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ABSTRACT: This work explores the use of MXene-embedded
porous carbon-based Cu2O nanocomposite (Cu2O/M/AC) as a
sensing material for the electrochemical sensing of glucose. The
composite was prepared using the coprecipitation method and
further analyzed for its morphological and structural character-
istics. The highly porous scaffold of activated (porous) carbon
facilitated the incorporation of MXene and copper oxide inside the
pores and also acted as a medium for charge transfer. In the Cu2O/
M/AC composite, MXene and Cu2O influence the sensing
parameters, which were confirmed using electrochemical techni-
ques such as cyclic voltammetry, electrochemical impedance
spectroscopy, and amperometric analysis. The prepared composite
shows two sets of linear ranges for glucose with a limit of detection
(LOD) of 1.96 μM. The linear range was found to be 0.004 to 13.3 mM and 15.3 to 28.4 mM, with sensitivity values of 430.3 and
240.5 μA mM−1 cm−2, respectively. These materials suggest that the prepared Cu2O/M/AC nanocomposite can be utilized as a
sensing material for non-enzymatic glucose sensors.

■ INTRODUCTION
The booming growth of biosensors in the market and its
constant requirements for improving accuracy, stability,
simplicity, miniaturization, powering aids, connectivity to
smart devices, and scalability still serve as fuels in biosensor
research. Worldwide, the growing sensor market must meet the
needs of the population with diabetic complaint; an estimate of
more than 600 million is projected by 2040 and, hence, the
sensor should meet critical requirements such as frequent
blood and/or glucose monitoring for effective diabetes
management.1 Electrochemical sensors perform well among
the other methods in terms of efficiency, cost, accuracy,
reliability, sensitivity, stability, and robustness.2−4 The different
steps of electrochemical biosensors are recognition, electro-
chemical transduction, signal processing, amplification, and
data representation.3,5 Based on the sensor recognizers, it can
be categorized into enzymatic and nonenzymatic methods. In
electrochemical glucose sensing using the enzymatic method,
glucose in blood reacts with an enzyme, which is adhered to
the recognizer, and the current across the electrode undergoes
a variation and facilitates quantification of the level of glucose
in the blood.4,6 Although enzymatic sensors provide high
selectivity and lesser response time, their single use and limited

shelf life limit their wide and common usage as glucose sensors.
On the contrary, non-enzymatic glucose sensors make use of
inorganic catalysts, which gives it longer shelf life and
reusability.4 Non-enzymatic glucose sensors using Cu2O,
ZnO, MnO2, CuO, and NiO nanomaterials had been
developed and extensively studied as electrode materials.6−9

Among them, Cu metal nanoparticles10,11 and their oxides12−15

have attracted significant attention due to their low cost,
variety in morphologies, large specific surface area, excellent
electrocatalytic activity, and easy electron transfer reactions at
lower overpotentials. With these advantages, cuprous oxide
(Cu2O) has attracted significant interest as electrode material
for electrochemical sensor fabrication, which has a band gap of
2.17 eV.16−18 Yet, Cu2O alone will not give high performance
due to less sensitivity toward glucose oxidation, a small linear
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range of detection, and poor conductivity.16 In this regard, a
supporting scaffold that can provide a wider spread and better
surface area exposure for Cu2O had to be considered. Over the
past few years, scientists have noticed increased signaling in
glucose sensing with the use of activated carbon (AC) as
support material attributed to its large surface area, porosity,
and surface chemical state. Being a cost-effective material with
a simple synthesis procedure, AC’s ability to conduct electrons
to anode makes it a suitable material for sensing applications
even for large-scale usage.19

