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Abstract: As the policies and regulations currently in place concentrate on environmental protection
and greenhouse gas reduction, we are steadily witnessing a shift in the transportation industry
towards electromobility. There are, though, several issues that need to be addressed to encourage
the adoption of EVs on a larger scale, starting from enhancing the network interoperability and
accessibility and removing the uncertainty associated with the availability of charging stations.
Another issue is of particular interest for EV drivers travelling longer distances and is related to
scheduling a recharging operation at the estimated time of arrival, without long queuing times.
To this end, we propose a solution capable of addressing multiple EV charging scheduling issues,
such as congestion management, scheduling a charging station in advance, and allowing EV drivers
to plan optimized long trips using their EVs. The smart charging scheduling system we propose
considers a variety of factors such as battery charge level, trip distance, nearby charging stations, other
appointments, and average speed. Given the scarcity of data sets required to train the Reinforcement
Learning algorithms, the novelty of the recommended solution lies in the scenario simulator, which
generates the labelled datasets needed to train the algorithm. Based on the generated scenarios, we
created and trained a neural network that uses a history of previous situations to identify the optimal
charging station and time interval for recharging. The results are promising and for future work we
are planning to train the DQN model using real-world data.

Keywords: smart scheduling; smart reservations; reinforcement learning; electric vehicle charging;
electric vehicle charging management platform; DQN Reinforcement Learning algorithm

1. Introduction
1.1. Motivation

The last few decades have been marked by rapid technological advances that have
resulted in significant positive changes in daily life, as well in an increase of pollution levels.
To address the issue of pollution associated with the transportation industry, extensive
technological research and development has been carried out in order to pave the way for
electromobility worldwide.

As pointed out in Electric Vehicles for Smarter Cities: The Future of Energy and Mobility,
issued by the World Economic Forum in January 2018 [1], to prevent congestion and
pollution in the urban areas that have already been and will continue to be reshaped by
demographic shifts, it is required to implement radical sustainable and secure mobility and
energy solutions. The authors underline the fact the charging infrastructure deployment
should be based on an anticipation of the long-term mobility transformation. Moreover,
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they consider that ensuring a reduction of range anxiety and developing smart charging
technologies are key elements in the EV market approach, as they would contribute to the
adoption of electro-mobility.

Wang et al. [2] emphasize the need for a scheduling approach to bridge the gap be-
tween EV charging needs and charging station supplies, as well as to deliver a favorable
user experience that will stimulate EV adoption. Franke et al. [3] have analyzed the psycho-
logical barriers in adopting electric mobility, interfering with purchase intentions, focusing
on EV range, and underlining that recharging opportunities and intuitive interfaces can
contribute to the reduction of ambiguity and anxiety. According to a survey performed
by the McKinsey Center for Future Mobility, the scarcity of fast chargers represents one of
the main impediments to the widespread adoption of EVs, ranking third after price and
driving range, but given the technological advancements that are steadily increasing range
and the more attractive purchasing costs, charging related issues are bound to become the
most significant barrier [4]. With more and more EVs on the road, available connectors
will become difficult to find and, even though services such as ChargePoint or ChargeHub
provide users with real-time information related to available charge points, the option
to make reservations for a later date has not been implemented so far [5]. This aspect is
particularly important for EV owners travelling long distances, as having the possibility to
make advance reservations for their multiple charging operations along the road would
enable them to plan a smooth journey, without the stress related to the uncertainty of
finding an available socket once they reach the charging station.

In this context, we propose a solution that addresses precisely the aforementioned
issues, reducing range anxiety among EV owners and removing the uncertainty associated
with charge point availability by ensuring a smart scheduling of electric vehicles charging
using Reinforcement Learning.

1.2. Related Work

Over the last several years, we have witnessed an ever-growing interest in Machine
Learning in general, and one of its techniques—Reinforcement Learning (RL)—with im-
plementations in a variety of fields. RL is designed as an optimization method involving
an agent that learns from the interactions with its environment, based on the rewards
received and that consequently adapts its behavior and decides upon the best action to
execute in the future. Ultimately, the agent’s goal is to establish a policy that, when applied
to action selection, generates the best reward over a long period [6]. The agent learns
positive behavior, which is an important aspect of reinforcement learning. This means that
it incrementally modifies or acquires new behaviors and skills. Furthermore, RL makes
use of trial-and-error experience (as opposed to dynamic programming which implies full
knowledge of the environment beforehand). As a result, the RL agent does not require
complete knowledge or control of the environment and only needs to be able to interact
with it and collect information [7].

