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TfR1-tropic arenaviruses
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Certain arenaviruses that circulate in rodent populations can cause life-threatening hemor-

rhagic fevers when they infect humans. Due to their efficient transmission, arenaviruses pose

a severe risk for outbreaks and might be exploited as biological weapons. Effective coun-

termeasures against these viruses are highly desired. Ideally, a single remedy would be

effective against many or even all the pathogenic viruses in this family. However, despite the

fact that all pathogenic arenaviruses from South America utilize transferrin receptor 1 (TfR1)

as a cellular receptor, their viral glycoproteins are highly diversified, impeding efforts to

isolate cross-neutralizing antibodies. Here we address this problem using a rational design

approach to target TfR1-tropic arenaviruses with high potency and breadth. The pan-reactive

molecule is highly effective against all arenaviruses that were tested, offering a universal

therapeutic approach. Our design scheme avoids the shortcomings of previous immu-

noadhesins and can be used to combat other zoonotic pathogens.
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V iral hemorrhagic fevers are a major global health problem.
The Ebola virus disease crisis of 2013 to 2016 emphasized
the importance of developing and stockpiling effective

countermeasures before the onset of deadly outbreaks. Immu-
notherapeutic agents hold great promise as countermeasures
against deadly viruses1–3. The Arenaviridae is a virus family that
encompasses several hemorrhagic fever viruses. Several Arena-
viruses that propagate in rodent reservoirs (aka mammar-
enaviruses) may cause acute and sometimes lethal illness upon
infecting humans4,5. “New World” (NW) mammarenaviruses,
prevalent in the South and North Americas, are classified into
four different clades6,7. Pathogenic NW mammarenaviruses
include the clade-B Machupo (MACV), Junín (JUNV), Guanarito
(GTOV), and Sabiá (SBAV) viruses, which are endemic to Boli-
via, Argentina, Venezuela, and Brazil, respectively6,8–10. In
addition, genetically close isolates of the North American clade-
A/B Whitewater Arroyo virus (WWAV) may also be pathogenic
to humans11,12. All these viruses utilize TfR1 as their cell entry
receptor13, and the ability to utilize human-TfR1 (hTfR1) dis-
tinguishes them from non-pathogenic viral species11,14–16.

The surfaces of arenaviruses are coated with trimeric class-I
glycoproteins containing a GP1 subunit that adopts a unique
fold17 and mediates receptor recognition18. Neutralizing mono-
clonal antibodies (mAbs) against JUNV that target the receptor-
binding site on GP1, as well as sera from JUNV-convalescent
patients, generally do not cross-neutralize other NW arena-
viruses19, due to structural variations in the receptor-binding
sites19–21. Although cross-neutralization against MACV was
observed with a vaccine-elicited anti-JUNV antibody22, neu-
tralization of additional NW mammarenaviruses by this antibody
was not reported. Since neutralizing mAbs against JUNV can
rescue animals from a lethal challenge23, it would be beneficial to
extend this approach and to generate analogous reagents that
could potently target each of the pathogenic members of this
family. Better yet would be a single reagent that neutralizes all
pathogenic NW arenaviruses regardless of their structural
variation.

Immunoadhesins are engineered molecules consisting of pro-
tein decoys that mimic viral cellular receptors fused to Fc portion
of antibodies. Following a successful demonstration of using
receptors as decoys24, this strategy was explored for potential use
in combating HIV-125. In principle, immunoadhesins should
have remarkable breadth toward a complete class of viruses that
share the same receptor tropism. Despite great promise, however,
attempts to use human-derived receptors as immunoadhesins
have so far failed26, and no anti-viral immunoadhesin has yet
been approved for clinical use. A basic conceptual flaw that may
account for this failure relates to the fact that, despite having
excellent breadth, these reagents generally suffer from low
potency. The limited potency is due to the mechanism of action
of the immunoadhesins: they compete in a stoichiometric fashion
with the native receptors, which are generally highly abundant in
the human host. Under such conditions, a very high dose of
immunoadhesin, which may not be clinically achievable, must be
used to obtain good therapeutic activity. It would therefore be
advantageous to construct immunotherapeutic agents that not
only have the breadth of immunoadhesins but also a clinically
relevant potency.

Here we are constructing a highly potent and broad-spectrum
immunotherapeutic agent to widely target TfR1-tropic mam-
marenaviruses. We are utilizing host-derived TfR1 ortholog as
part of our immunoadhesin to achieve high potency. Our
immunoadhesin is effectively neutralizing a wide range of murine
leukemia virus (MLV)-pseudotyped viruses as well as live infec-
tious mammarenaviruses. It is further mediating Fc-effector
functions and hence provides an attractive approach for fighting

infections by TfR1-tropic mammarenaviruses. The approach that
we are using here could potentially be utilized to target other
zoonotic viruses.

Results
Design of a soluble TfR1 mimetic. As a potential broadly
reactive immunotherapy against NW pathogenic mammar-
enaviruses, we designed a TfR1 mimetic that blocks the GP1
receptor-binding sites. TfR1 is a large homodimeric type-II
transmembrane glycoprotein (Fig. 1a) with a butterfly-like
shape27,28. Three subdomains constitute each subunit of the
extracellular region of TfR1 (Fig. 1b): a helical domain that
mediates dimerization, a protease-like domain, and an apical
domain that is inserted between two β-strands of the protease-like
domain (Fig. 1b, c). The binding site for the TfR1-tropic mam-
marenaviruses is in the apical domain28, which is not involved in
the main physiological roles of TfR1 in binding transferrin29 or
hereditary hemochromatosis protein30, and only mediates the
interaction of TfR1 with ferritin31. Therefore, a mimetic of
the apical domain should have only minimal interference with the
normal functions of TfR1.

