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ABSTRACT Liver cirrhosis (LC) has been associated with gut microbes. However,
the strain diversity of species and its association with LC have received little atten-
tion. Here, we constructed a computational framework to study the strain heteroge-
neity in the gut microbiome of patients with LC. Only Faecalibacterium prausnitzii
shows different single-nucleotide polymorphism (SNP) patterns between the LC and
healthy control (HC) groups. Strain diversity analysis discovered that although most
F. prausnitzii genomes are more deficient in the LC group than in the HC group at
the strain level, a subgroup of 19 F. prausnitzii strains showed no sensitivity to LC,
which is inconsistent with the species-level result. The functional differences
between this subgroup and other strains may involve short-chain fatty acid produc-
tion and chlorine-related pathways. These findings demonstrate functional differen-
ces among F. prausnitzii subgroups, which extend current knowledge about strain
heterogeneity and relationships between F. prausnitzii and LC at the strain level.

IMPORTANCE Most metagenomic studies focus on microbes at the species level, thus
ignoring the different effects of different strains of the same species on the host. In
this study, we explored the different microbes at the strain level in the intestines of
patients with liver cirrhosis and of healthy people. Previous studies have shown that
the species Faecalibacterium prausnitzii has a lower abundance in patients with liver
cirrhosis than in healthy people. However, our results found multiple F. prausnitzii
strains that do not decrease in abundance in patients with liver cirrhosis. It is more
sensitive to select the appropriate strains as indicators to distinguish between the
disease and the control samples than to use the entire species as an indicator. We
clustered multiple F. prausnitzii strains and discuss the functional differences of dif-
ferent clusters. Our findings suggest that more attention should be paid to metage-
nomic studies at the strain level.

KEYWORDS liver cirrhosis, Faecalibacterium prausnitzii, within-species variation,
species heterogeneity, strain diversity, strain-level analysis, single-nucleotide
polymorphisms, gut microbiome, human metagenomics

he gut microbiome has been associated with numerous diseases, including inflamma-

tory bowel disease (IBD) (1), asthma (2), obesity (3), diabetes mellitus (4, 5), cardiovascular
disease (6), Parkinson’s disease (7), and colorectal cancer (8). The development of DNA
sequencing and bioinformatics tools has facilitated systematic investigation of the human
gut microbiota and such disease associations. Many metagenomic studies have been per-
formed to explore microbial communities at shallow levels, such as at the genus level to
obtain 16S rRNA sequencing data and at the species level to obtain shotgun sequencing
data (1-6, 8, 9). However, strain-level analysis is essential for the study of associations
between microbes and diseases, as strains are the basic functional units that communicate
with hosts.
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To examine strain diversity, genomic variations, which include single-nucleotide
polymorphisms (SNPs), short insertions/deletions, and structural variation among
metagenomes, can be investigated first to help researchers focus on heterogeneous
species. Schloissnig et al. (10) described the genomic variation landscape of the
healthy human gut microbiome and found that subjects exhibited individual and tem-
poral stability of SNP variation patterns, despite considerable changes in gut micro-
biota composition. In addition, strain-level variation in the microbiomes of diabetic
wounds has been found to be associated with clinical outcomes (11).

Liver cirrhosis (LC) is the end stage of liver disease, occurring after decades of inflamma-
tion and fibrosis, and is among the most common causes of morbidity and mortality world-
wide (12). Nonalcoholic fatty liver disease/nonalcoholic steatohepatitis has become the most
common etiology of chronic liver disease, especially in those with diabetes (13). Gut-derived
bacteria, along with their metabolites, nutrients, and other signals, are delivered to the liver
via portal circulation. The liver plays a crucial role in defense against gut-derived materials
(14). Enteric dysbiosis is involved in the progression of LC, and alteration of the gut micro-
biota has been shown to be an important factor in complications of end-stage liver cirrhosis,
such as spontaneous bacterial peritonitis (15) and hepatic encephalopathy (16).