The literature covers the use Reinforcement Learning techniques in optimizing the
usage of the power grid to flatten the load curve and to avoid frequent voltage fluctuations,
to reach peak reductions [8–11], to ensure the optimization of EMS (energy management
systems), and to enable energy savings [12]. Moreover, researchers propose to use RL to
learn household energy consumption, so as to optimally schedule EV charging, ensuring
the reduction of energy expenditure, as well as a cost reduction [11–13]. Using Reinforce-
ment Learning (RL) and Fuzzy Reasoning, Alfaverh et al. [14] propose a domestic energy
management system, which successfully integrates the feedback provided by the user. The
researchers employ the Q-learning strategy to optimally schedule household appliances
and EV charging operation in terms of energy costs, without interfering with the user’s
preferences.

In a series of scientific papers [15–19], researchers recommend using deep reinforce-
ment learning to address the limitations of traditional model-based approaches that need a
model to predict and optimize the scheduling process of EV charging. The authors propose
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to tackle the scheduling problem as a Markov Decision Process (MDP), to address the
issues related to the randomness of traffic, of EVs arrival at the charging station and the
fluctuation of energy rates that makes the optimization charging schedules difficult to
achieve. Wan et al. [20] have established an MDP model of the EV charging–discharging
control strategy, performing a series of simulations that yielded promising results related
to cost reductions. Furthermore, the authors introduce an optimization mechanism for
distributed real-time scheduling. Mhaisen et al. [21] also engage in a study designed to
address the issue of EV charging and discharging scheduling operations in real-time, with
the use of reinforcement learning, proposing a model-free RL technique able to determine
a charging and discharging strategy on its own, as opposed to most of the scheduling
techniques that strive to model the uncertainties associated with the existing unknown
variables (real-time prices, EV behavior, energy demand) and plan correspondingly.

Volagianni et al. [11] proposed a customer model focusing on EV owners, simulating
their driving, and charging behavior and creating driving profiles using data available
from various public statistics, using Reinforcement Learning to gain insight into individual
household consumption. The Smart Charging algorithm they proposed is also designed
to ensure the stability of the energy network. The advantage of using model-free Rein-
forcement Learning consists of the fact that no prior knowledge is needed, overcoming the
uncertainties inherent to the EV charging process.

To address congestion management, Rigas et al. [10] analyze the issue from both
the perspective of the EV users and of the charging points, suggesting that congestion
at the charging stations could be avoided by directing EVs towards various charging
points and by distributing charging points’ locations along the routes. The authors studied
artificial intelligence techniques for establishing energy-efficient routing, as well as for
selecting charge points, analyzing, at the same time, the possibility to integrate EVs into
the smart grid.

Tuchnitz et al. [22] propose a flexible and scalable charging strategy for EVs, using a
Reinforcement Learning algorithm to establish a smart system for the coordination of an
EV fleet charging process. Unlike optimization-based strategies, the proposed system does
not require variables such as arrival and departure time and electricity consumption in
advance, as the neural network is able to approximate the correct decision, according to the
current parameters.

Ruzmetov et al. [23] identifies the lack of certainty of EV drivers to have an available
charging point once they reach the charging station on their route as one of the major
drawbacks in adopting electromobility. The authors introduce a platform meant to ensure
a constant cooperation between the different involved entities: the energy suppliers, the
charging stations and the EVs and EV users, proposing an optimization of the EVs’ schedul-
ing and allocation to the charging stations. The destination set by the drivers, as well as the
battery level, are taken into account when proposing a charging station, ensuring that this
does not divert them from the route.