We hypothesized that zoonotic viruses like the NW mammar-
enaviruses are best adapted to use the cellular receptors of their
natural animal reservoirs rather than the human cellular
receptors. Rodent TfR1s can serve as efficient entry receptors to
various arenaviruses, including non-pathogenic species11, but
only a subset of NW mammarenaviruses can use hTfR111,14–16.
We demonstrated that TfR1 from Neotoma albigula (White-
throated woodrat) has remarkably higher affinities to a couple of
viral GP1s compared with hTfR121. Also, White-throated
woodrat TfR1 (wwTfR1) can efficiently serve as an entry receptor
for various mammarenaviruses11. Thus, we based our apical-
domain design on wwTfR1 instead of on hTfR1 to achieve high-
affinity targeting of pathogenic arenaviruses. Using receptor
orthologs derived from animal reservoirs instead of human-
derived receptors marks a conceptual change for designing
immunoadhesins.

We introduced several modifications to the wwTfR1-apical
domain to allow it to be produced as a stand-alone protein. These
modifications included the elimination of a long loop (residues
301–326) from the apical domain (Fig. 1b, c) and the mutation of
several hydrophobic residues at the interface between the apical-
and protease-like domains to increase hydrophilicity (Fig. 1c, d).
Lastly, we incorporated two cysteine residues at the termini of the
stand-alone apical domain (sAD) to increase stability (Fig. 1c).
This design allowed the expression of sAD to serve as a receptor-
binding site competitor.

The designed sAD is a soluble, folded, and stable protein. After
affinity purification of sAD using a His6-tag at its C′ terminus, a
single peak corresponding to monomeric protein was obtained
using size exclusion chromatography (Fig. 2a), indicating that
sAD is monodisperse. Furthermore, the circular dichroism (CD)
spectrum for sAD was characteristic of a folded protein, with a
negative peak at a wavelength of 222 nm, indicating helical
content (Fig. 2b). Following the CD signal at 222 nm, we
monitored the thermal stability of sAD (Fig. 2c). A complex
biphasic melting curve was observed, so we did not attempt to fit
a model to these data to derive a precise melting point.
Nevertheless, sAD is completely thermostable up to 55 °C, and
we can estimate the TM to be ~65 °C. Thus, sAD is sufficiently
soluble and stable to be considered for therapeutic use.

TfR1-derived sAD binds pathogenic mammarenaviral glyco-
proteins. To neutralize TfR1-tropic viruses, sAD must bind their
GP1 domains. To evaluate binding, we first constructed a series of
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Fig. 1 Design of a soluble apical domain from TfR1. a Overview of the TfR1/GP1 complex structure (PDB ID: 3KAS). Two GP1 molecules from MACV
(gray) bound to the dimeric human-TfR1 (light-blue and green). b The apical domain of TfR1 (orange) is sequence imbedded within in the protease-like
domain (light-blue), and together with the helical dimerization domain (magenta) makes one complete copy of the TfR1 molecule. c Sequence alignment of
human-TfR1, White-throated woodrat (WW) TfR1, and sAD. The numbering scheme follows the human-TfR1 numbering, and the sequence of the human-
TfR1 is colored according to the color scheme as in b, d. The potential N-linked glycosylation sites are indicated with black arrows. d A close-up view of the
hydrophobic interface of the apical domain (orange) and the protease-like domain (light-blue). The hydrophobic residues that were mutated in sAD are
shown in green.
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Fig. 2 The designed apical domain makes a soluble and stable protein that effectively binds a range of GP1 domains. a Size exclusion chromatography
profile of the soluble apical domain after affinity purification demonstrates a predominant monodisperse monomeric peak (mark with an asterisk). Inset
shows SDS-PAGE analysis of purified sAD. Three glycoforms are evident. b Representative circular dichroism spectrum of the sAD demonstrates a well-
folded protein. c Thermal denaturation of sAD. The circular dichroism signal was monitored at 222 nm while ramping temperature. The sAD is stable until
55 °C (light-blue shaded region), with an estimated TM of ~65 °C (red line). d A spider graph showing the dissociation constants (Kd) between sAD and the
indicated GP1 domains from clades B and A/B mammarenaviruses, as measured using SPR.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13924-6 ARTICLE

NATURE COMMUNICATIONS |           (2020) 11:67 | https://doi.org/10.1038/s41467-019-13924-6 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


GP1 domains fused at their C′ termini to Fc portions of anti-
bodies. We included GP1 domains from JUNV, MACV, GTOV,
and SBAV, which are the major pathogenic mammarenaviruses
from clade-B, and further included WWAV as a TfR1-tropic
clade-A/B representative. We performed single-cycle kinetics
experiments using surface plasmon resonance (SPR) and mea-
sured the dissociation constants (Kd) of sAD to the various
representative GP1 domains, in a configuration that allowed
monovalent binding (Supplementary Fig. 1). The sAD reagent
effectively binds all GP1 domains, with Kd values ranging from 4
nM for MACV to 1 μM for JUNV and WWAV (Fig. 2d).

