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ABSTRACT Objective: A primary goal of acute stroke rehabilitation is to maximize functional recovery
and help patients reintegrate safely in the home and community. However, not all patients have the same
potential for recovery, making it difficult to set realistic therapy goals and to anticipate future needs for short-
or long-term care. The objective of this study was to test the value of high-resolution data from wireless,
wearable motion sensors to predict post-stroke ambulation function following inpatient stroke rehabilitation.
Method: Supervised machine learning algorithms were trained to classify patients as either household or
community ambulators at discharge based on information collected upon admission to the inpatient facility
(N=33-35). Inertial measurement unit (IMU) sensor data recorded from the ankles and the pelvis during a
brief walking bout at admission (10 meters, or 60 seconds walking) improved the prediction of discharge
ambulation ability over a traditional prediction model based on patient demographics, clinical information,
and performance on standardized clinical assessments. Results: Models incorporating IMU data were more
sensitive to patients who changed ambulation category, improving the recall of community ambulators at
discharge from 85% to 89-93%. Conclusions: This approach demonstrates significant potential for the early
prediction of post-rehabilitation walking outcomes in patients with stroke using small amounts of data from
three wearable motion sensors. Clinical Impact: Accurately predicting a patient’s functional recovery early in
the rehabilitation process would transform our ability to design personalized care strategies in the clinic and
beyond. This work contributes to the development of low-cost, clinically-implementable prognostic tools for
data-driven stroke treatment.

INDEX TERMS  Accelerometers, digital health, machine learning, stroke (medical condition), wearable
Sensors.
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I. INTRODUCTION

Inpatient stroke rehabilitation is an early-stage program inte-
grating clinical care with targeted therapy to maximize a
patient’s functional recovery. A primary goal of inpatient
rehabilitation is to retrain patients to maneuver safely and
independently in the home and community after hospi-
tal discharge, such as by restoring walking ability. Walk-
ing at home or in the community are very meaningful
tasks for individuals following a stroke; however, they are
uniquely different skills. The functional capacity, coordina-
tion, endurance, strength, motor control, cognition needed
are significantly higher for community ambulation compared
to household ambulation [1], [2], [3]. With the average
length of stay at an inpatient rehabilitation facility (IRF)
in the United States declining over time [4], [5] (current
estimates ranging from 8.9-22.2 days depending on impair-
ment severity [6]), the patient’s care team only have a
brief time to create and execute a support plan for dis-
charge based on the patient’s capability. For patients who do
not achieve functional independence, including community
walking, comprehensive discharge plans must be established
to ensure appropriate support or continued services outside of
the hospital. Accurately predicting a patient’s outcomes and
response to treatment early in the rehabilitation process would
be invaluable for setting realistic and achievable goals during
therapy, anticipating future needs for assistive equipment
(e.g., wheelchair, walker, orthotics) or home modifications,
maximizing time for caregiver training, and informing inter-
actions with insurance providers.

Numerous prediction models have been proposed in stroke
research. Many of these models are based exclusively on
information readily available from an electronic medical
record (EMR), including patient demographics, stroke char-
acteristics, and standardized functional assessment scores [7],
[8]. For instance, Bland et al. identified that a Berg Balance
Scale (BBS) score <20 points and a Functional Independence
Measure (FIM) walk item score of 1 or 2 at IRF admission
were predictive of low functional ambulation at discharge [9].
Harari et al. found that functional assessment scores recorded
at admission to an inpatient rehabilitation facility (IRF) were
the most important predictors of the same test scores at
discharge, over age, stroke characteristics, or performance on
other assessments of gait or balance [10]. While standardized
clinical functional assessments are useful indicators to predict
future outcomes, their administration can be time-intensive
and cumbersome due to limited interaction time with patients
and need for specialized training. Furthermore, some func-
tional assessments are scored using subjective rating scales
and suffer from floor/ceiling effects [11], high inter-/intra-
rater variability [12], [13], and lack of suitability for patients
with severe cognitive impairments [14]. Reliance on these
assessments could result in imprecise and inequitable prog-
noses. Indeed, previous studies indicate that patient prognosis
can be an important source of variation in healthcare and may
lead to inconsistent access to rehabilitation services across
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the continuum of care [15], [16]. Identifying alternative,
objective predictors of stroke recovery that can be obtained
easily in a clinical setting may improve measurement resolu-
tion, diagnostic accuracy, and lead to data-driven, prognostic
models.

Wearable sensors have started transforming our ability
to objectively measure patient health and performance in
clinical settings. Ongoing technological advances yield sen-
sors that are smaller and more affordable, with options
to wirelessly stream analytics to customized, user-friendly
digital dashboards. Inertial measurement units (IMUs) are
especially ubiquitous in research-grade and commercial
devices, providing three-dimensional kinematic metrics from
accelerometers and gyroscopes. These devices have demon-
strated utility in various stroke rehabilitation applications in
the inpatient setting — for example: instrumenting clinical
tests [17]; measuring changes in motor features related to
arm reaching [18], gait and transfers [19], [20], or balance
[21]; and detecting posture or activity [22]. To date, there has
been limited exploration of IMU data for recovery prediction
after stroke. A recent study in exception found that combining
clinical data obtained at admission with inertial sensor data
provided superior prediction of the discharge FIM compared
to clinical data alone [23], indicating that wearable sensors
could be beneficial for prognostic models. It remains to be
seen whether IMU data can characterize recovery of walking
ability, a critical discharge need for individuals following a
stroke. High resolution measures of lower-limb motion may
capture nuanced information about a patient’s propensity for
functional gait recovery.