Qin and Zhang [24] conducted a theoretical study that enabled them to create a
distributed scheduling protocol meant to reduce the waiting time, consisting of both the
queuing time and the actual charging time, during a trip, along a highway. The reservations
made by EV drivers for their next charging and the reservation adjustments are based on
the minimum waiting time communicated by the charging stations, which periodically
update this information, so as to enable drivers to make the optimal selection, in terms of
waiting time.

Weerdt et al. [25], too, propose a solution to address the issue of congestions at the
charging stations and long queuing times, in the form of an Intention Aware Routing
System (IARS), which enables vehicles to reduce their travel time by taking into account the
intentions of other vehicles. A central system is fed with probabilistic information about
the intentions of vehicles in terms of estimated time of arrival at the charging station and,
therefore, it can predict overcrowding and associated waiting times.
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Furthermore, to address the needs of EV owners, while at the same time avoiding
charging station congestions and power grid overload, Liu et al. [26] have conducted
extensive research and proposed a reinforcement learning-based method for scheduling EV
charging operations. To this end, the authors created a framework to enable communication
between the charging stations and the EVs, and then determined a dynamic travel time
model, as well as the EV charging navigation model. To further optimize the distribution
of the resources of charging stations located in the area, they used reinforcement learning
to enhance the charging scheduling model. Ma and Faye [27] also propose a solution to
forecast the occupancy of charging stations, with the use of an LSTM neural network, a
solution that has yielded promising results and on top of which smart scheduling strategies
could be developed.

Shahriar et al. [28] provide a comprehensive overview of the application of various
machine learning technologies to analyze and predict EV charging behavior, identifying
the lack of publicly available datasets necessary for the training of ML models as one of
the major drawbacks in the field. The authors also underline that available data are rather
irrelevant, as they are specific to certain geographical areas, with traffic and EV users’
behavior particularities that cannot be applied in other locations.

Mnih et al. [29] explore recent breakthroughs in deep neural network training to create
a deep Q-network that makes use of end-to-end RL to “learn successful policies directly
from high-dimensional inputs”. The authors claim that, using DQN, they managed to
create a first AI agent capable of achieving mastery in a wide variety of difficult tasks. This
research, along with its predecessor, Playing Atari with Deep Reinforcement Learning [30],
could be considered the cornerstone of DQN, demonstrating that in complex RL contexts, a
convolutional neural network trained with the Q-learning algorithm is able to learn control
policies from raw video data.

Among the techniques that enable DQN to overcome unstable learning, Experience
Replay has a significant impact as it stores experiences such as state transitions, actions,
and rewards, which constitute required data for Q-learning, and it creates mini-batches for
updating the neural networks. Learning speed is increased, and the reuse of past transition
prevents cataclysmic forgetting [31].

In their paper entitled Deep Reinforcement Learning Based Optimal Route and Charg-
ing Station Selection, Lee et al. [32] propose an algorithm designed to return the best possi-
ble route and charging stations, reducing the overall travel time, taking into account the
dynamic character of traffic conditions, as well as unpredictable future charging requests.
To determine the best policy for the selection of an EV charging station, a well-trained
Deep Q Network (DQN) has been used. The authors point out that due to dimensionality,
it is difficult to use Q-learning with the lookup table method for large-scale problems in
real-world scenarios. They used DQN to approximate the optimal action–value function.

To contribute to the fuel efficiency of plug-in hybrid EVs, Chen et al. [33] propose a
stochastic model predictive control strategy for energy management, based on Reinforce-
ment Learning. Furthermore, the authors employ a Q-learning algorithm to set an RL
controller used in the optimization process. Liu et al. [34] also suggest a smart charging
strategy, based on an incremental Deep Reinforcement Learning system designed to si-
multaneously address both the issue of fast charging station selection and route planning,
while taking into account user experience.

1.3. Contributions of This Paper

The purpose of this paper is to propose a solution capable of addressing multiple issues
related to EV charging scheduling, such as congestion management, scheduling a charging
station in advance, and enabling EV drivers to plan optimized long trips using EVs.

The novelty consists of the smart charging scheduling system that takes into account
multiple parameters such as battery charge level, trip distance, available charging stations
nearby, other appointments and the average speed.
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Given the lack of datasets necessary to train the Machine Learning / Reinforcement
Learning algorithms, the novelty of the proposed solution also resides in the scenario
simulator that generates labelled datasets required to train the algorithm.