To verify the binding mode of sAD to GP1, we crystallized and
solved the structure of GP1MACV in complex with sAD to 2.7 Å
resolution (Supplementary Table 1 and Supplementary Fig. 2).
Crystals belonged to a tetragonal space group (P4322) with four
copies of sAD/GP1MACV in the asymmetric unit (Fig. 3a). The
designed sAD forms a complex with GP1MACV (Fig. 3b) in a

similar fashion to hTfR128, while maintaining the overall
structure of the hTfR1-apical domain (Fig. 3c). Of two potential
N-linked glycosylation sites of sAD (Fig. 1c), we observed
electron density and hence modeled a glycan only at the Asn251
position (Fig. 3b). Most of the important interactions that
GP1MACV makes with hTfR1 are also formed with sAD, including
the key interaction with Tyr211 (Fig. 3b). We did observe some
structural differences; however, the long loop that connects
parallel strands βII-6 and βII-7 of sAD, which was mutated and
shortened (Fig. 1b–d), changed its conformation compared with
hTfR1 (Fig. 3d). In the case of hTfR128, Glu294 from this loop
forms a salt bridge with Lys169 of GP1MACV (Fig. 3e), and in the
case of sAD an alternative salt bridge with Lys169 is formed with
Glu340 from αII-2 instead (Fig. 3e). Overall, sAD mostly
preserves the native structure of the TfR1-apical domain and
shows remarkably broad reactivity with GP1s from NW
mammarenaviruses.
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Fig. 3 Isolated sAD retains a similar structure to the apical domain of TfR1. a The asymmetric unit contains four copies of the sAD/GP1MACV complex.
Each of the eight chains is shown using a unique color. The chains are rendered as tubes with radii proportional to the B-factor. The protein pairs in the
asymmetric unit differ in quality of the electron density; some have a low B-factors (e.g., green/cyan), while others are less defined and hence have higher
B-factor (e.g., purple/orange). Regardless, the sAD/GP1 interface is identical in all pairs. b Crystal structure of sAD in complex with GP1MACV. The GP1
domain is shown using surface representation (white), and sAD is presented as a ribbon diagram in rainbow colors from the N′ terminus (blue) to the C′
terminus (red). N-linked glycans and Tyr211 of sAD are shown using sticks. c The sAD adopts the same overall structure as the apical domain of hTfR1. A
ribbon diagram showing the apical domain of hTfR1 (PDB ID: 3KAS) in orange superimposed on sAD, shown in blue. The right view is rotated 90° with
respect to the view on the left. Tyr211, a central residue at the interface with GP1, is shown. Residues 301–326 of hTfR1, which were omitted in sAD, are
colored pink. d A ribbon diagram showing the structure of the complex between sAD and GP1MACV, in blue and white, respectively, superimposed on the
hTfR1/GP1MACV complex (PDB ID: 3KAS), colored orange and gray, respectively. The long loop that connects strands βII-6 and βII-7 changes position in
sAD compared to hTfR1 and is highlighted in green (sAD). This loop in hTfR1 originally included residues 301–326 (pink), which were eliminated from sAD.
e Similar superimposition as in d, showing the charge–charge interaction between GP1MACV and sAD or hTfR1. The negatively charged Glu294 of hTfR1
forms a salt bridge with Lys169 from GP1. In the case of sAD, Glu340 from αII-2, which replaces an alanine residue of hTfR1, projects in the same direction
as Glu294 of hTfR1. This Glu340 of sAD forms a similar salt bridge with Lys169 of GP1MACV.
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TfR1-based immunoadhesin targets pathogenic NW mam-
marenaviruses. Having demonstrated the functionality of sAD in
GP1 binding, we converted it to an immunoadhesin and desig-
nated it “Arenacept.” Specifically, the sAD C′ terminus was fused
to an Fc portion of IgG1 in a configuration that links two sAD
domains and allows both of them to bind virus simultaneously to
achieve avidity. We first tested whether Arenacept recognizes the

native spike complexes of TfR1-tropic viruses. Confocal fluores-
cence imaging revealed that Arenacept binds the native spike
complexes of MACV, JUNV, GTOV, SBAV, and WWAV
(Fig. 4a). This recognition is specific, as the spike complex of the
non-TfR1-tropic Old World Lassa mammarenavirus is not
recognized by Arenacept (Fig. 4a). Next, we examined whether
Arenacept could neutralize pseudotyped viruses bearing the spike
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Fig. 4 Arenacept is biologically active against pathogenic viruses. a Confocal fluorescence imaging of HEK293, transiently transfected with genes
encoding GPCs from the indicated viruses and stained with Arenacept. Nuclei were stained with DAPI (blue), membranes were stained with wheat germ
agglutinin (green), and Arenacept was visualized using fluorescent anti-human Ab (red). Scale bars represent 20 μm. b Neutralization of pseudotyped
viruses. Graphs show representative neutralization of pseudoviruses that bear spike complexes from the indicated viruses (left). Infection was monitored
by a luciferase reporter gene in a stable HEK293 cell line that overexpresses hTfR1. Error bars show standard deviations from technical replicates.
Measured IC50 values are shown on the right. Each dot corresponds to an independent neutralization experiment. Bars indicate standard deviations, and
horizontal lines indicate averaged values. The titers of pseudoviruses used for these experiments were not predetermined. c Plaque reduction neutralization
test using live Espindola strain JUNV. One hundred plaque-forming units of JUNV-Espindola were overlaid on Vero cells in the presence of Arenacept at the
indicated concentrations. Virus-only control was used as a reference for calculating neutralization. Error bars show standard deviations from technical
replicates. d Arenacept promotes ADCC in cells expressing the spike complexes of JUNV and MACV. HEK293A target cells “T” that express the spike
complexes of the viruses were incubated with PBMC effector cells “E” at increasing ratios in the presence of 10 μg/ml of Arenacept or Arenacept-LALA.
Release of lactate dehydrogenase was used to measure cytotoxicity. ADCC activities against spike-presenting target cells were compared to control cells
transfected with an irrelevant plasmid. Graphs are representatives of three independent experiments. Boxes indicate standard deviations that were derived
from n= 3 technical replicates. Median and average values are indicated with horizontal lines and open circles, respectively. Statistical significance was
calculated using two-way ANOVA (**P < 0.01). For all relevant panels, source data are provided as a source data file.
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complexes from the pathogenic viruses. We generated MLV-
based gammaretroviral-pseudotyped viruses that deliver a gene
encoding luciferase upon entering cells and monitored the
reduction in transduction in the presence of Arenacept (Fig. 4b).
For this assay, we used a HEK293T cell line that overexpresses
TfR1. These cells are significantly more susceptible to the pseu-
dotyped viruses and hence provide much stronger signal for cell
entry. Applying Arenacept effectively neutralized MACV, JUNV,
GTOV, and SBAV with mean calculated half-maximal inhibitory
concentration (IC50) values of 0.4–3.4 μg/ml (Fig. 4b). WWAV-
pseudotyped viruses do not efficiently infect HEK293 cells, so
neutralization could not be evaluated. Introducing into Arenacept
a Y211A mutation, which eliminates a critical contact with GP1
(Fig. 3b), abrogated neutralization activity against JUNV (Sup-
plementary Fig. 3), indicating that Arenacept preserves the same
binding mode observed for sAD (Fig. 3b). The similar, low IC50