Thus, the objective of this study was to quantify the value
of inertial sensor data in predicting post-stroke recovery
of walking function. We trained machine learning models
to retrospectively classify functional walking ability at IRF
discharge (household or community ambulation) using var-
ious types of data obtained at admission, including patient
demographics and clinical information, functional assess-
ment scores, and IMU sensor data. We hypothesized that IMU
data recorded during a brief walking bout at IRF admission
would improve discharge predictions over traditional models
trained using standard clinical assessment scores and patient
characteristics alone.

Il. RESULTS

A. IMU DATA RECORDED DURING 10-METER WALK AT
ADMISSION IMPROVE PREDICTIONS OF FUNCTIONAL
WALKING LEVEL AT DISCHARGE

We trained a machine learning algorithm to classify patients
as household ambulators (discharge I0MWT score <0.4 m/s)
or community ambulators (discharge IOMWT >0.4 m/s) [1],
[24] at discharge using input data recorded at admission.

A balanced random forest classifier was selected as the
algorithm of choice following initial exploration (see V.
Methods and Procedures, section F. Algorithm Selection),
demonstrating the highest average weighted F1 score and
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FIGURE 1. Discharge predictions using fixed distance IMU data.

(a) Top 10 important features for a model utilizing patient information
(P1) and IMU data. Features from IMUs placed on the pelvis and
unaffected ankle were selected via backward elimination for optimized
model performance (red box). (b) Models trained with IMU sensor data
from 10 m of walking at admission show improved classification of
discharge walking level over a model using patient information and
functional assessment scores (FA) alone. Bars show the average and SD
of each metric across 100 iterations. Acc = Accelerometer; Gyr =
Gyroscope; US = Unaffected Side; AS = Affected Side; AoM = Amount of
motion; SampEn = Sample entropy.

performance stability. Features for model training included
patient information (PI), functional assessment scores at
admission (FA), and metrics computed from inertial sensor
data during the IOMWT at admission (IMU, recorded from
the pelvis and bilateral ankles). Thus, IMU features charac-
terized lower limb walking motion at admission over a fixed
10-m distance.

Model performance was evaluated using the weighted F1
score, accuracy, and area under the receiver operating char-
acteristic (AUROC). All metrics were computed using leave-
one-subject-out cross-validation (N=33 patients) following
optimization via feature selection and hyperparameter tuning.
These procedures were repeated over 100 iterations with
incremented random seeds to account for the stochasticity of
the balanced random forest classifier, and model performance
metrics were averaged.

Example feature importance and selection are illustrated
in Fig. 1a for a model trained on patient information and
IMU features (PI+IMU). Four features were selected for
this model via backward elimination, including the standard
deviation of acceleration at the pelvis, amount of motion
of the stroke-unaffected ankle, amount of motion of the
pelvis, and sample entropy of acceleration on the stroke-
unaffected ankle. Feature importance and selection for the
PI+FA model and PI4+-FA+IMU fixed distance model are
provided in Fig. 2a and Fig. 2b, respectively.

Fig. 1b compares optimized model performance across
three different combinations of feature training sets. Per-
formance was highly stable across the 100 iterations for
all models, with no fluctuation in the participant classifi-
cations. The benchmark model, trained on patient informa-
tion and functional assessment scores only (PI4+-FA), had
a weighted F1 score of 0.889. Adding sensor-based fea-
tures — either to the patient information alone (PI4+IMU)
or to both patient information and functional assessment
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FIGURE 2. Feature importance and selected features for the benchmark
and full model. Red box indicates the features selected via backward
elimination for use in the optimized model training and testing.

(a) Benchmark model (P1+FA), with 1 feature selected (10MWT score at
admission), (b) Fixed distance full model (P1+FA+IMU), with 8 features
selected (10MWT score at admission and 7 features from the ankles and
pelvis IMUs), (c) Fixed duration full model (PI+FA+IMU), with 2 features
selected (10MWT score at admission and a feature from the affected
ankle IMU). No patient information (PI) features were selected for use in
any model. Acc = Accelerometer; Gyr = Gyroscope; US = Unaffected Side;
AS = Affected Side; AoM = Amount of motion; SampEn = Sample entropy.

scores (PI+FA+IMU) —improved the weighted F1 to
0.943 and 0.916, respectively. This trend was preserved
for other metrics of model performance, including accu-
racy (PI4-FA: 0.879; PI4+IMU: 0.939; PI+-FA+IMU: 0.909)
and AUROC (PI+FA: 0.905+0.003; PI+IMU: 0.98840.001;
PI4+FA+IMU: 0.96340.005).