Our paper follows a similar approach to the studies performed in [32–34] covering,
however, the following gaps:

- Our algorithm recommends the charging stations at the beginning of the trip, which
can be positioned along various alternative routes to the destination point. This way,
users have more options to choose from and they can ensure a smoother journey, with
no long queues, by slightly adjusting their itinerary so that they pass by the optimal
charging stations;

- The existing scientific articles in the field that studied the same concept using a
Reinforcement Learning method employed a specific number of charging stations,
meaning that introducing a new charging station in the grid would require the neural
network to be retrained. We use the DQN to compute a score for each charging station
in the grid, score that denotes the likelihood of selecting the current charging station
given the car battery level and position, and the charging station’s reservations. This
way we can increase the number of charging stations in the grid without having to
retrain the neural network.

1.4. Methodology

The present article proposes to illustrate the technical details for the implementation of
the DQN Reinforcement Learning algorithm (deep Q-networks) for the smart reservation of
a charging point for an electric vehicle, as it has been developed within the framework of the
Smart EVC project. It represents a continuation of the studies carried out in Design Patterns
and Electric Vehicle Charging Software [35], an overview and performance evaluation of
open charge point protocol from an electromobility concept perspective [36] and Electrical
Vehicle Simulator for Charging Station in Mode 3 of IEC 61851-1 Standard [37].

As illustrated in the diagram in Figure 1, the methodology employed while conduct-
ing the current study has as a starting point the parameters generated by the scenario
simulator we had to create to compensate for the lack of relevant publicly available datasets.
The datasets are required to train the neural network of the DQN model. The simulator
feeds the algorithm with the data associated with a specific situation, based upon which the
algorithm makes a decision. The scenario generator runs the simulation according to this
decision and, subsequently, the algorithm is assigned a reward associated with the scenario,
informing the algorithm of the correctness of its decision. Given the rewards it has received
in each situation, the network is then trained to make better decisions in the future.
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The smart scheduling of charging points for electric vehicles represents an issue that
involves random variables. Given that it is difficult to create a dataset with the optimal
solution for every potential situation, it cannot be addressed through Supervised Learning.
For this reason, we have focused on a different class of Machine Learning algorithms,
namely Reinforcement Learning.

The main goal of Reinforcement Learning algorithms is to identify the optimal so-
lution to a problem, to maximize the reward function, in the long term. The RL agents
learn by continuously interacting with the environment and observing the rewards in all
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circumstances. As we deal with an infinite number of possible situations, it is not possible
to create a table to store the best solution associated with every situation. This challenge
led us to the DQN algorithm, an RL algorithm using a function to decide the optimal
solution in any situation. The DQN algorithm uses a neural network to decide upon the
optimal solution.

1.5. Structure of the Paper

The remainder of this paper is structured as follows: after this introductory section,
the charging station selection process based on Reinforcement Learning is described, with a
presentation of the DQN algorithm and its training, of the communication protocol between
the DQN and the proposed scenario generator, as well as the envisaged workflow. Section 3
covers the Smart EVC case study, followed by an analysis of the results achieved following
the experiments based on the scenarios generated by the simulator. At the end of this
publication, we have provided the conclusions and limitations of the current study, as well
as envisaged future research directions.

2. Reinforcement Learning Based Charging Station Selection

In this section, we define the simulation environment and the RL algorithm we propose
for smart scheduling of the electrical vehicles charging stations. We used an RL approach
because of the scarcity of publicly available datasets that would enable the use of a super-
vised ML algorithm. Moreover, the RL approach is useful for handling uncertainty, which is
characteristic to real-life situations. The advantage of this method is that the neural network
employed by the DQN Reinforcement Learning algorithm uses a function to decide upon
the optimal solution in any given situation, learning based on the trial-and-error principle.

2.1. The DQN Algorithm for Charging Station Selection

The DQN algorithm was written in Python based on the article “Human-level Control
Trough Deep Reinforcement Learning”, published in 2015 [29].

