spike time. Then, all variables of the augmented MAT model can
be described by the following differential equations (see Rotter and Diesmann, 1999):

dV

dt
= − 1

τm
V + R

τm
I ,

dθ1

dt
= − 1

τ1
θ1 + α1

∑
k

δ (t − tk),

dθ2

dt
= − 1

τ2
θ2 + α2

∑
k

δ (t − tk),

d2θV

dt 2
+ 2τ−1

V

dθV

dt
+ τ−2

V θV = β
dV

dt
= − β

τm
V + β

R

τm
I .

(A2)

For the case of delta function PSC, the synaptic inputs are given by

R

τm
I (t ) =

∑
j

cjδ
(
t − tj

)
, (A3)

where tj is the arrival time of the jth postsynaptic current and cj is the value of its unitary postsynaptic potential. Plugging Eq. A3 into
Eq. A2 yields

y =

⎡
⎢⎢⎢⎢⎣

θ1

θ2

θV
θV
τV

+ dθV
dt

V

⎤
⎥⎥⎥⎥⎦ , x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1
∑
k

δ (t − tk)

α2
∑
k

δ (t − tk)

0
β
∑

j
cjδ
(
t − tj

)
∑

j
cjδ
(
t − tj

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A = −

⎡
⎢⎢⎢⎢⎣

1
/
τ1 0 0 0 0

1
/
τ2 0 0 0

1
/
τV −1 0

0 1
/
τV β

/
τm

1
/
τm

⎤
⎥⎥⎥⎥⎦ . (A4)

Conversely, for the α-function PSC, the synaptic inputs are given by

R

τm
I (t ) =

t∫
0

se−s/τc I ′(t − s)ds,

I ′(t ) =
∑

j

c ′
j

e

τc
δ
(
t − tj

)
,

(A5)

where c ′
j is the peak value of the postsynaptic potential and τc is the rise time. This R/τmI (t ), denoted by ψ(t ), can be regarded as a

new variable defined by

d2ψ

dt 2
+ 2τ−1

c
dψ

dt
+ τ−2

c ψ = I ′. (A6)
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From Eqs A2, A5, and A6, we obtain

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1

θ2

θV
θV
τV

+ dθV
dt

V
ψ

ψ
τc

+ dψ
dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1
∑
k

δ (t − tk)

α2
∑
k

δ (t − tk)

0
0
0
0∑

j
c ′

j
e
τc

δ
(
t − tj

)
,

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/τ1 0 0
1/τ2 0 0 0

1/τV −1 0
1/τV β/τm −β

1/τm −1 0
0 1/τc −1

1/τc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A7)

CONDITIONS FOR BEHAVING AS A RESONATOR
In this section, we explore the parametric conditions under which our augmented MAT model behaves as a resonator that responds
selectively to an input signal fluctuating with a specific frequency (Llinás, 1988; Izhikevich, 2001). Here we regard a neuron as the
resonator if it responds to a pair of current pulses separated in a specific interval. We require the neuron not to respond to frequencies
outside of this interval.

Let us first consider the voltage response to a single short current pulse,

I (t ) = δ(t ), (A8)

where δ(t ) is the delta function. From Eq. 1, the model potential V (t ) and its derivative dV /dt are given as

V (t ) = R/τm exp (−t/τm) 1(t ),

dV (t )

dt
= − R

τ2
m

exp (−t/τm) 1(t ) + R

τm
δ(t ),

(A9)

where 1(t ) is a step function [1(t < 0) = 0, 1(t > 0 = 1)]. From Eqs 16, 17, and A9, the dynamic threshold θ(t ) is obtained as

θ(t ) = ω +
∫ ∞

0
βu exp

(−u
/
τβ

) dV (t − u)

dt
du

= ω + Rβ1(t )
{ [

t
/(

τm − τβ

)+ (
τβ

/(
τm − τβ

))2
]

exp
(−t

/
τβ

)
− (τβ

/(
τm − τβ

))2
exp

(−t
/
τm
)}

.

(A10)

Because the model assumes a spike if θ(t ) <V (t ), the proximity to firing is measured by V (t ) − θ(t ). The response to a single
current pulse is given by

V (t ) − θ(t ) = M (s) − ω

≡ 1(s)
R

τm

[
1 + B

γ2

(1 − γ)2

]
exp(−s) − 1(s)

R

τm

B

1 − γ

[
s + γ2

1 − γ

]
exp

(
− s

γ

)
− ω, (A11)

where s = t /τm , γ = τβ/τm , and B = βτm . We require the neuron not to respond to a single current pulse, which corresponds to requiring

M (s) < ω, (A12)

for any time after the pulse, s > 0.
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A B

FIGURE A1 | (A) Parameter range in which our augmented MAT model
behaves as a resonator, with γ = τβ / τm and B = βτm. (B) Three sample
dynamics of V (t ) − θ(t ) (blue traces) in response to current pulse inputs (red
bars), including two pairs of pulses with different inter-pulse intervals Δ. They

correspond to the points of (a), (b), and (c) in A, respectively. The dashed line
represents the maximum value of V (t ) − θ(t ). Each red inverted triangle
represents the possible spike that may appear if V (t ) reaches θ(t ). In the case
of (b), the model can emit a spike only for a limited range of Δ value.

In addition, we require the neuron to respond to a pair of current pulses separated in a specific interval ρτm . Due to the linearity
of the model, V (t ) − θ(t ) in response to a pair of current pulses is given by M (s) + M (s + ρ) − ω. Thus, the required conditions for
being a resonator is reduced to the existence of intervals ρ1, ρ2, and ρ3 that satisfy the following set of conditions:

ρ1 < ρ2 < ρ3,

max
s

[M (s) + M (s − ρ2)] > ω,

max
s

[
M (s) + M

(
s − ρ1,3

)]
< ω.

(A13)

We explored the parameter region in which the above conditions Eqs A12 and A13 are satisfied. It was found that the model can
behave as a resonator for any value of time constant γ (Figure A1). This means that we can implement resonators for any desired
resonant inter-pulse intervals. The result obtained here does not depend on the parameters of the spike history terms, α1 and α2,
because the neuron does not fire before a pair of pulse currents are injected.
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