B. MODELS TRAINED ON IMU DATA WERE MORE
ACCURATE IN CLASSIFYING PATIENTS WHO IMPROVED
FUNCTIONAL WALKING LEVEL DURING REHABILITATION
The benchmark PI+FA model correctly predicted the dis-
charge functional walking level for 23 out of 27 community
ambulators (85%) and for 6 out of 6 household ambulators
(100%) (Fig. 3a). Adding sensor data improved the recall of
discharge community ambulators to 25 out of 27 (93%) for
PI+IMU or 24 out of 27 (89%) for PI4+FA+IMU without
compromising the perfect recall of household ambulators.
We next examined the models’ ability to detect changes in
walking function during IRF treatment. All models achieved
perfect recall for patients who maintained the same level of
walking function between admission and discharge, which
applied to most study participants (community: N=21;
household: N=8). However, only models that included IMU
data could correctly classify patients who changed func-
tional walking level between admission and discharge (pro-
gressed from household to community ambulators: N=4).
The PI4+IMU model correctly classified two out of these
four patients (50%), while the PI+-FA+IMU model correctly
classified 1 out of 4 (25%). The benchmark PI+FA model
was unable to correctly classify any of these patients, instead
predicting that they would remain at the household functional
level (Fig. 3b). Such misclassifications were exclusively tied
to the four patients who transitioned to a higher level of
functional ambulation. These patients exhibited a moderate
range of 1I0OMWT scores at Adm and Dis relative to the
0.4 m/s classification threshold (Fig. 4). The two patients
consistently misclassified across all models had Dis scores
close to (0.54 m/s) and far from (1.27 m/s) the threshold,
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FIGURE 3. Model performance for household and community
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patients correctly classified based on functional walking categories at IRF
admission and discharge. While all models correctly classified 100% of
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models that included IMU data were able to identify any patients who
changed functional walking level during IRF treatment
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FIGURE 4. Model predictions by participant. Correct and incorrect
predictions for each participant’s discharge ambulation ability in relation
to their Adm and Dis 10WMT scores (fixed distance model). Dashed lines
illustrate the 0.4 m/s threshold that differentiates the community and
household ambulator classes.

with similar scores at Adm (0.20 and 0.26 m/s, respectively).
Adding IMU features to the model reduced misclassification
for the other two patients with Adm scores close to (0.33 m/s)
and far from (0.17 m/s) the threshold, with intermediate Dis
scores (0.79 and 0.69 m/s, respectively).

C. LONGER BOUTS OF WALKING AT IRF ADMISSION DID
NOT IMPROVE GAIT SPEED CLASSIFICATIONS

To examine the impact of amount of sensor data on model per-
formance, we also utilized IMU data recorded during differ-
ent walking durations ranging from 10-360 s, obtained from
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a 6MWT. Data from two additional patients were available
for this fixed duration paradigm, so all models were trained,
optimized, and tested using the available data from a larger
patient cohort (N=35). Pre-optimized model performance is
shown in Fig. 5a for each model and walking duration. The
60-s walking duration was selected for downstream analysis
since this duration exhibited the highest initial classification
performance.

Example feature importance and selection is illustrated
in Fig. 5b for the fixed duration model trained on patient
information and IMU features computed from 60 s of walk-
ing (PI4+IMU). Two features were selected for this model
via backward elimination, including the sample entropy
of acceleration on the stroke-unaffected ankle and sample
entropy of rotational velocity on the stroke-affected ankle.
Feature importance and selection for the PI+FA model and
PI4+FA+IMU fixed duration model are provided in Fig. 2a
and Fig. 2c¢, respectively.

Similar to the fixed distance (10-m walk) analy-
sis, the fixed duration (60-s walk) analysis revealed
improved classification for models incorporating sen-
sor data compared to the benchmark PI+FA model
(Fig. 5¢). Optimized models with IMU features demon-
strated higher weighted F1 score (PI4-FA: 0.867+0.007;
PI+IMU: 0.91640.009; PI4+FA+IMU: 0.893+£0.004),
accuracy (PI4+FA: 0.85540.007; PI4+IMU: 0.911£0.011;
PI+FA+IMU: 0.885+0.005) and AUROC (PI4-FA: 0.877+
0.002; PI4+IMU: 0.901+£0.009; PI+FA+IMU: 0.893+0.012).
The fixed duration models did not outperform the fixed
distance models (Fig. 1b).

1Il. DISCUSSION

We found that inertial sensor data recorded from the bilateral
ankles and pelvis during a brief walking bout at IRF admis-
sion improved the prediction of discharge walking ability.
Specifically, models trained with sensor data (PI+FA+IMU,
PI+IMU) were better able to predict household or commu-
nity ambulation at discharge compared to a model relying
on patient information and admission functional assessment
scores alone (PI4-FA). This trend was true whether IMU data
were recorded over a fixed walking distance (10 m) or a fixed
walking duration (60 s). Improved model performance with
IMU data stemmed from superior identification of patients
who improved functional walking level during inpatient reha-
bilitation (progressing from household ambulation at admis-
sion to community ambulation at discharge).