The performance of a sensor is influenced by nanomaterials
with varied sizes, shapes, and crystal facets. In contrast to a
nanoparticle of larger size, the action of atoms at the corners
and edges of nanoparticles becomes prominent as their sizes
increase and thus exhibit intrinsically different catalytic
performance.20 In this case, materials with varied forms, such
as sheets (2D materials), typically display quite different
catalytic behavior that is essentially caused by variations in the
geometric structure and electronic state of atoms on the
surface.21 Hence, for developing sensitive sensing platforms,
2D materials like graphene and molybdenum disulfide (MoS2)
have been researched intensively. But these materials have a
few limitations, like challenges in surface functionalization and
hydrophobicity. As a newcomer into the family of 2D
materials, MXenes have already achieved much attention and
have found their way into applications in the fields of
electrochemical sensors, energy storage, energy conversion,
EMI shielding, and more;22−24 especially, MXenes like
Ti3C2Tx have shown more sensitivity in sensing bacteria,
hydrogen peroxide, proteins, glucose, etc., than other 2D
materials like graphene. While the lower performance of
graphene has much to do with its hydrophobicity and lower
electrical conductivity, MXenes are blessed with a hydrophilic
surface (due to −OH, �O, and −F surface termination
groups) and metal-like conductivity.25 Along with some more
traits such as increased surface area, direct charge transfer, and
redox capability of MXenes, few studies on glucose sensors
using MXene-based composites as a sensing element have been
reported.

In 2016, Rakhil et al. reported an amperometry-based
glucose biosensor that leverages the synergistic effect of the
biosensing actions of MXene and Au nanoparticles. The device
was tested with a linear amperometric response from 0.1 to 18
mM of glucose with a higher sensitivity of 4.2 μA mM−1 cm−2

and a LOD of 5.9 μM.20 Recently, Manoj et al. synthesized
free-standing, flexible electrodes for glucose sensing where the
catalytically active cobalt oxide nanocubes were grown on
MXene, which synergistically contributed to superior sensing
performance. The device showed a linear range of 0.05 μM to
7.44 mM with a sensitivity of 19.3 μA mM−1 cm−2.25 A
wearable non-invasive and nonenzymatic glucose sensor was
fabricated by Li et al. by hybridizing Pt nanoparticles onto
MXene nanosheets with a linear range of 0−8 mM and a LOD
of 29.25 μM.26 Another MXene-based enzymatic glucose
sensor with 3D porous Ti3C2Tx MXene/graphene/AuNPs
(MGA) was fabricated by Feng's group. They explained that
the Ti3C2Tx nanosheets possess numerous hydrophilic groups,
which make the composite hydrophilic in character. Hence, the
porous composite has a more open structure and encourages
the enzyme (glucose oxidase) to enter the pores, which may
improve immobilization and retention of enzyme in the film.27

Hence, these works show that MXenes can work as excellent

sensing materials when composited with other materials
synergistically for superior sensing of glucose.

In this work, a composite material of MXene-embedded
porous carbon-based Cu2O nanocomposite (Cu2O/M/AC) is
synthesized by the coprecipitation method and utilized as a
sensor probe for glucose sensing. The prepared material was
characterized by techniques such as FESEM, XRD, and
electrochemical investigations like chronoamperometry (CA),
which suggested that the material has a wide linear range with
high sensitivity and good selectivity toward glucose sensing.

■ EXPERIMENTAL SECTION
Chemicals and Materials. Ti3AlC2 MAX powder, ethanol,

deionized water (DIW), dimethyl sulfoxide (DMSO), glucose,
copper chloride, and HF (40 wt %) were purchased from
Sigma-Aldrich and used as received without any further
purification. The etching process of the MAX phase, synthesis
of activated carbon, and the composites of Cu2O/MXene/
activated carbon composites are shown schematically in
Scheme 1.

Synthesis of MXene. The etching of the MAX phase was
carried out by the HF etching process, and the connection
reaction is given in eq 1.28−30

+

+ + +

Ti AlC (s) 3HF(l)

Ti C T (s) AlF (s) H O(l) H(g)x

3 2

3 2 3 2 (1)

Under stirring conditions, 2 g of Ti3AlC2 MAX phase was
slowly added into 50 mL of HF solution and then stirred for 48
h at 250 rpm, and the complete reaction was carried out at