Among human gut microbes, Faecalibacterium prausnitzii was reported to be insuffi-
ciently abundant in the guts of patients with LC compared with those of healthy controls
(HCs). F. prausnitzii, which is among the most common species in the adult human gastroin-
testinal tract, is also related to conditions such as Crohn'’s disease (CD) (17), type 2 diabetes
(18), and irritable bowel syndrome (IBD) (19). Recently, F. prausnitzii has also been related to
coronavirus disease 2019 (COVID-19) (20). However, most studies of F. prausnitzii have been
performed at the species level. Although the genomic heterogeneity of F. prausnitzii has
been noted previously (18, 19, 21-25), large-scale, comprehensive research of F. prausnitzii
strain diversity in the context of diseases, especially that of LC, is still lacking. In this study,
we conducted a strain-level analysis of the gut metagenomes in LC and HC groups.

RESULTS

A framework of SNP analysis of disease-related microbes and strain diversity
estimate. In order to discover the strain diversity of microbes in human gut and the possi-
ble association between strain heterogeneity and diseases, we constructed a two-step
analysis framework. First, we tried to find microbes that may have differences in strain di-
versity between the disease group and the control group. This step was completed using
the metagenomic SNP analysis pipeline (see Fig. S1 in the supplemental material). Second,
for the microbes with different SNP patterns between the disease group and the normal
group, we then collected all sequenced genomes and estimated the probabilities that dif-
ferent strains may exist in the samples through an unbiased sequence reassignment algo-
rithm (Fig. 1A). In brief, the first step was to screen out species with strain heterogeneity in
the disease group and the healthy group; and the second step was to explore the details
of the target species’ strain heterogeneity and relationship with the disease.

We investigated the SNP patterns of microbes in the LC and HC samples. First, we
selected 13 representative strains from different species with >40% genome coverage and
>10x sequencing depths in >20 samples per group (see Table S1 in the supplemental ma-
terial). The selected thresholds were determined according to an influential study on micro-
bial SNPs published by Schloissnig et al. in 2012 (10). Based on the genomes of these 13
strains, each strain being the reference genome for its corresponding species, we detected a
total of 3.94 million high-quality SNPs. The SNP density distribution of F. prausnitzii (reference
strain KLE1255, GenBank accession no. GCA_000166035.1) alone differed significantly
between groups (P=4.7 x 1077, g=6.5 x 10~°) (Fig. 1B). The SNP density differentiation of
F. prausnitzii suggested that its strain compositions may differ between HC and LC groups.

Then we constructed a read reassignment-based pipeline and examined the strain di-
versity of gut microbes. Since F. prausnitzii was indicated as a species with significantly
different strain compositions in the LC and HC groups, we focused on F. prausnitzii as
the target in our following analysis. In order to evaluate the reliability of the sequence
reassignment algorithm, we generated simulated metagenomic sequencing data to test
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FIG 1 Framework of strain diversity analysis of disease-related microbes. (A) Interpretive pipeline of our strain diversity analysis tool. Red dots
represent mismatches against the reference, short straight lines represent reads, black reads were assigned to the genomes below them, gray reads
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the performance of our pipeline. In total, 136 assembled F. prausnitzii genomes were col-
lected from National Center for Biotechnology Information (NCBI) (see Table S2A in the
supplemental material) (26). We sought to simulate the scenario that a random number
(n =1 to 10) of F. prausnitzii strains were present in one sample, together with the pres-
ence of 1 to 100 other species that were also detected in real gut metagenomic samples.
Since we knew the real community composition of the synthetic samples, we compared
the estimated strain profiles from our pipeline to the actual profiles; the estimated values
(coverages, depths, and abundances) and the actual values showed a correlation of
>0.92, indicating that our pipeline performed reliably (Fig. 1C). The scatterplot of correla-
tion coefficients shows that the estimated coverage values were generally slightly larger
than the actual values (Fig. 1C, top), as coexisting similar genomes could contribute to
each other’s read coverage. However, we believe that this minor bias should not be con-
sidered erroneous, but as inherent information provided by the data, since highly similar
coexisting strains increase the probability of each other’s recognition.

It should be noted that characteristics of a strain estimated by our pipeline, such as
the estimated coverages, depths, and abundances are more like indicators of the prob-
abilities of strains being present in the sample. To take the genome coverage as an
example, the higher the estimated coverage, the greater the probability that the strain
exists in the sample. In actual situations, when we do not know the strain composition
of a sample in advance, we can make predictions about the probabilities that known
strains are present in the sample; we can also infer the similarities between the actual
strains in the sample and the known strains in the database according to the corre-
sponding estimated values like coverages, depths, and abundances.