The best-performing model utilized patient information
and IMU data recorded during a 10 m walk (fixed dis-
tance PI+IMU), indicating that functional assessment scores
may not be necessary for accurate predictions relating to
walking function. Sensor data recorded during a fixed dura-
tion of walking also improved prediction performance over
the benchmark PI+FA model, though not beyond the fixed
distance walking data. A model utilizing 60 s of walking
was optimal for this approach, with longer walking bouts
reducing performance below the benchmark. These results
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FIGURE 5. Discharge prediction performance using fixed duration IMU data. (a) Maximum model performance was observed
using the first 60 s of IMU data (red box) recorded during a 6MWT at IRF admission. (b) Top 10 important features for the P1+IMU
model using 60 s of IMU walking data. Features from the bilateral ankles were selected via backward elimination for optimized
model performance (red box). (c) Models trained with 60 s of IMU walking data also show improved prediction of discharge
walking level over the benchmark PI+FA model. Bars show the average and SD of each metric across 100 iterations. Note that the
PI+FA fixed duration model performance (shown here) varies slightly from the fixed distance model (Fig 1b) since data from a

larger number of patients were available for training.

are relatively intuitive since the model is trained to predict
gait speed from a 10MWT, whereas longer bouts of walking
rely more strongly on patient endurance. While performance
on gait speed and endurance tests are correlated [25], [26],
it is likely that fatigue and fluctuations in gait speed dur-
ing the 6MWT negatively affected model performance for
longer bouts of walking. Because patients walk at different
self-selected gait speeds, the fixed duration analysis captures
different amounts of walking within the same amount of time.
Future work may also consider IMU data from alternative
walking strategies, such as recording the same number of
steps between patients.

Interestingly, we observed worse performance in the
PI4+FA+IMU model compared to the PI+IMU model. This
drop in performance is attributed to the PI4+-FA+IMU model
misclassifying a participant who transitioned to the com-
munity ambulation class (I0OMWT score increasing from
0.17 m/s at admission to 0.69 m/s at discharge, as shown in
Fig. 4). A possible explanation is that adding the admission
I0MWT score to IMU features biased the model toward a
household ambulation prediction for this participant, since
they had relatively low score at admission. However, a larger
sample of patients who transition ambulation categories is
needed to test this possibility and refine the models. Our
quantized feature selection method may also contribute to
the discrepancy between these two models. Future work will
explore other forms of regularization in the models to assess
the consistency of this behavior.

An estimated 70-80% of patients are able to walk at
the chronic stage of stroke [27]; however, only 30-50% of
patients recover community walking function [1], [28]. A cru-
cial test of a model’s predictive power is whether it can cor-
rectly identify patients who change categories, such as from
household to community ambulators. Previous work showed
that functional ambulation is correlated with overall mobil-
ity and quality of life, especially for household ambulators
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transitioning to higher ambulation categories [29]. Predicting
early in the acute rehabilitation program whether a partici-
pant will achieve community-level ambulation or remain a
household ambulator at IRF discharge would help clinicians
develop targeted treatment and care planning strategies for
patients and their families.

For models utilizing IMU data, sample entropy and amount
of motion features were consistently ranked among the most
important. Higher sample entropy (greater complexity in
the movements) and greater overall motion were associated
with the higher ambulation level. Additional data and feature
exploration will be critical to establish the most important
features across a larger sample size. To reduce the feature
space and risk of overfitting, we computed features using
the magnitude of the acceleration and gyroscope signals,
rather than on the three sensor axes. Future work examin-
ing motion in different anatomical planes (i.e., anteroposte-
rior, mediolateral, and vertical movements of the pelvis and
ankles) will be of interest to illuminate additional predictors
of recovery based on detailed gait patterns. As expected,
for any models utilizing the functional assessment scores,
we found that the strongest predictor of functional walking
level at discharge — which was defined using the discharge
10MWT score — was the I0OMWT score at admission. This
aligns with our previous work, which demonstrated that a
functional assessment score at admission was the strongest
predictor of a patient’s performance on that same assess-
ment at discharge, over other functional assessments and
patient information such as demographics, stroke presenta-
tion, and pre-morbid activity levels [10]. Patient informa-
tion, such as age, height, or stroke characteristics, were not
selected as important features for any model, suggesting
that this information is less predictive than measures of gait
function and behavior. Indeed, a model trained on PI alone
demonstrated substantially lower precision and recall than
models including FA and IMU data in the fixed distance

2100711



|EEE Journal of Translational

Engineering in
Health and Medicine

M. K. O'Brien et al.: Wearable Sensors Improve Prediction of Post-Stroke Walking Function

model (see V. Methods and Procedures, section F. Algorithm
Selection).

Recently, quantitative measures of kinematic, biomechani-
cal, or neurological factors have also demonstrated sensitivity
in predicting post-stroke recovery outcomes. These models
incorporate data from force plates [30], 3D motion tracking
[31], [32], or brain stimulation technology [33]. However, the
high cost, low portability, and technical demands of these
in-depth measurement systems can make them impractical
to implement in a typical rehabilitation facility. Unobtrusive,
affordable wearable sensors with automated data streaming
may be a more practical alternative to capture early biomark-
ers of impairment and recovery during simple activities that
are regularly performed in the rehabilitation program.