2.1.1. The Neural Network

The neural network was written using the Keras module from the TensorFlow library.
To begin with, we opted for a simple neural architecture, which can be extended later,
following the experiments. Because training this type of network requires extensive time
resources, the neural network model is automatically saved and then loaded during the
next iteration.

The Neural Network architecture of the DQN model consists of the following layers:
a 7-neurons input layer, a hidden layer with 16 neurons and the output layer with one
neuron. The model is compiled using the Adam optimizer and the Huber loss. The neural
network’s weights are saved after each 100 iterations and the last checkpoint is loaded
when we restart the app.

2.1.2. The Replay Memory

For training purposes, we needed a history of the situations encountered thus far, as
well as rewards associated with each decision made by the algorithm. To keep track of all
scenarios, we created the Replay Memory class that allows us to store new scenarios.

The Replay Memory class stores two lists: the first one stores the scenarios without the
reward and the second one saves the scenarios with their associated reward, assigned after
the simulation of that scenario. When it receives the reward for a specific scenario, it is then
moved from the first list to the second one, to avoid storing the same data in two locations.
The training is performed only on scenarios from the second list, as we cannot train the
DQN model on data without results.

A study [29] suggests a maximum replay length of 1,000,000. We reached the conclu-
sion that this causes memory issues, and therefore we used a maximum length of 10,000.
When the Replay Memory exceeds the 10,000 scenarios limit, the oldest items in the list
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are removed. The role of the experience replay is to enable the DQN model to learn from
a more varied dataset. A small replay buffer size might lead to biased learning, meaning
that the model will recall only the newest experience. Although in the long run it might
still converge, the experience replay serves little to no purpose. On the other hand, a very
large replay buffer leads to an increase in the training time, as older experiences might
be reinforced.

When the DQN algorithm makes a decision, the simulator’s generated situations are
stored. The simulator then runs based on the algorithm’s previous decisions and assigns a
reward. This reward is automatically associated with the respective scenario, yielding a
dataset that can be used to train the neural network.

2.1.3. The Decision-Making Process

The DQN model has two types of decision-making process:

- Exploration—In this phase the decision-making process is mostly random, so that the
model can explore more and discover what results are yielded by different decisions.
This enables the agent to improve its knowledge about each action, which is usually
beneficial in the long-term. In the beginning, the agent uses this random decision-
making process and starts to gradually exploit its knowledge. By the time it reaches
the 10,000th iteration, this exploration process probability reaches its lowest point,
where it stays for the rest of the training time. To eliminate any misinterpretation, the
fact that the number of iterations is equal to the size of the replay buffer is merely a
coincidence and bears no relevance in the current study;

- Exploitation—In this phase the agent is exploiting its knowledge and opts for the
greedy approach to get the most reward.

2.2. The Training of DQN

The neural network of the DQN algorithm is trained after every n decisions, n repre-
senting a hyperparameter of the DQN class. The consulted paper recommends starting a
training session after every four algorithm decisions, which is the value used in the current
implementation. The training of the neural network is performed based on 32 situations
randomly selected from the Replay Memory.

Below, we have provided the steps involved in training the DQN model’s neural
network:

1. Create a list of 32 random indices from 0 to the length of the Replay Memory;
2. Get a list of samples from the Replay Memory based on the indices list created at

step 1;
3. Split the sample in state and reward lists;
4. Train the neural network for one epoch using the state and reward lists as input.

2.3. Communication Protocol between the DQN and the Scenario Generator

To enable communication with the scenario generator, a Python server has been
implemented, using the FastApi library. The Endpoint recommending the charging station
receives as body parameters information related to the current situation and returns the
station’s ID and the time slot of the recommended reservation.

The “recommend_charging_station” endpoint is the main piece that connects the
scenario generator with the DQN model. This endpoint expects as input the total distance
of the trip, the battery capacity, the current level of the battery and a list of charging stations,
each charging station with its own id, charging power and reservations. As for its output,
it returns the id of the recommended charging station and the start and end points of the
interval recommended for reservation.

When a request is made, the received data are processed so that it can be fed to the
neural network. The processed data are then used to make a prediction for the charging
station best suited to the current scenario. Before returning the data, it is processed again to
create the interval of time recommended.
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2.4. The Scenario Generator

The scenario generator simulator is written in JavaScript using the PixiJS library.
An essential component of this simulator is the vehicle’s controller, this class being the
main element that generates new scenarios and assesses the rewards assigned following
a decision.