Scheme 1. Schematic of the Synthesis Process of the Cu2O/
M/AC Composite
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room temperature. After 48 h, the obtained black solution was
washed in deionized water (DI) until the pH of the
supernatant reaches to ∼6.31 The visual appearance of black
sediment assumes the formation of multilayered MXene flakes
as per eq 1. Further, multilayered MXene sheets were
delaminated using dimethyl sulfoxide (DMSO) as an
intercalating agent. In 25 mL of DMSO, 500 mg of etched
MXene was added and then stirred for 18 h at room
temperature. After this, the converted final product was washed
several times with DI water and dried at 60 °C for 24 h.32−35

Synthesis of Activated Carbon or Porous Carbon
(AC). Palmyra palm flower was chosen as a carbon source for
synthesizing activated carbon. The dried palmyra palm flowers
were ground into fine powder and carbonized by heating at
400 °C with a ramping of 5 °C min−1 in a N2 environment.
After carbonization, a 1:1 weight ratio of potassium hydroxide
and carbonized palmyra palm flower sample was mixed
together and heated at 900 °C for 1 h in a N2 atmosphere.
After this process, the pH of the obtained activated material
was reduced to ∼6 by adding HCl (30 wt %) and washing with
DI water several times. After neutralization, the formed
activated carbon was dried in an oven at 60 °C for 12 h.36,37

Synthesis of the MXene-Activated Carbon (AC)
Composite (M-AC). The M-AC composite was prepared
using an ultrasonication process. One hundred milligrams of
MXene in 50 mL of DI water (solution-1) and 50 mg of
activated carbon in 50 mL of DI water (solution-2) were
sonicated for 30 min. The evenly dispersed MXene (solution-
1) and AC (solution-2) solutions were mixed together and
further sonicated for 1 h to form the M-AC composite. The
composite solution formed was centrifuged and vacuum-dried
at room temperature.
Synthesis of the Cu2O/M/AC Composite. The prepared

M-AC composite was combined with Cu2O by the
coprecipitation method. Initially, 100 mg of M-AC composite
was dispersed in 100 mL of DI water via sonication, and then 1
g of copper acetate monohydrate (Cu(CH3COO)2·H2O) and
1.8 g of glucose (C6H12O6) was added into the solution. The
obtained solution was refluxed for 5 h at 90 °C. The formed
precipitate was allowed to cool to room temperature and
centrifuged. The settled precipitate was further washed in
ethanol and dried in an oven for 12 h at 50 °C.35,38−40

Similarly, bare Cu2O and AC-Cu2O composites were prepared
without M-AC and with AC, respectively.
Material Characterizations and Electrochemical

Measurements. X-ray diffraction of prepared composites
was carried out with Bruker equipment (D8 Advance, CuKα
radiation (λ = 1.54 Å)) to find the crystalline structure. The
surface topography and elemental composition of the
composite were confirmed by using FE-SEM (Carl Zeiss
Model). Cyclic voltammetry (CV), electrochemical impedance
spectroscopy (EIS), and chronoamperometry (CA) were
studied using a CHI-660C workstation. In a three-electrode
system, the Pt wire, Ag/AgCl, and modified glassy carbon
electrode was used as a counter electrode, reference electrode,
and working electrode, respectively. The sensing study was
carried out in a 0.1 M NaOH solution. The preparation of the
working electrode was carried out using the following steps.
The glassy carbon electrode was initially polished with 1, 0.3,
and 0.05 μm-sized alumina powder (Al2O3). After each
polishing, the electrode was sonicated in ethanol and DI
water, and then the electrode was dried under N2 gas. MXene-
activated carbon or Cu2O/M/AC (1.5 mg) ink was prepared

by sonicating the material in 250 μL of DI water and 5 μL of
Nafion. After this, the suspension (5 μL) was coated on the
polished GCE and dried for 12 h. After coating the prepared
materials, the electrochemical studies were carried out with
two electrolytes, viz., 0.1 M KCl and 5 mM K3[Fe(CN)6]3−/4−

and 0.1 M NaOH. The ferri/ferrocyanide solution was used for
studying the electrochemical properties of the coated electro-
des, and then glucose sensing performance studies were carried
out in a 0.1 M NaOH solution.