The primary limitation of this study is the small sample size
of patients, which could contribute to overfitting and limit
our ability to make claims about the most valuable predictive
sensor features for a robust patient population. With a small
sample size and imbalanced class distribution, the random
seeding of the explored machine learning algorithms had an
observable impact on classification performance. Rather than
setting the seed to a single value, we iterated the models
over 100 different random seeds and computed average per-
formance to mitigate the effects of model stochasticity. This
leads to our second limitation, which is that models were
optimized using data from all participants to select features
and hyperparameters, resulting in some data leakage between
the training and test sets. We selected this approach over
nested optimization to create single, aggregate models for
easy interpretation and comparison. We did not use a hold-
out set to maximize the data available for algorithm training
with this small sample size. Although we do not expect the
resulting data leakage to impact our broader findings that
IMU data improved predictions, subsequent analyses will aim
to increase the sample size and explore other modeling strate-
gies to avoid these issues. Finally, it should be noted that all
models perform relatively well for this simple classification
problem. Indeed, our ability to compare the models hinges
on their predictions for a small sample of patients — namely,
the four patients who transition ambulation categories (house-
hold to community) between IRF admission to discharge.

In the present study, we excluded data from patients who
were unable to complete the either the IOMWT or 6MWT,
utilizing IMU data during these walking assessments to train
and test the predictive models. As such, these models require
patients to be ambulatory at IRF admission, which is not
always the case. For example, in a study of 41 IRFs, approx-
imately 6% of stroke survivors were unable to ambulate or
required assistance at admission [34]. It remains to be seen
whether wearable sensor data have predictive value for non-
ambulatory patients; incorporating sensor data during alter-
native activities, such as sitting [35], [36], may facilitate the
prediction of walking recovery for these patients.

Importantly, this model was trained using admission and
discharge data from patients at a single rehabilitation hospital,
which may limit its generalizability to broader post-stroke
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outcomes. Stinear et al. [8] note the importance of predict-
ing outcomes at specific time-points after stroke rather than
at discharge, since discharge itself is linked to functional
achievements and subject to variations in care structure and
resources. We have developed a model that intentionally
leverages predictions based on standard-of-care treatment
at a single rehabilitation hospital. While it remains to be
seen whether such a model will generalize to other IRFs,
the approach described here can serve as a roadmap for the
development of site-specific models for accurate, validated
predictions at other rehabilitation hospitals.

Future work will expand the existing dataset for additional
training and testing of the predictive model, including exter-
nal validation in a new subset of patients. We will also test
the predictive value of additional sensor data such as EMG or
ECG to account for neuromuscular or cardiovascular factors,
and we will examine the feasibility of regression models over
classification models to improve the precision of predictions.

IV. CONCLUSION

Inpatient stroke rehabilitation is often a hectic and over-
whelming experience for patients, families, and clinicians
working to deliver optimal therapeutic care. Many times,
due to time restrictions, patients’ limited physical capabili-
ties, or cognitive/communication impairments, full functional
assessments and clinical measures are not recorded and/or
uploaded to the EMR. Furthermore, the full sequence of
assessments at admission might take as long as 2-3 hours
to complete. This results in incomplete or inconsistent data,
posing a significant challenge in the creation of traditional
prediction models to estimate a patient’s future functional
scores. Our current study suggests that a viable alternative
is to record data from three simple inertial sensors during
a brief walking bout (maximum of 60 seconds), which can
be completed during any part of therapy or non-therapy time
without significant dedicated time. This represents a unique
translational engineering approach to support clinical eval-
uation and treatment of stroke using widely available IMU
technology and machine learning techniques.

V. METHODS AND PROCEDURES

A. PARTICIPANTS

Fifty-five patients with stroke at the Shirley Ryan AbilityLab
(Chicago, IL, USA) enrolled in the study. Inclusion criteria
were: having a diagnosis of stroke and undergoing acute
inpatient rehabilitation at the Shirley Ryan AbilityLab; at
least 18 years of age; and able and willing to give consent
and follow study procedure directions. Exclusion criteria
were: having a known neurodegenerative pathology (e.g.,
Alzheimer’s disease, Parkinson’s disease, etc.); pregnant or
nursing; or utilizing a powered, implanted cardiac device
for monitoring or supporting heart function. Medical clear-
ance was obtained from each patient’s primary physician
and all individuals (or a proxy) provided written informed
consent prior to participation. The study was approved by
the Institutional Review Board of Northwestern University
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TABLE 1. Patient information and functional assessment scores at IRF
admission (N=35).

Mean (SD) Range
Age (vears) 57.2 (13.9) 22-76
Sex (Female / Male) 16/19 N/A
Height (cm) 171.1 (11.4) 149.9-190.5
Weight (kg) 80.8 (19.5) 42.7-118
Length of IRF stay (days) 21.2(8.8) 8-47
Time from stroke to admission (days) 9.5(7.1) 3-35

Stroke type (Ischemic / Hemorrhagic / 28/4/1/2 N/A
Both / Unclear)

Lesion location (Right / Left / Bilateral
/ Unknown)

Hemiparesis (Right / Left / Unknown)

18/12/3/2 N/A

10/15/10 N/A

Patient-reported premorbid lifestyle 12/7/16 N/A
(Highly active / Moderately active /

Sedentary)

1OMWT? (m/s) 0.73 (0.52) 0-2.2
6MWT (m) 162.5 (128.9) 10.5-461.7
FIM - Motor subscale (points) 42.5(12.7) 20-73
BBS (points) 28.1 (15.0) 3-55
TUG? (s) 30.75 (56.21) 0-314.57

N/A = Not applicable; I0MWT = 10-Meter Walk Test; 6MWT = 6-Minute
Walk Test; FIM = Functional Independence Measure; BBS = Berg Balance
Scale; TUG = Timed Up and Go.