Different strain profiles of F. prausnitzii in the LC and HC group. We used our
pipeline to infer the existence probabilities of the 136 F. prausnitzii strains in the LC and
HC groups. Figure 2A shows the distributions of estimated coverages, depths, and abun-
dances of F. prausnitzii strains in the cohort. Estimated coverage values in the samples
showed obvious bimodal distribution compared to those of depths and abundances,
indicating the possible heterogeneity reflected by genome coverages. Thus, we selected
estimated coverages of strains as the targets of subsequent analysis. Figure 2B shows
the comparison of average coverages of these strains between the two groups, which
also indicates an obvious heterogeneity in the existence of the strains in the two groups.
We grouped the genomes into clusters according to the coverages, which is highly con-
sistent with the clustering result based on core gene sequences (adjusted Rand index =
0.84; see Fig. S3 in the supplemental material). The genomes were grouped clearly into
at least five clusters (Fig. 2C and Table S2B). The cluster 4 (C4) strains showed similar cov-
erages in HC samples as in LC samples, whereas the other four clusters of strains showed
far lower coverages in the LC group than in the HC group, which is consistent with the
results at species level reported previously by other researchers (Fig. 2D, left).

The diversity of F. prausnitzii genomes was also noticed in earlier studies (19, 22,
24). However, only 17 to 34 sequenced F. prausnitzii genomes were involved in those
studies, and the strains were grouped into two clusters, phylogroup | and phylogroup
Il. We used the most comprehensive F. prausnitzii genomes (136 genomes) in our
study, which permitted an overall perspective of strain diversity of F. prausnitzii. The
strains in phylogroup | were all grouped into cluster 1 in our study, whereas strains in
phylogroup Il were more finely grouped into different clusters in our study (see
Table S3 in the supplemental material). Our clustering results may reveal the most
comprehensive diversity of F. prausnitzii strains related to LC known so far.

We also analyzed metagenomic data from a new cohort that included patients with
Crohn'’s disease (CD) and healthy individuals (27). We found that, unlike in LC, the C4 strains

FIG 1 Legend (Continued)
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were assigned to other genomes, and dashed lines connect the same reads. (B) Differences in single-nucleotide polymorphism (SNP) density between
the healthy control and liver cirrhosis groups for 13 prevalent strains. (C) Performance of our strain diversity analysis tool with synthetic data. (Top)
Correlations between actual coverages and estimated coverages. (Bottom left) Correlations between actual abundances and estimated abundances.

(Bottom right) Correlations between actual depths and estimated depths.
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FIG 2 Heterogeneity of F. prausnitzii strains in the disease and healthy groups. (A) The distributions of estimated coverages, depths, and relative
abundances of the 136 F. prausnitzii strains in real samples. (B) Estimated read coverage for the 136 F. prausnitzii strains. (C) Clustering of F. prausnitzii
strains according to their prevalence in samples. (D) Estimated coverage distributions of strain clusters in the healthy control and liver cirrhosis groups (left)
and in the healthy control and Crohn’s disease groups (right).

were significantly less abundant in CD samples relative to those from healthy individuals
(P=22 x 1074 Mann-Whitney test; Fig. 2D, right). This result suggests that the C4 strains
may perform different functions in intestinal microenvironments in LC patients and in CD
patients.

Functional differences of F. prausnitzii among different clusters. We annotated
the protein sequences of the 136 F. prausnitzii strains to UniRef90 and Gene Ontology
(GO) terms using HMP Unified Metabolic Analysis Network (HUMANN) data files. Since
the C4 cluster was the most special subgroup in clustering results, we obtained GO
terms that were only annotated in genomes of the C4 cluster and not in genomes of
the other clusters (Fisher's exact test, P=1.32 x 10-23). GO terms annotated for strains
in other clusters but not for C4 strains were also obtained (Fig. 3). Khan and colleagues
(28) reported that F. prausnitzii strain A2-165 and HTF-F, which are in different clusters
according to our results, showed different short-chain fatty acid (SCFA) production effi-
ciencies under oxygenated growth conditions and anoxic conditions in the presence
of fumarate, in which the transformation of NADH to NAD* and extracellular electron
transfer played important roles. In our results, several activities related to NAD* and
the transmembrane transporter were identified that contributed to the functional dif-
ferences between the C4 cluster and other clusters of F. prausnitzii strains, implying
that the differences in functions between the C4 cluster and the other clusters may
involve SCFA production processes.
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We also examined Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway differ-
ences among F. prausnitzii genomes in different clusters. We found that the pathways of
propanoate metabolism, arginine biosynthesis, and p-glutamine and p-glutamate metabo-
lism were not annotated in the cluster 2 (C2) genomes (Fisher's exact test, P=7.76 x
10733). The chloroalkane and chloroalkene degradation (mainly 2-haloacid dehalogenase),
chlorocyclohexane and chlorobenzene degradation (also 2-haloacid dehalogenase), and
RNA transport (mainly RNase Z) pathways were annotated only in the C4 genomes.