values of Arenacept for the various viruses (Fig. 3b) compared
with the marked differences in affinities of sAD to the GP1s
(Fig. 2d) imply that avidity plays a critical role for neutralization.
Indeed, the monovalent sAD has a lower neutralization capacity
compared with Arenacept (Supplementary Fig. 4). Thus, Arena-
cept utilizes avidity and successfully neutralizes all four pseudo-
typed viruses bearing glycoprotein complexes (GPCs) from the
pathogenic clade-B viruses tested.

After obtaining a promising reagent that is capable of
neutralizing a diverse set of TfR1-tropic mammarenaviruses, we
tested whether the use of TfR1 ortholog derived from hosts that
are natural reservoirs is indeed required to achieve potent
neutralization. For that, we constructed a new sAD based on
hTfR1 and fused it to an Fc portion of IgG1 (hTfR1-Fc) to create
a human version of Arenacept. We compared side by side the
neutralization potentials of hTfR1-Fc and Arenacept using
pseudotyped viruses (Supplementary Fig. 5). Consistent with
the principle motivating the Arenacept design, hTfR1-Fc displays
orders of magnitudes weaker neutralization compared to
Arenacept. This observation indicates that the use of orthologs
derived from hosts, which are natural reservoirs, for immunoad-
hesins is a promising approach for achieving potent reagents and
overcomes a major limitation of analogous reagents constructed
using human receptor fragments.

Next, we evaluated the risk of potential competition between
Arenacept and TfR1 in binding ferritin. Comparing the structure
of hTfR1 in complex with ferritin31 to that of Arenacept indicates
that two important polar contacts between hTfR1 and ferritin will
not form between ferritin and Arenacept due to a tyrosine residue
at position 215 of Arenacept that is a natural wwTfR1 residue,
which substitutes an asparagine residue of hTfR1 (Supplementary
Fig. 6a). Moreover, the bigger side chain of Tyr215 may sterically
interfere with binding to ferritin (Supplementary Fig. 6a). To test
that hypothesis, we immobilized Arenacept and hTfR1-Fc on SPR
sensor chips and used ferritin as an analyte in single-cycle kinetics
experiments (Supplementary Fig. 6b). Since ferritin is a 24-mer,
this experimental configuration enables ultra-high avidity and
only provides apparent macroscopic binding affinities. Indeed,
using this binding geometry ferritin readily and irreversibly binds
to hTfR1-Fc (Supplementary Fig. 6b). In contrast, and despite the
ultra-high avidity, ferritin binds but dissociates from Arenacept
(Supplementary Fig. 6b). Hence, the interaction of ferritin with
Arenacept is substantially weaker than with hTfR1.

Arenacept can neutralize live infectious viruses. To validate the
neutralization capacity of Arenacept against live infectious viru-
ses, we performed a plaque reduction neutralization test (PRNT)
in a BSL-4 facility. As a stringent test, we used JUNV, which was
not the most sensitive virus to Arenacept as indicated by the

neutralization assays with the pseudotyped viruses (Fig. 4b). Live
infectious Espindola strain of JUNV was applied to Vero cells in
the presence of Arenacept at various concentrations with or
without 5% of guinea pig complement, and the reduction in the
number of plaques was monitored 5 days later. In the presence of
complement, Arenacept effectively neutralized JUNV-Espindola
with a half-maximal effective concentration (EC50) (PRN50) value
of 2.8 μg/ml (Fig. 4c). This value agrees with the IC50 value that
was obtained with the JUNV-pseudotyped viruses (Fig. 4b).
Interestingly, in the absence of complement, the neutralization
capacity of Arenacept was significantly reduced (Fig. 4c). Hence,
Arenacept is effective against live infectious JUNV in a
mechanism that is enhanced by complement-dependent
cytotoxicity (CDC).