*Patients unable to complete the assessment were assigned a score of 0.

(Chicago, IL; STU00205532) in accordance with federal reg-
ulations, university policies, and ethical standards regarding
research on human subjects.

Data from 33 patients were available for the fixed dis-
tance analysis, after excluding patients who withdrew consent
before the study (2 patients), were unable to complete a
10MWT at the admission time-point (13 patients), discharged
without conducting discharge clinical tests (3 patients), and
with incomplete sensor data (4 patients, e.g., due to depleted
battery or sensor malfunction). Data from 35 patients were
available for the fixed duration analysis, since two additional
patients were able to perform a 6MWT at admission. This is
because the 6MWT allows the patient to take rests as needed,
whereas the 1I0MWT requires that the patient walk 10 m
continuously, which fewer patients were able to complete
at admission. Patient information (i.e., demographics, stroke
characteristics) and functional assessment scores for the full
cohort (N=35) are provided in Table 1.

B. DATA COLLECTION AND EXPERIMENTAL SETUP

Within the first week of admission, patients performed a
series of functional assessments for overground gait and bal-
ance, including the 10-Meter Walk Test (1I0OMWT), 6-Minute
Walk Test (6MWT), Berg Balance Scale (BBS), and Timed-
Up-and-Go (TUG) in a non-standardized order based on the
availability of equipment and space. The same clinical tests
were administered within a week before discharge from the
hospital to capture any functional changes following the inpa-
tient rehabilitation process. We also collected the FIM motor
subscore at admission and discharge from individual FIM
items recorded in the patient’s EMR, in accordance with the
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10m 10-360s
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Balanced Bagging, RUSBoost, Balanced Random Forest
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Feature Selection, Hyperparameter Tuning
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FIGURE 6. Study overview. (a) Placement of three wireless inertial
measurement units (IMUs) at the pelvis and bilateral ankles. Coordinate
system is shown for the pelvis sensor; ankle sensors are rotated by

90° clockwise. (b) Model pipeline for predicting discharge walking
function and determining the relative value of IMU data. Separate models
were trained using IMU data recorded during a fixed distance walk (10 m
during the 10MWT) or a fixed duration walk (the first 10-360 s of the
6MWT) upon admission to a post-stroke IRF program.

Inpatient Rehabilitation Facility Patient Assessment Instru-
ment guidelines (IRFPAI, regulated by the United States
Centers for Medicare & Medicaid Services). All tests were
administered and scored by a licensed physical therapist.
Patient demographics and stroke information were obtained
from the EMR and a study intake form.

During the clinical assessments at the admission, all par-
ticipants wore three flexible, wireless inertial motion sensors
(BioStampRC; MCI10, Inc., Cambridge, MA) at the pelvis
(L4-L5 region) and bilateral ankles (Fig. 6a). The sensors
were attached to the skin with an adhesive film (Tegaderm:;
3M, St. Paul, MN). The BioStampRC collected triaxial accel-
eration (sensitivity £4g) and triaxial angular velocity (sensi-
tivity £2000°/s) at a sampling rate of 31.25 Hz. A Samsung
tablet running the proprietary BioStampRC application was
used to collect the sensor data and annotate the beginning
and end of each trial or item of the clinical tests. De-identified
sensor data were uploaded to the MC10 Cloud and then down-
loaded and stored on a HIPAA-compliant (Health Insurance
Portability and Accountability Act of 1996) secure server.

C. FEATURE EXTRACTION

Three sets of features were defined and extracted from infor-
mation obtained at admission, including patient information
(PI, such as demographics and clinical information about
their stroke), functional assessment scores (FA), and sensor
data (IMU). Table 2 summarizes the 71 total features utilized
for model development. A custom code in MATLAB (Math-
works, Inc. R2017b, Natick, MA) calculated features from
the sensor data and concatenated them with the other feature
sets.

All sensor features were computed from the data recorded
during the IOMWT (fixed walking distance) or a subset of
the 6BMWT (fixed walking duration). Sensor features included
amount of motion (AoM) [37], defined as the cumulative
angular displacement measured from gyroscope signals, and
general statistical and mathematical features calculated from
the gyroscope (Gyr) and accelerometer (Acc) signals of the

2100711



|EEE Journal of Translational

Engineering in
Health and Medicine

M. K. O'Brien et al.: Wearable Sensors Improve Prediction of Post-Stroke Walking Function

TABLE 2. Features extracted for prediction models.