■ RESULTS AND DISCUSSION
Microscopic analysis was used to study the morphologies of
the prepared materials systematically. The FESEM image
(Figure 1A) confirms that the potassium hydroxide-treated and

nitrogen atmospheric activated biomass-derived carbon ex-
hibited more porosity at 6.758 μm, which was randomly
distributed all over the surface.41 When the activated carbon
and MXene were sonicated, accordion-like MXene sheets were
embedded in the pores of activated carbon, as given in Figure
1C, which would enhance the electron transfer rate during the
oxidation of glucose.42,43 To improve the catalytic activity of
the glucose sensor, the Cu2O nanoparticle was combined with
the M-AC composite via a coprecipitation method. The
formed ternary composite (Cu2O/M/AC) (Figure 1E,F)
shows octahedral-shaped Cu2O anchored into the porous
network, alike the morphology of bare Cu2O octahedrons
given in Figure 1B.35 Cu2O particles were seen to be
distributed on the surfaces of MXene and activated carbon.
The accordion structure of MXene in the ternary composite
was retained as observed in the binary composite. For the bare
Cu2O metal oxide, both the octahedral particles and nanowires
coexisted in this product, which might be due to the variation
in the surface energies or else the growth rate variation of each
face of Cu2O as compared to the growth of Cu2O in the
ternary composite.44 Further, the elemental composition of the

Figure 1. FESEM images of (A) activated carbon, (B) octahedral
Cu2O, (C) M-AC composite, (D) AC-Cu2O composite, and (E, F)
Cu2O/M/AC composite (where MXene and Cu2O are highlighted in
brown and blue, respectively).
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ternary composite was confirmed using EDAX spectra and
mapping analysis. The spectrum of the Cu2O/M/AC
composite is given in Figure 2A, which contains a 71.3%

weight percentage of carbon, 16% weight percentage of
oxygen, 10.1% weight percentage of Cu, and 2.7% weight
percentage of titanium. The distribution of these elements is
given in Figure 2C−G.

Thus, a homogeneous distribution of carbon elements with
other elements such as copper, titanium, and oxygen confirms
the formation of the Cu2O/M/AC composite. The brightness
of purple, green, and azure colors in EDAX mapping represents
the higher concentration of Ti, Cu, and O elements,
respectively. In the porous surface of activated carbon, two
different shapes, viz., accordion and octahedrons, were
observed. The accordion shapes were rich in Ti (Figure 2E),
and the octahedral shapes were rich in Cu (Figure 2F) and O
(Figure 2G). It suggests that the accordion shapes consist of
Ti3C2Tx, and octahedron shapes were composed of micro-
meter-sized Cu2O particles in the composites. Other than this,
the mien of green (Figure 2F) and azure blue colors (Figure
2G) on the surface confirms the distribution of smaller-sized
Cu2O particles. Such structures are beneficial by providing
more active sites for glucose oxidation.

Further, a Brunauer, Emmett, and Teller (BET) study of the
synthesized bare materials and composites was conducted to
determine their surface area. The BET analysis shows a surface
area in the order of AC (950 m2 g−1) > Cu2O/M/AC (11.3 m2

g−1) > MXene (6.533 m2 g−1). It exhibits reduced surface area
for the Cu2O/M/AC composite as compared with the palmyra
palm flower-based activated carbon. It might be due to the fact
that the Cu2O particles were growing in the micropores as well
as the presence of MXene in pores of activated carbon.45 This
finding was also seen in FESEM of the Cu2O/M/AC
composite. This deposition of metal oxides in the pores will
enhance the active sites of the glucose sensor catalyst.

To know the crystalline structure and size of Cu2O in the
composites, XRD of bare Cu2O, Cu2O/AC, and Cu2O/M/AC
was performed, and it is given in Figure 3. The peaks appearing
at 2θ values of 29.7° (110), 36.8° (111), 42.3° (200), 61.3°
(220), and 73.5° (311) belong to cubic Cu2O and well match
with JCPDS card no. 05-0667.46,47

Along with Cu2O peaks, a broad peak at 26° (002) confirms
the formation of an activated carbon-based metal oxide
composite. Even for the Cu2O/M/AC ternary composite,
crystalline peaks of Cu2O appear in the XRD images, which is
also evident in EDAX mapping. The order of cubic Cu2O
crystalline size is calculated to be Cu2O/M/AC (18 nm) <
Cu2O-AC (22.1 nm) < bare Cu2O (39 nm).