Arenacept induces Fc-mediated cellular cytotoxicity. We next
examined whether Arenacept can further eliminate infected cells
by inducing antibody-dependent cellular cytotoxicity (ADCC).
We transiently expressed the spike complexes of MACV and
JUNV in HEK293 cells, applied peripheral blood mononuclear
cells from healthy donors to the transfected HEK293 cells, and
monitored cell-killing activity in the presence of Arenacept
(Fig. 4d). As a control, we further measured cell-killing activity
mediated by a modified version of Arenacept carrying two
mutations in the Fc region, L234A, and L235A (Arenacept-
LALA) that causes reduced affinity to Fcγ receptors and hence
reduced capacity to promote ADCC32. We observed a clear
increase in cytotoxicity as a function of the ratio of effector to
target cells when applying Arenacept, but significantly less so
when applying Arenacept-LALA (Fig. 4d). Interestingly, Arena-
cept induced more robust ADCC in the case of JUNV compared
to MACV, but in both cases the ADCC activity was significant.
Thus, Arenacept has the potential to promote clearance of
infected cells in addition to directly neutralizing viruses.

Enhancing Arenacept through rational design. Following the
promising indications for the ability of Arenacept to neutralize
viruses and to recruit Fc-mediated immune functions, we
explored the possibility of further enhancing its potency. Our
original sAD construct bears two putative N-linked glycosylation
sites (Fig. 1c), which are both partially glycosylated as indicated
by the three glycoforms that appear in the sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis
of sAD (Fig. 2a). In the crystal structure of sAD/GP1MACV, we
observed electron density for N-acetylglucosamine only at the
Asn251 glycosylation site of sAD (Fig. 3b) and not near Asn204.
This observation implies that the sAD/GP1MACV complex may
selectively form with sAD molecules that do not bear a glycan at
position Asn204. In the sAD/GP1MACV structure, Asn204 of sAD
is in close proximity to GP1MACV, suggesting that an N-acet-
ylglucosamine attached to this residue will sterically prevent the
formation of a complex (Fig. 5a). As a consequence, Arenacept
molecules that have either one or two sAD arms that are glyco-
sylated at position Asn204 will not be able to utilize avidity or will
be completely inert, respectively. We thus introduced an S206A
mutation to the sAD portion of Arenacept (referred to as Are-
nacept-M1) to eliminate the N-X-T/S glycosylation motif. Using
side-by-side comparisons with pseudotyped viruses, Arenacept-
M1 displays enhanced neutralization capacities against most of
the viruses that we tested (Fig. 5b).

Since CDC is important for efficient neutralization of live
infectious JUNV (Fig. 4c), we further introduced an E430G
mutation, which slightly increases the formation of complement-
activating Fc hexamers33, into the Fc portion of Arenacept-M1
(referred to as Arenacept-M3). We repeated the PRNT using live
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infectious JUNV with both Arenacept-M1 and Arenacept-M3
(Fig. 5c). Remarkably, eliminating the Asn204 glycosylation site
substantially altered the profile of the neutralization curves
(Fig. 5c), with calculated hill slopes of 2.9 and 2.1 for Arenacept-
M1 and Arenacept-M3, respectively vs. 0.7 for Arenacept. Such
steeper slopes indicate a marked increase in cooperativity. This
change results in modestly improved EC50 values but a substantial
improvement of EC90 values for both Arenacept-M1 and
Arenacept-M3 (Fig. 5c). Arenacept-M3, which has a stronger
tendency to activate CDC, displays even better EC50 and EC90

values compared to Arenacept-M1, further indicating the
importance of complement activation for neutralizing live
infectious JUNV. Having such a potent reagent, we further tested
if Arenacept-M3 has the capacity to target other live infectious
mammarenavirus as implied from the neutralization experiments
with the pseudotyped viruses (Figs. 4b and 5c). We evaluated the
neutralization capacity of Arenacept-M3 using PRNT against
infectious MACV (Carvallo strain). We found that Arenacept-M3

very potently neutralizes MACV in the presence of complement
with an EC90 value below 1 μg/ml (Fig. 5d), establishing
Arenacept-M3 as a highly potent, broad-spectrum reagent.

Mechanism of complement-enhanced neutralization. The
marked enhancement of neutralization by the addition of com-
plement in the PRNT against JUNV (Fig. 4c) and to some degree
against MACV (Supplementary Fig. 7) may result from several
distinct mechanisms: complement may directly enhance neu-
tralization of viruses by increasing the valence of Arenacept and
subsequently disrupting the viruses or sterically occluding them
from cells. Alternatively, residual complement and Arenacept in
media may target infected cells that display the viral spike com-
plex on their surfaces. To gain insights into the mechanism of
complement enhancement, we performed neutralization experi-
ments using the MLV-pseudotyped viruses in the presence or
absence of complement. In this system, the viruses do not
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replicate in cells, and enhancement of neutralization could result
only from direct action on the pseudoviruses themselves. Indeed,
complement significantly augmented Arenacept-M3 neutraliza-
tion of JUNV-pseudotyped viruses (Fig. 6a). Interestingly, the
addition of complement did not augment Arenacept-M3 in the
case of MACV-pseudotyped viruses (Fig. 6a). Next, we tested
whether Arenacept is able to mediate CDC of cells that transiently
display the spike complexes of JUNV or of MACV. In both cases,
we observed robust killing mediated by Arenacept (Fig. 6b). In
the case of JUNV, we further noticed a significant increase in
CDC by using Arenacept-M3 instead of Arenacept-M1 (Fig. 6b).
Thus, complement directly potentiates neutralization of viruses
by Arenacept, and it is also effectively recruited by Arenacept to
kill infected cells.