Category Mean (SD) No. Features
Patient Information Age, sex (female/male), height, weight, type of stroke (ischemic/hemorrhagic), time since stroke to 9
(P1) admission, lesion location (right/left/bilateral/unknown), hemiparesis (right/left/unknown), patient-reported

premorbid lifestyle (highly active/moderately active/sedentary)

Functional Assessments Scores at admission: I0OMWT, 6MWT, FIM (Motor subscale), BBS, TUG 5
(FA)
Sensor data — Inertial Acc and Gyr magnitude at admission walk test (fixed distance/duration): Mean, range, root-mean-square, 57

Measurement Unit
(IMU) (2) left ankle, (3) right ankle

standard deviation, skewness, kurtosis, sample entropy, dominant frequency and magnitude at (1) pelvis,

Gyr magnitude at admission walk test (fixed distance/duration): Amount of motion at (1) pelvis, (2) left

ankle, (3) right ankle

10MWT = 10-Meter Walk Test; 6MWT = 6-Minute Walk Test; FIM = Functional Independence Measure; BBS = Berg Balance Scale; TUG = Timed Up and Go;

Acc = Acceleration; Gyr = Gyroscope.

IMU. All sensor features were computed from the magnitude
of tri-axial signals to conserve the number of features and
facilitate the compatibility of our analysis with alternative
devices that may have different orientations or coordinate
systems.

The analysis process is summarized in Fig. 6b. To evaluate
the predictive value of sensor data in predicting discharge
ambulation ability, we compared models with different sets
of features, including: (1) patient information and func-
tional assessments (PI4-FA), (2) patient information and sen-
sor data (PI4+IMU), and (3) patient information, functional
assessments, and sensor data combined (PI+FA-+IMU). The
PI+FA model served as a benchmark against which the other
models, trained using sensor data, were compared.

An additional model, utilizing patient information only
(PI), was also implemented for the fixed distance analysis.
However, this model was not pursued further as it demon-
strated low classification performance relative to the three
models described above.

D. FIXED DISTANCE AND FIXED DURATION ANALYSES TO
EXPLORE ALTERNATIVE IMU DATA INPUTS

The 6MWT is a performance-based test of self-paced walking
endurance, wherein the patient attempts to walk as far as
they can in six minutes. Recording IMU data from a 6MWT
provided a natural experiment to explore different durations
of overground walking IMU data for use in the predictive
models, as an alternative to a fixed distance walking bout
afforded by the 10MWT.

Data from the full GoMWT were segmented into 10 different
walking durations — 10, 20, 30, 60, 90, 120, 180, 240, 300, and
360 seconds from the beginning of the test —and IMU features
were computed from the entire duration. Weighted F1 scores
were computed across durations to select the best-performing
algorithm and duration of walking data that would maxi-
mize model performance. Model optimization, evaluation,
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and comparison were then completed using IMU features
computed from the selected duration.

E. CLASSIFICATION STRATEGY

Walking speed is an objective indicator of post-stroke
walking ability, a reliable marker of deficit severity, and
a strong predictor of functional community ambulation
[26], [29]. We targeted the classification of patients as
household or community ambulators based on discharge
10MWT scores. Target model predictions were “‘household”
or “community” discharge walking speed based on strati-
fied I0OMWT scores, in alignment with previous classifica-
tions for household (<0.4m/s) and community (>0.4 m/s)
ambulation [1], [24].

For the fixed distance dataset, 26 participants were labeled
as community walkers at discharge, and 7 participants were
labeled as household walkers at discharge. For the fixed
duration dataset, 28 participants were labeled as commu-
nity walkers at discharge, and 7 participants were labeled
as household walkers at discharge. These imbalanced classes
can pose a challenge for machine learning models, with a risk
of biasing classifications toward the majority class. To min-
imize this risk, we selected candidate algorithms that can
contend with imbalanced classes, namely Balanced Random
Forest, Balanced Bagging, and RUSBoost, which randomly
undersamples from the majority class. All machine learning
algorithms were implemented using the Scikit-Learn (0.23.2)
and Imbalanced-Learn (0.23.2) libraries in Python (3.8.8).

F. ALGORITHM SELECTION

We evaluated the performance of each model using leave-
one-subject-out cross validation. The primary performance
metric was the weighted F1 score, an average of precision
and recall scaled by the proportion of samples for each class.
The weighted F1 score ranges from O to 1, with 1 indicating
perfect precision and recall. Since the explored models are all
stochastic in nature, the performance can vary depending on
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FIGURE 7. Example effect of random seed state on model performance.
The stochastic nature of the explored algorithms causes variation in the
weighted F1 score with random seeds. To evaluate broader performance
of each model, performance was averaged across 100 repetitions with
incrementing random seed. The Balanced Random Forest typically
demonstrated higher average performance and lower fluctuation,

as illustrated in this fixed duration model (60s walk) with all data inputs
(PI+FA+IMU).

the random seed initialization, particularly for a small sample
size with randomly sampled classes. For example, Fig. 7 illus-
trates the variation in weighted F1 score across increment-
ing random seeds with PI+-FA+IMU features (IMU features
computed during a 60-s walk) applied on the three different
algorithms. To cope with this issue and more broadly compare
performance of each model, we executed 100 iterations with
different random state parameters and computed the average
and standard deviation in F1 score.

Generally, the Balanced Random Forest classifier demon-
strated the highest average weighted F1 score and lower
fluctuations in performance (Fig. 8). Thus, this algorithm was
selected for implementation in the fixed distance and fixed
duration analyses.