We then compared copies of the conserved F. prausnitzii genes identified among
strains in different clusters. Genes with the fewest differences between average inter-
cluster and intracluster distances, which are more conserved among clusters in
sequence and functional perspectives, mainly encode 50S ribosomal protein, 30S ribo-
somal protein, and translation initiation factor IF-1 (see Table S4 in the supplemental
material). Genes with the most differences, which are less conserved or more specific
to individual clusters, included those encoding several proteins annotated as integral
membrane components (GO no. 0016021), such as FeoB-associated Cys-rich mem-
brane protein. A TrkA-family potassium uptake protein with diverse sequences among
clusters was also detected. This protein can bind to NAD* and NADH, according to
UniProtKB (29), and is involved in potassium ion transmembrane transporter activity
(GO no. 0015079); this finding was consistent with our GO annotation results. We also
observed that several conserved genes related to membrane proteins were more con-
served (nearly identical) in the C4 strains but more diverse in strains in other clusters.
These results suggest the existence of physiological differences among the F. prausnit-
Zii clusters. The associations of distinct strains with different pathways may also shed
light on studies of the association between F. prausnitzii and LC.

Ability of F. prausnitzii strains to discriminate between LC and HC samples. To
determine whether the HC and the LC samples could be discriminated based on strain
features estimated by our pipeline, we trained machine learning models with different
combinations of features (coverages, depths, and abundances) as the input and sample
status (LC or HC) as the output. The results show that whether using support vector
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species from MetaPhlAn2 results.

machine (SVM) or random forest (RF) models, taking coverage as input alone can pro-
duce the best prediction performances (Fig. 4A). The coverage-based SVM models could
achieve a median area under the receiver operating characteristic curve (AUC) of 0.77,
higher than those obtained with other data-model combinations. Random forest
models revealed that the most important feature for the prediction performances was
the estimated coverage of GenBank accession number GCA_001406615.2 (C5 strain
2789STDY5834930). We then used only the estimated coverage of GCA_001406615.2,
rather than coverages of all 136 strains, to model the disease states and achieved a com-
parable performance (SVM AUC=0.76, Fig. 4B; RF AUC =0.72; Fig. S4A). This result shows
the impressive ability to use a single strain of F. prausnitzii as the reference to distinguish
LC and HC samples. Replacement of the GCA_001406615.2 genome with that of another
strain, such as GenBank accession number GCA_902388275.1, reduced the discrimina-
tory performance (SYM AUC=0.52, Fig. 4C; RF AUC=0.52, Fig. S4B), demonstrating the
heterogeneity of F. prausnitzii strains. It is of note that we checked the effects of con-
founder factors (age, sex, and body mass index [BMI]) and confirmed that the confound-
ers have little effect on estimated coverages of F. prausnitzii strains in real samples (see
Fig. S5 and Text S1, “Confounder analysis,” in the supplemental material).

To illustrate the necessity of strain-level resolution, we compared the F. prausnitzii
species abundances given by MetaPhlAn2 with the strain coverages given by our

July/August 2021 Volume 6 Issue4 e00775-21

msystems.asm.org 7


https://www.ncbi.nlm.nih.gov/assembly/GCA_001406615.2
https://www.ncbi.nlm.nih.gov/assembly/GCA_001406615.2
https://www.ncbi.nlm.nih.gov/assembly/GCA_001406615.2
https://www.ncbi.nlm.nih.gov/assembly/GCA_902388275.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001406615.2
https://www.ncbi.nlm.nih.gov/assembly/GCA_902388275.1
https://msystems.asm.org

Chenetal.

process. Permutational multivariate analysis of variance (PERMANOVA) showed that
the strain-level results can better characterize the beta-diversity of the LC group and
the HC group (Text S1, “PERMANOVA analysis”). When using the results of MetaPhlAn2
for disease state modeling, the performance of the model is much lower than that of
the strain-level models (SVYM AUC = 0.59 [Fig. 4D]; RF AUC = 0.54 [Fig. S4C]; see also
Text S1, “Comparisons between species-level and strain-level data”). These results indicate
the species-level data’s insensitivity to the prediction of disease state.