Discussion
The development of Arenacept offers a promising immunother-
apeutic approach for combating infections by the notorious
pathogenic clade-B mammarenaviruses, which pose a health
threat for millions of people in endemic regions and so far has
had very limited options for treatment. Targeting the apical
domain of TfR1 to block infection was previously suggested28,
and subsequently demonstrated using an antibody34 and an
aptamer35. However, this approach requires systemic-wide
blocking of all TfR1 molecules, which might not be readily
achieved, may cause undesired side effects, and cannot induce
clearance of infected cells. The apical domain of TfR1, on the
other hand, can directly target viruses and even promote clear-
ance of infected cells by binding to the viral spike complex on
their surfaces. Our design of sAD resulted in a thermostable
protein, an advantageous property that would be instrumental for
reducing manufacturing costs and for distributing it in regions
with poor clinical and logistical infrastructures.

Using pseudoviruses we found Arenacept to be effective against
a set of distinct NW species, and using PRNT in BSL-4 labs was
found to be effective against live infectious JUNV and MACV.
Interestingly, in the absence of a complement, Arenacept was less
potent against live viruses compared to the pseudotyped viruses.
Such differences between pseudoviruses and live viruses were
previously noted22,36 and may result from differences in the
density and distribution of spike complexes between the pesu-
doviruses and live viruses, which may ultimately modulate the
neutralization potency. The addition of complement greatly
enhances the efficacy of Arenacept in a combined mechanism
that enhances direct neutralization and likely further targets
infected cells by CDC. In the presence of a functional immune
system in vivo, ADCC and perhaps additional mechanisms such
as opsonization and reduced viral egress by tethering may further
promote the function of Arenacept.

Other immunotherapeutic reagents that can target NW
mammarenaviruses were previously reported. mAbs against
JUNV that were first isolated in mice37 were shown to protect
against a lethal challenge in an animal model23. Additional mAbs
from vaccinated individuals were shown to neutralize live JUNV,
and to be effective against MACV as well22. These studies used
different strains and experimental conditions for measuring
neutralization, so it is difficult to directly compare the potency of
such mAbs to Arenacept. Nevertheless, against infectious viruses
and in the presence of complement, Arenacept-M3 seems to be
slightly less potent compared with some mAbs22 but more potent
compared with others23. The most fundamental and important
difference between Arenacept and other mAbs, however, is the
superior breadth of Arenacept.

Immunoadhesins are promising therapeutic reagents that were
successfully introduced into clinical use to treat various, non-viral
pathological conditions38–42. Due to their inherent breadth and
their natural resistance to viral escape mutations, immunoadhesins
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still hold great promise as anti-viral therapeutic agents as well.
Using receptor orthologs from animal host reservoirs of zoonotic
viruses has the potential to result in much more potent immu-
noadhesins than using human receptor orthologs, as we demon-
strated here. One issue of seeming concern is the possibility that
immunoadhesins made from animal-derived proteins would be
immunogenic. Rodent and human-TfR1 are highly similar in
sequence (Fig. 1c), but for the Arenacept model to be generalizable,
high sequence similarity should not be assumed. It is important to
note that the clinical use of reagents such as Arenacept would not
require chronic administration, but rather treatment during life-
threatening acute viral diseases. In such a scenario, any putative
immunogenicity is not likely to pose a significant concern. This
methodology of using host-derived receptors has a potential to be
effective against other zoonotic viruses, and hence to become a
general strategy for constructing broad-spectrum and potent
immunotherapeutic agents.

Methods
Construction of expression vectors. Codon-optimized forms of MACV, JUNV,
GTOV, and SBAV GPC genes were chemically synthesized (Genscript), according
to their UniProt sequences, as follows: JUNV (O10428), GTOV (Q8AYW1), and
SBAV (H6V7J2). Genes encoding WWAV and MACV GPC were a kind gift from
Dr. Hyeryun Choe. All GPCs were subcloned into the pcDNA3.1 expression vector,
using BamHI–NotI restriction sites. The gene encoding sAD was chemically syn-
thesized (Genscript), and was subcloned into pACgp67b vector for production in
insect cells using BamHI–NotI restriction sites. GP1JUNV–Fc, GP1MACV–Fc,
GP1GTOV–Fc, GP1SBAV–Fc and GP1WWAV–Fc, and sAD-Fc (Arenacept) fusion
proteins were generated following a similar protocol as we previously used43.
Briefly, the core regions of the GP1s (residues 85–244, 80–223, 77–246, 80–223,
and 80–231 for MACV, GTOV, JUNV, WWAV, and SBAV, respectively) were
cloned upstream of a human Fc region derived from IgG1 and downstream of a
signal peptide using BamHI–KpnI restriction sites. Mutated variant Y211A of
Arenacept was generated by PCR using Kapa HiFi DNA polymerase (Kapa Bio-
systems) according to the QuikChange site-directed mutagenesis manual. Human
transferrin receptor-encoding vector hTfR1-pENTR221 was obtained from the
Weizmann Institute Forscheimer plasmid bank and was subcloned into pQXIP
using BamHI–NotI restriction sites. A gene encoding wwTfR1 was chemically
synthesized (Genscript).