G. MODEL OPTIMIZATION

Models with the three different combinations of feature inputs
(PI4+-FA, PI4+IMU, PI+FA+IMU) were trained and tested
using the selected algorithm and leave-one-subject-out cross
validation. Prior to testing, we employed feature selection and
hyperparameter tuning to optimize each model for maximum
performance and reduce risk of overfitting.

In the optimization procedure, we first removed highly
correlated features (Pearson’s correlation coefficient >0.9) to
avoid multi-collinearity. We then performed recursive feature
elimination and cross-validation selection (RFECV function
from Scikit-Learn) to identify the most important features
for the model and their corresponding importance scores.
RFECV was executed iteratively 100 times with different
random seeds, resulting in 100 sets of selected features and
importance scores. We then summed importance scores for
each feature across the 100 RFECYV iterations and normalized
by the total sum, resulting in importance scores which added
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FIGURE 8. Algorithm selection for fixed distance and fixed duration
models. Average and SD of weighted F1 score across 100 iterations for
three algorithms to predict discharge ambulation outcomes.
Pre-optimized performance is shown for different model types trained
under the (a) fixed distance (10m walk), or (b-d) fixed duration (10-360s
walk) paradigms, relative to the amount of IMU data used for analysis.
Models without IMU data (Pl and PI+FA) are unaffected by the amount of
IMU walking data. Pl models were not considered for the fixed duration
analysis given their low performance, shown in (a). The Balanced Random
Forest algorithm was selected to compare downstream models for its
typically higher performance (e.g., maximum average performance for
10m walk and 60s walk) and lower fluctuation across conditions.

a 10m Walk IMU b 60s Walk IMU

PI+FA
--= PHIMU
— PI+FA+IMU

0 5 10 15 20 0 5 10 15 20
No. of Features No. of Features

FIGURE 9. Feature elimination for fixed distance and fixed duration
models. Average and SD of weighted F1 score across 100 iterations is
shown as a function of the number of features, as determined by
backward elimination, for (a) fixed distance (10m walk), and (b) fixed
duration (60s walk) paradigms. The subset of features that maximized the
weighted F1 score were selected to optimize model training and testing.
Performance for the P1+FA model is identical between the fixed distance
and fixed duration models since this model is unaffected by the amount
of IMU walking data.

to 1 and a cumulative order of importance for the feature
set. Finally, we used backward elimination to remove the
least important features based on their cumulative order of
importance. The mean and standard deviation of weighted
F1 scores were calculated using another 100 iterations of
the model over different random seeds to capture changes
in performance across the number of features used during
backward elimination (Fig. 9).

Backward elimination indicated that only a subset of fea-
tures was needed to achieve a maximum average F1 score.
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FIGURE 10. Hyperparameter selection. Hyperparameters for the
Balanced Random Forest algorithm were tuned using a randomized
search cross-validation. Red boxes indicate the values used for each
optimized model based on majority-selection from 100 iterations with
different random seed states.

For the benchmark model (PI+FA), the only feature needed
was IOMWT score at admission. For the fixed distance anal-
ysis (with sensor data recorded during a 10-meter walk),
the selected features were: standard deviation of acceleration
at the pelvis, amount of motion of the stroke-unaffected
ankle and the pelvis, and sample entropy of acceleration
on the stroke-unaffected ankle (PI4+IMU, 4 features); and
10MWT score at admission, amount of motion of the stroke-
unaffected ankle, standard deviation of acceleration at the
pelvis, skewness of the gyroscope signal on the stroke-
affected ankle, sample entropy of acceleration on the stroke-
unaffected ankle, amount of motion of the pelvis, sample
entropy of the gyroscope signal on the stroke-unaffected
ankle, and kurtosis of acceleration on the stroke-affected
ankle (PI+FA+IMU, 8 features). For the fixed duration anal-
ysis (with sensor data recorded during a 60-second walk), the
selected features were: sample entropy of the acceleration
signal at the stroke-unaffected ankle and sample entropy of
the gyroscope signal on the stroke-affected ankle (PI4+IMU,
2 features); and 10MWT score at admission and sample
entropy of the gyroscope signal at the stroke-affected ankle
(PI+-FA+IMU, 2 features).
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Using the selected features, we tuned the hyperparameters
of each model based on a randomized cross-validation search
(RandomizedSearchCV function from Scikit-Learn, using
the default 5 folds). These parameters included the number
of estimators, minimum sample split, minimum sample leaf,
method for determining the maximum number of features
(automatic, log2, or sqrt), and the maximum depth. We exe-
cuted 100 iterations with different random states and identi-
fied the best-performing hyperparameters based on majority
vote. The hyperparameters selected for each model using this
randomized search approach are shown in Fig. 10.

H. MODEL EVALUATION

Model performance metrics were averaged across test folds
(left-out subjects in the cross-validation procedure). Per-
formance was primarily evaluated using the weighted F1
score, which accounts for class imbalances by computing a
weighted average of precision and recall based on the num-
ber of samples in each class. Secondary model performance
metrics included accuracy (proportion of correctly classified
samples) and area under the receiver operating characteristic
(AUROC). Possible values for these metrics range from O to 1,
with higher values indicating better model performance.
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