The car controller class has multiple properties such as the car’s speed, the current
battery level, the battery capacity, and the consumption per KM. It also has a method that
decides its next destination and it controls the direction it should take at each frame.

There are two other important classes employed by the scenario simulator. The first
one defines the id, position and charging power of a charging station and the second one
keeps track of all reservations with their charging station id and interval.

For the purposes of the current study, we have created an administration interface
that enables us to create charging stations randomly positioned, as well as vehicles that
start their journey from a random place and have a random destination. To this end,
the simulator has created three interconnected cities, to allow for the simulation of the
scenarios. The simulator communicates with the Python server through the Axios library.

The simulator’s interface is presented in Figure 2, below:
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2.5. The DQN Algorithm and the Scenario Generator Workflow

We have provided below, in Figure 3, a diagram summarizing the DQN algorithm
workflow, along the scenario simulator.
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The workflow presented in Figure 3 above can be summarized as follows:

1. A new situation is generated by the simulator and a request is made to the charging
station recommendation endpoint, feeding in the information associated with the
generated scenario;

2. The FastApi server receives the request and maps the data in the format required by
the DQN algorithm. The processed data are then fed into the DQN algorithm;

3. The DQN algorithm makes a decision according to the current learning level or, with
a certain probability, makes a random decision. The current scenario is then stored in
the Replay Memory;

4. If there are enough entries in the Replay Memory, a training dataset is generated,
which is then used to train the neural network of the DQN algorithm;

5. The DQN algorithm output is then passed back to the FastApi server, where another
processing function is applied to map the data in a usable format;

6. The data are returned as a response to the request initiated by the scenario generator
and the simulation runs based on the data received;

7. The value of the reward is established based on the simulation and it is then sent to
the FastApi server, along with the scenario’s ID;

8. Through the FastApi server, the reward reaches the Replay Memory and the scenario
in question is updated.

3. Case Study

The research activities described in the present paper have been carried out within
the framework of the Smart EVC project, which aimed to create an intelligent charging
station management platform based on Blockchain and Artificial Intelligence allowing for
user—charging station interactions. Among other things, the mobile app is designed to
enable users to plan a trip, a feature that is especially useful for longer routes.

The “Plan a Trip” feature has the role of scheduling the reservation of charging stations
along a route. The user can reserve the charging station recommended by the ML model or
can choose other ones along the way.

When the user creates a new trip, the app prompts them to enter some relevant
information (Figure 4b), which is critical for the DQN model’s accuracy and is related to the
battery status and the vehicle type. This should be enough to assess the maximum battery
capacity and the power consumption.
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The history of the user’s trips (Figure 4a) provides data on previous trips that can be
used as a training set to further refine the current model or train a new model from scratch.

As illustrated in the architecture in Figure 5, the charging stations selection system
works as follows:

n The user sets up the starting and destination points for the trip in the mobile app,
along with information about the vehicle and the battery status;

n The mobile app will call a Back-End endpoint with the data the user entered in
the app;

n The Back-End will get from the database all the charging stations relevant for the
data provided by the user and call the ML recommendation endpoint with the data
received from database;

n The DQN model will predict the charging stations and the specific reservation time
best suited for the data it gets from Back-End and sends them back as a response;

n The Back-End will send the response to the mobile app with the charging stations
recommended by the DQN model;

n The mobile app will display the recommended charging stations to the user, with the
option to create a reservation for the specified charging stations (Figure 4c).
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4. Results and Discussion

Thus far, we have performed several experiments based on the scenarios generated by
the simulator.

n Environment: Simulation of three interconnected cities, total distance of 25 km;
n Generated cars: 400 cars with a random initial position and random destination

points. Once the destination point is reached, another destination point is generated.
Each car sends requests to the DQN model whenever a new destination point is
generated and if a charging station is returned, the vehicle’s route will be modified to
reach the recommended charging station and recharge before continuing towards its
original destination.
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A request to the DQN model must send the necessary data to be fed into the model.
When a request is received on the back-end, some additional data are retrieved from the
database regarding the available charging stations and their reservations.