Protein expression and purification. To express and purify the complex of sAD
with GP1MACV for structural studies, we used the same methodologies as used for
producing GP1LASV43. Briefly, the two proteins were co-expressed as secreted
proteins using the baculovirus system in Tni (Trichoplusia ni) cells (Expression
Systems). Media were collected and buffer exchanged to TBS (20 mM Tris-HCl, pH
8.0, 150 mM sodium chloride) using a tangential flow filtration system (Millipore).
The complex was captured using a HiTrap IMAC FF Ni+2 (GE Healthcare) affinity
column followed by size exclusion chromatography purification with a Superdex 75
10/300 column (GE Healthcare). Fc-fused GP1s (GP1JUNV–Fc, GP1MACV–Fc,
GP1GTOV–Fc, GP1SBAV–Fc, and GP1WWAV–Fc), Arenacept, and the various His-
TfR1s were expressed in suspension-HEK293F cells (Gibco) grown in FreeStyle
media (Gibco). Transfections were done using linear 25 kDa polyethylenimine
(PEI) (Polysciences) at 1 mg of plasmid DNA per 1 L of culture at a cell density of
106/ml. Media were collected after 5 days and supplemented with 0.02% (w/v)
sodium azide and phenylmethylsulfonyl fluoride. Fusion proteins were isolated
using protein-A or HiTrap IMAC FF Ni+2 (GE Healthcare) affinity columns.

SPR measurements. Binding of sAD to GP1JUNV–Fc, GP1MACV–Fc, GP1GTOV–Fc,
GP1SBAV–Fc, and GP1WWAV–Fc fusion proteins was measured using a Biacore
T200 instrument (GE Healthcare). Fusion proteins were first immobilized at a
coupling density of ~500 resonance units (RU) on a series S sensor chip protein A
(GE Healthcare) in TBS and 0.02% sodium azide buffer. One of the four flow cells
on the sensor chip was coupled with GP1LASV–Fc to serve as a blank. sAD was then
injected at 5, 50, 250, 500, and 1000 nM concentrations, at a flow rate of 80 μl/min.
Single-cycle kinetics was performed for the binding assay. The sensor chip was
regenerated using 10 mM glycine-HCl pH 1.5 buffer. The binding of hTfR1 and
wwTfR1 to GP1JUNV–Fc and GP1MACV–Fc was similarly measured, at TfR1 con-
centrations of 500, 250, 125, 12.5, and 1.25 nM.

In vitro neutralization assays. Pseudoviral particles of MACV, JUNV, GTOV,
and SBAV were produced as previously described44, except for the use of pLXIN-
Luc as the reporter gene (pLXIN-Luc was a gift from Alice Wong, Addgene
plasmid # 60683). Media containing pseudoviruses were concentrated 10× by PEG
precipitation. For that, the viral-containing media were supplemented with PEG
6000 (Sigma) in phosphate-buffered saline (PBS) to a final concentration of 8%

(w/v). Following incubation of 18 h at 4 °C, viruses were pelleted by centrifugation
at 10,000 × g for 20 min. Pellets of viruses were resuspended in cell culture media.

For generating a stable cell line that overexpresses hTfR, HEK293T (ATCC)
cells were transfected with the hTfR-pQXIP vector. At 48 h post transfection,
media were replaced and supplemented with 2 µg/ml puromycin for selection. Cells
were grown in the presence of antibiotics for 1 week. Resistant colonies of stable
cells were collected and cultured in the presence of puromycin to form a polyclonal
cell line.

For neutralization assays, hTfR-stable HEK293T were seeded on poly-L-lysine
pre-coated white, chimney 96-well plates (Greiner Bio-One). Cells were left to
adhere for 2 h, followed by the addition of 10× concentrated pseudoviruses, which
were pre-incubated with threefold descending concentrations of either Arenacept
or sAD, with or without the addition of 2.5% rabbit complement (Cedarlane). Cells
were washed from viruses 18 h post infection, and luminescence from the activity
of luciferase was measured 48 h post infection using a TECAN infinite M200 pro
plate reader after applying Bright-Glo reagent (Promega) on cells.

Cell staining and fluorescence-microscopy imaging. HEK293T cells were seeded
on poly-L-lysine pre-coated coverslips in 24-well plates and transfected with dif-
ferent GPCs using PEI reagent. At 24 h post transfection cells were incubated for
5 min with 1 µg/ml Arenacept diluted in cell culture media, fixed with pre-warmed
3.7% (v/v) formaldehyde (paraformaldehyde) solution in PBS, and blocked with 3%
(w/v) bovine serum albumin in PBS. Cells were stained with Cy3-conjugated anti-
Human Fc (Jackson Laboratories, dilution 1:500, catalog # 109-165-008) and
fluorescein isothiocyanate-conjugated wheat germ agglutinin (Thermo Fisher
1:200, catalog # W11261). Cells were imaged at ×100 magnification using an
Olympus IX83 microscope coupled to a Yokogawa CSU-W1 spinning disc confocal
scanner. Images were processed using ImageJ.

CD measurements. Stock solution of 10 mg/ml sAD in 20 mM Tris-HCl (pH 8.0),
150 mM sodium chloride was diluted 1:40 in 150 mM sodium chloride solution for
recording CD spectra using a Chirascan-plus ACD spectrometer. For determining
temperature stability of the protein, CD spectra at a wavelength of 222 nm were
measured at temperatures ranging between 30 °C and 85 °C (ramping of 0.5°/5 s).

Crystallization. Screening for initial crystallization conditions was done with an
8.8 mg/ml stock of the complex sAD/GP1MACV, using a Mosquito crystallization
robot (TTP Labs). Initial hits were identified using the JCSG-plus screen (Mole-
cular Dimensions) and were optimized manually. Crystals were obtained using
sitting drop vapor diffusion in 0.2 M sodium thiocyanate, pH 6.9, 20% (w/v) PEG
3350, and 5% (v/v) MPD. Crystals were then successively cryo-protected using 20%
(v/v) MPD in reservoir solution before flash cooling in liquid nitrogen.