To understand the fundamental electron transfer process of
the modified electrode, a combination of CV and EIS studies
was carried out in a potassium ferri/ferrocyanide solution.
Nyquist plots of AC-Cu2O and MXene-combined AC-Cu2O
composite are given in Figure 4A. It displays a semicircle at
high frequencies, which corresponds to the charge transfer
resistance of the coated electrode.

Figure 2. (A) EDAX spectrum of the Cu2O/M/AC composite, (B)
FESEM image of the Cu2O/M/AC composite, (C) net EDAX
mapping of the Cu2O/M/AC composite, and (D−G) EDAX
elemental mapping of carbon, titanium, copper, and oxygen present
in the composite.

Figure 3. X-ray diffraction of Cu2O, AC-Cu2O, and Cu2O/M/AC
composites.

Figure 4. (A) Nyquist plots of composites, (B) CV of AC, AC-Cu2O,
M-AC, and Cu2O/M/AC in a ferri/ferrocyanide electrolyte, (C) CV
of Cu2O/M/AC at different scan rates (0.01 to 0.1 V/s), and (D) plot
of anodic and cathodic peak currents with respect to the square root
of scan rates.
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The Cu2O/M/AC composite (Rct = 420 ohm/cm2) shows
the lowest charge transfer resistance as compared to the AC-
Cu2O composite (Rct = 474 ohm/cm2). It was able to speed up
electron transfer on the testing electrode’s surface when
MXene was mixed with the AC-Cu2O composite; this shows
the strong electrostatic interaction between the changed
electrode and the electrolytes.

Further, the half-wave potential (ΔEvp) and peak current of
the composite are given in the inset of Figure 4B. The order of
ΔEvp for the composites was Cu2O/M/AC (112 mV/s) <
Cu2O/AC (148 mV/s). The lowest ΔEvp and highest peak
current of the prepared ternary composite indicate the
adherence of MXene in the pores of AC, which might enhance
the electrochemically active surface area and facilitate faster
electron transfer between the electrode interface and the redox
probe compared to Cu2O/AC composites. Therefore, the
prepared ternary composite will have a faster electron transfer
ability between the coated electrode and the electrolyte while
sensing the analyte.

Furthermore, a scan rate study was carried out, and it is
shown in Figure 4C. As the scan rate increases, the current also
increases; the measured current was plotted against the square
root of the scan rate, which displays a linear increment (Figure
4D). It represents that the electrochemical reaction of glucose
is a diffusion-controlled process for the MXene-adhered
Cu2O/AC composite electrode.

Based on the results of the ferri/ferrocyanide study, a
comparative CV study of activated carbon and their
composites in the absence and presence of glucose was carried
out to investigate the effect of MXene adherence on the porous
structure of activated carbon without and with Cu2O (Figure
5).

As shown in Figure 5A, the MXene/AC-modified electrode
exhibits higher peak current as compared to the AC-based
electrode (inset of Figure 5A) in the presence of glucose. In
the case of the Cu2O/M/AC composite, a high anodic
shoulder peak current was observed within the potential
window of 0.55 to 0.75 V during the addition of 3 mM glucose,
which was higher than that of the AC-Cu2O composite (Figure
5B and inset). The highest anodic shoulder peak was assumed
to be due to glucose oxidation as per the sensing mechanism of
the Incipient Hydrous Oxide Adatom Mediator (IHOAM)
model.48

These good responses show the existence of more active
sites on a working electrode surface for glucose molecule
adsorption and oxidation. The combined properties of the M-
AC composite, such as hydrophilicity, high conductivity, and
large surface area of MXene,25 along with the porous structure

of activated carbon, enhance the formation of Cu2O nano-
particles on the surfaces of the composite due to the overall
synergistic effect and overall property of the composite. Thus,
the formed heterostructure facilitates faster electron transfer
between the interface of electrode and electrolyte during
glucose oxidation.