The data fed into the DQN algorithm are described below. The DQN model runs once
for each charging station and time interval and returns a score. The charging station and
time interval with the best score is then selected to be recommended to the user.

n The total distance between the current position of the car and the destination point;
n The capacity of the battery (in kW);
n The current battery level (in kW);
n The distance between the current position of the car and the charging station (in m);
n The length of the deviation from the original route and the changing station (in m);
n The charging power of the charging station per minute (in kW);
n The remaining time until the next charging slot (in minutes). A charging slot is a

30-min interval and is computed for the next 6 h starting from the current time.

After the simulation runs, the reward is appended to each decision the DQN model
made. Examples of the inputs fed into the DQN model and the reward associated are
presented in Table 1.

Table 1. Example of DQN model inputs and the associated rewards.

Total
Distance (m)

Battery
Capacity (KW)

Current Battery
Level (KW)

Distance to the
Charging Station (m)

Length of the
Deviation (m)

Charging Power per
Minute (KWm)

Time Remaining to the
Charging Slot (min) Reward

139 40 21 374 629 1 36 0
120 40 35 0 0 0 0 1
463 40 13 379 391 1 6 0.2
620 40 14 1130 1049 1 6 0.13
574 40 17 0 0 1 3 0.9
650 40 13 600 661 1 15 0.94
4637 40 20 4637 0 1 3 0.75
4587 40 17 5157 1171 1 51 0.89
868 40 22 0 0 1 36 1
6008 40 15 1020 360 1 0 0.97

In these experiments we used a DQN with a simple neural network (a single hidden
layer of 16 neurons). For this model we used the Adam optimizer with a learning rate of
0.001 and the Huber loss for a more stable training. The first 10,000 scenarios were epsilon-
greedy, meaning that the model took more random decisions to explore the environment.
After the first 10,000 scenarios, the probability of taking a random decision is set at 0.1, so
most of the time we exploit what the model learned so far.

Every scenario is saved in the Replay Memory and, after the simulation is run for that
specific scenario, the Replay Memory is updated with a specific reward. The scenarios
saved in the Replay Memory are then used to further train the DQN model. The training is
performed after every four scenarios with minibatches of size 32. The scenarios used for
training are drawn at random from the Replay Memory.

We chose as the evaluation metric the mean running reward over the last 1000 scenarios.
Figure 6 shows a plot of the mean running reward in the exploration period. We can see
that the model’s accuracy registers a steady growth in this period.

As a testing set, we used 2000 scenarios generated by the scenario simulator, where
the DQN model only predicted the action to take, based on the previous training. In over
80% of the situations, the model predicted the correct charging station and the appropriate
time slot. The plot in Figure 7 shows the mean running reward for the testing set.
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5. Conclusions and Limitations

We have developed and trained a neural network that uses a history of the situa-
tions encountered thus far to identify the optimal charging station and time interval for
recharging. Rewards are assigned to each decision made by the algorithm. With a lack of
available datasets, a simulator that generates training data has been implemented, creating
new scenarios.

Because the training data are generated by a simulator, they rarely resemble real-world
data. If the DQN algorithm encounters situations that differ significantly from the scenarios
in the training datasets, it may make incorrect decisions. The considerable training time of
the neural network constitutes yet another constraint, as it needs to go through multiple
situations and iterations to reach an optimal solution. Furthermore, the training time
is extended because every scenario must be simulated before the algorithm is assigned
a reward.

6. Future Research Directions

Going further, we are planning to train the DQN model using real-world data. These
data can be retrieved from Google Maps through its Directions API. We can set up some
fake charging stations to use as a reference, but these charging stations will use some
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real-world restrictions, such as being located within the boundaries of a city and (arguably)
dispersed across the entire map.

With this setup, we can simulate scenarios with real-world distances, traffic, and car
parameters. The model will then be trained using these scenarios and further refined when
we start testing on real vehicles and charging stations. Training the DQN model this way
will save us from having to train it from scratch with real data. We consider this a big win
as training an algorithm from scratch implies a multitude of time-consuming scenarios.
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