Data collection, structure solution, and refinement. X-ray diffraction data were
collected at the European Synchrotron Radiation Facility (ESRF) beamlines ID30B
using a Pilatus 6M-F detector at 100 K. Data to 2.7 Å in a tetragonal space group
were collected. HKL200045 was used to index, integrate, and scale the data. Pha-
ser46 was used to obtain a molecular replacement solution using the structure of
GP1MACV in complex with the apical domain of hTfR1 (PDB: 3KAS) as a search
model. The crystal belonged to a tetragonal P4322 space group and contained four
sAD/GP1 complexes in the ASU. The model was manually fitted into electron
density maps using Coot47 and refined using Phenix Refine46 in an iterative
fashion.

ADCC assays. For measuring ADCC HEK293A (ATCC) cells were grown to
80–90% confluence in 100 mm plates. Transfection mixtures of 1 ml containing
40 µg/ml 25 kDa PEI (Polysciences) with 8 µg JUNV, MACV, or control plasmid in
Dulbecco’s modified Eagle’s medium (DMEM) were made and incubated for
15 min at room temeperature. Two milliliters of media was removed from each
culture, and 1 ml transfection mix was added. After 24 h, cells were detached from
the plate using 10 mM EDTA. The ability of Arenacept or Arenacept-LALA to
promote ADCC was evaluated by measuring lactate dehydrogenase (LDH) release
using a LDH Cytotoxicity Detection kit (Roche Applied Science) according to the
manufacturer’s instructions. HEK293A target (T) cells were transfected with GPC
of JUNV, MACV, or an irrelevant vector as control and subsequently incubated at
1 × 105 cells/ml with or without 10 µg/ml Arenacept or Arenacept-LALA on ice for
1 h. PBMCs were collected from human blood using cell preparation tubes. After
extensive washes with PBS, the cells were suspended in RPMI and plated in a
96-well round-bottom plate at different amounts. Subsequently, for each PBMC-
containing well, 1 × 104 target cells were added. We used 1% (v/v) Triton X-100 as
maximum-release controls and cells without PBMCs and no Arenacept as low
spontaneous release controls. Plates were then incubated for 3 h at 37 °C, and
supernatants were collected for LDH release determination. Percentage cytotoxicity
was calculated as (cells with Arenacept− cells without Arenacept)/(maximum
release− spontaneous).

Plaque reduction neutralization tests. For testing neutralization of JUNV,
Arenacept was serially diluted fourfold (for the first dilution) and fivefold
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(for subsequent dilutions) in infection medium (MEM supplemented with 10% (v/v)
fetal bovine serum (FBS), 1% L-Gln; 1% (w/v) Pen/Strep, and 5% (v/v) guinea pig
complement (Rockland) starting at 1740 μg/ml. In a BSL-4 lab, JUNV was diluted in
infection medium to 2000 pfu/mL. An equal volume of JUNV was added to each of
the Arenacept dilutions to achieve a concentration of 100 pfu of JUNV. A virus-only
control was incubated with medium alone. The dilutions were then incubated for 1 h
at 37 °C in a humidified CO2 atmosphere. Vero E6 cells (ATCC) seeded in 6-well
plates to near confluence were infected with the dilutions for 1 h before 0.8% (w/v)
agarose was added as an overlay. After 5 days, plaques were visualized by staining
the cell monolayer with PBS supplemented with 5% neutral red and 5% FBS (v/v).
EC50 and EC90 were calculated using the 4PL curve fit (Origin).

For testing neutralization of MACV, Arenacept-M3 was serially diluted fivefold
in infection medium (DMEM supplemented with 10% FBS; 1% Pen/Strep) with
guinea pig complement (2% final) (Rockland) starting at 500 μg/mL. MACV was
diluted in infection medium, and an equal volume of MACV was added to each of
the Arenacept dilutions to achieve a concentration of 100 pfu of MACV per well. A
virus-only control was incubated with medium alone. The dilutions were then
incubated for 1 h at 37 °C in a humidified CO2 atmosphere. Vero E6 cells seeded in
12-well plates to near confluence were infected with the dilutions for 1 h before
carboxymethylcellulose diluted in DMEM. After 7 days, the number of foci was
calculated by focus forming immunodetection using anti-MACV antibodies. EC50

and EC90 were calculated using the 4PL curve fit (Origin).

CDC assays. For measuring CDC, HEK293F cells were grown in suspension to a
density of 106 cells/ml and transfected using 40 kDa PEIMAX (Polysciences) with
plasmids encoding the GPCs of JUNV and of MACV. Cells were cultured for 48 h
post transfection. Cells were plated into 96-well plates at a cell density of 20,000
cells per well. Reaction mixtures containing rabbit complement (Cedarlane) at a
final concentration of 2.5% with or without Arenacept at a final concentration of
10 µg/ml were added to wells and incubated for 2 h at 37 °C. To monitor cyto-
toxicity we followed the release of LDH using a LDH Cytotoxicity Detection kit
(Roche Applied Science) according to the manufacturer’s instructions. We used 1%
Triton X-100 as maximum-release controls, cells with complement but without
Arenacept as a spontaneous control, and cells without Arenacept or complement as
background control. From all reads we subtracted the background control and
calculated percentage cytotoxicity as (cells with Arenacept− spontaneous) ×
100/(maximum release− spontaneous).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Coordinates and structure factors for sAD/GP1MACV structure are available at the PDB
under accession code 6S9J. Raw data underlying Figs. 4b–d, 5b–d, 6a, b and
Supplementary Figs. 3–5, 7 are provided as source data file. All other data are available
from the corresponding author upon reasonable requests.
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