Further, to understand the effect of the electrolyte, an
optimization of electrolyte concentration for achieving the high
sensitivity of the Cu2O/MXene/AC composite was carried out
by CV using different concentrations of NaOH (CNaOH) from
0.05 to 0.2 M. From Figure 6A−D, the maximum change in

the oxidation current in the presence of glucose was achieved
when CNaOH was 0.1 M as compared to other concentrations.
From the optimization results, 0.1 M NaOH was used for
studying the sensing performance of the prepared Cu2O/
MXene/AC composite. The CV response of the prepared
Cu2O/M/AC composite at different glucose concentrations
was studied, and the change in current is given in Figure 7A.

Generally, the sensor’s amperometric performance toward
the analyte depends on the operating potential. An optimized
operating potential was found by varying the applied bias to
observe the best amperometric performance. In Figure 7B,
operating potentials of 0.55, 0.60, 0.65, and 0.70 V show a
step-like current response with successive addition of 0.1 mM

Figure 5. Sensing response study of different catalysts in the absence
and presence of glucose: (A) M-AC and (B) Cu2O/M/AC (insets of
(A) AC and (B) AC-Cu2O).

Figure 6. Electrolyte concentration optimization for the Cu2O/M/
AC composite with different molarity of NaOH: (A) 0.05, (B) 0.10,
(C) 0.15, and (D) 0.20 M.

Figure 7. (A) Cyclic voltammetry study of the Cu2O/M/AC
composite at different concentrations of glucose (0−5 mM) and
(B) potential optimization for the Cu2O/M/AC composite.
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glucose. A stepwise enhancement of current with respect to
glucose addition at 0.65 V was observed in comparison to the
higher and lower applied bias. Hence, to find the limit of
detection (LOD) and sensitivity, amperometric sensing of
glucose was carried out using the same optimized potential
(0.65 V).

With the optimized electrolyte concentration and potential,
the amperometric performance of the Cu2O/M/AC composite
was carried out with the successive addition of glucose with
increasing concentrations under stirring conditions. It can be
observed (Figure 8A) that the composite material responds

immediately to the addition of glucose starting from 1 μM
(inset of Figure 8B). Before the subsequent addition of
glucose, the current reaches a steady state after three seconds,
representing the formation of gluconolactone due to the fast
electrocatalytic activity of the composite material.46 After each
addition of glucose, the system again reached a steady state. An
expanded view of current variations due to lower concen-
trations of glucose is shown in Figure 8B. This indicates that
the composite was capable of a feeble current response to 1
μM analyte also. From the chronoamperometric study, a plot
with glucose concentration against current response gives the
calibration plot (Figure 8C) for finding the sensing parameters
such as sensitivity, limit of detection, and linear range of
detection of the prepared composite. The plot shows linear
behavior at two linear regions. The linear range of 0.004 mM
to 13.3 mM (LOD of 1.96 μM) and 15.3 mM to 28.4 mM
(LOD of 7.91 mM), the corresponding regression equation
obtained by fitting is given as Ip= 29.61X −0.520 (R2 = 0.994)
and Ip= 15.91X + 205.10 (R2=0.998). The sensitivity of the
electrode was found to be 430.3 μAmM−1cm−2 and 240.5
μAmM−1cm−2 with a low limit of detection of 1.96 μM. A
comparative sensing performance of the prepared Cu2O/M/
AC composite with the other materials reported in the
literature is tabulated in Table 1. It shows that the formed
MXene embedded porous carbon based Cu2O composite
offers a wide linear range with good sensitivity and selectivity.

To understand about the selectivity of Cu2O/AC/M
composite toward the desired analyte, i.e., glucose, current
response was measured in the presence of other compounds
that can possibly be present in the blood composition, such as
ascorbic acid, sucrose, fructose, lactose, uric acid, NaCl, KCl,
urea, and dopamine. Figure 8D shows a good selectivity of the
electrode material toward glucose, where a prominent change
in the current response is observed with the addition of
glucose. The high selectivity of the material toward glucose
could be due to the ability of the composite present in the
electrode to oxidize the glucose molecule selectively, which in
turn gives out an electron and, thus an increased current.61

The analysis of glucose in the presence of human serum
sample for the prepared composite using the amperometric
method is done to understand the real time compatibility of
prepared composite. To carry out this, a blood sample was
collected from healthy persons, and then a separation of the
serum sample was carried out. Under stirring conditions, 100
μL of the separated serum was added into the electrolyte,
followed by spiking of known glucose concentration, and then
the variation of current was observed. Likewise, this procedure
was repeated for one more serum sample. The glucose
concentration was tabulated (Table 2), and from the table, it
could be observed that the found glucose concentrations were
of 99% recovery value from the spiked concentration. This
indicates that the prepared Cu2O/M/AC composite electrode
was also suitable for real-time applications, as well.

Figure 8. Sensing performance study of the Cu2O/M/AC composite.
(A) Amperometric response, (B) expanded view of lower
concentrations, (C) linear fitting curve of glucose concentration vs
current, and (D) selectivity study using 1 mM glucose concentration
along with 0.1 mM of other analytes (inset of panel B is the
amperometric response in 1 μM glucose concentration).

Table 1. Comparative Sensing Performance of the Cu2O/
M/AC Composite with the Other Sensing Elements
Reported in the Literature*

electrode
material

linear range
(mM)

detection
limit (μM)

sensitivity (μA
cm−2 mM−1) reference

Cu/Cu2 O
nanoclusters

0.01−0.690 5 63.8 49
1.190−3.69 22.6

Co3O4/CuO
nanorod array

0.001−0.5 0.38 5405 50

Cu2O/Cu/CC 0.001−1.5 0.06 6952 51
Cu2O MSs/S-
MWCNT

0.00495−7 1.46 581.89 52

CuCNA/CF 0.2−1900 0.04 3826 53
GOx-Pt-PAA-
SPCE

0.02−2.3 7.6 42.7 54

GOx-AC-
NiFe2O4/CPE

2−10 0.001 32.01 55

AuNi@AC 0−1.7 0.41 1955 56
GrGO/AC 0.002−10 2 61.06 57
CuO/NiO/ACF 0.00025−5 0.146 247 58
Ti2C-TiO2 0.0001−0.2 0.12 75.32 59
Ti3C2-aUV 0.1−10 12.1 93.75 60
Cu2O/M/AC 0.004−13.3 1.96 430.3 This

work
15.3−28.4 240.5

*AC-activated carbon, SPCE-screen printed carbon electrode, ACF-
Activated carbon nanofiber, CPE-Carbon Paste electrode.

Table 2. A comparison of the spiked and found glucose
concentrations for the prepared composite electrode

Sample
Spiked glucose

concentration (mM)
Obtained glucose

concentration (mM)
Recovery

(%)

Serum 1 3.1 mM 3.07 mM 99.1
Serum-2 2 mM 1.97 mM 99
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■ CONCLUSIONS
MXene embedded porous carbon based Cu2O nanocomposite
(Cu2O/M/AC) shows a wide linear range for nonenzymatic
glucose sensor with good selectivity and sensitivity. The
material formation and morphology of the prepared composite
show the presence of embedded MXene and Cu2O in the
pores of the activated carbon, and the metal oxides were seen
distributed on the surface of the composites. The composite
electrode exhibits a sensitivity of 430.3 μAmM−1cm−2 (0.004
mM to 13.3 mM) and 240.5 μAmM−1cm−2 (15.3 mM to 28.4
mM), respectively with a good selectivity and a low limit of
detection viz. 1.96 μM. The prepared Cu2O/M/AC composite
was also found suitable for real-time analysis of serum samples
with a recovery of 99%. With these features, the formed
composite can serve well as a sensing element for non-
enzymatic glucose sensor.
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