It should be noted that after our analysis was completed, we found that GCA_001406615.2
was marked as “Anomalous assembly” and was excluded from the RefSeq database, but still
remained in the GenBank database. Therefore we re-performed the analysis after excluding
the genome of this strain. We used the estimated coverages of the remaining 135 strain
genomes to model the disease states, which can achieve comparable results (mean SVM
AUC = 0.73, mean RF AUC = 0.72); similarly, we found a strain with the best modeling per-
formance (GCA_002549905.1, estimated depths as inputs, SYM AUC = 0.76, RF AUC = 0.74),
which is included in both the GenBank and RefSeq databases. These results are consistent
with the previous conclusions, including the confounder analysis part. However, since
GCA_001406615.2 belongs to the cluster 5 in our analysis, researchers may need to pay
attention to the potential abnormalities of the genomes of other strains in the cluster 5;
on the other hand, considering the genomes of the strains from one cluster are highly
similar, we also need to discuss whether the so-called assembly abnormalities of these
strains come from contamination or actually from genome integrations like the horizontal
gene transfer of the microbial community.

DISCUSSION

This work provides a computational framework of strain-level analysis in gut meta-
genomes and reports a systematic examination of F. prausnitzii strain diversity in rela-
tion to LC. Our results suggest that the strains in the same species may exert different
functions, and certain strains, rather than the whole species, likely provide useful infor-
mation for LC diagnosis and treatment. Strain heterogeneity may have been over-
looked in previous metagenomic studies.

SCFAs are considered to be important for interactions between beneficial microor-
ganisms and hosts, and F. prausnitzii is considered to be among the main bacterial
SCFA producers. Based on our annotations of the functional pathways of different
strain genomes, we conclude that SCFA metabolism may differ among strain clusters.
In addition, the microbes in the C4 cluster were related specifically to the metabolic
pathways of chlorine-related compounds, which may be associated with the lack of dif-
ference in their abundance between the LC and HC groups. However, in contrast to
the LC/HC results, the C4 strains showed reduced abundance in patients with CD rela-
tive to those in HCs. These findings indicate that the C4 strains might perform different
functions in different diseases. Furthermore, the functional differences among the
other clusters also demonstrate the potentially diverse roles that different strains play
in human health.

More experiments need to be conducted so as to confirm the hypothesis of the
physiological differences among subgroups of F. prausnitzii strains. What needs to be
pointed out is that our estimated coverages of strains can only indicate the present
probabilities of corresponding strains in samples or the similarities between actual
strains in samples and known strains or clusters in databases. Nonetheless, our results
suggest that strain heterogeneity should receive more attention. Recently developed
single-cell microbial sequencing technologies seems to be more promising for metage-
nomic analysis (30, 31), especially at the strain level. With the rapid development of
sequencing technologies and experimental approaches, an increasing number of
metagenomic studies will involve strain-level analysis. Such analysis of human metage-
nomes can help researchers develop more reliable disease diagnosis and treatment
methods (e.g., probiotic use and safe microbiota transplantation) from a microbiologi-
cal perspective.
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MATERIALS AND METHODS

Data sources. Raw sequencing data sets of DNA extracted from fecal samples from 123 Chinese
patients with LC and 114 Chinese HCs were downloaded from the National Center for Biotechnology
Information (NCBI) database (accession no. ERP005860) (32). The overall data set comprised about 566
Gb, with an average of 2.4 Gb per sample. We also downloaded partial data sets comprising 25 samples
from patients with CD and 17 samples from HCs from the NCBI Sequence Read Archive (accession no.
SRP129027) (27). These data covered 162 Gb, with an average of 3.9 Gb per sample.

Microbial SNP calling. We called microbial SNPs using a computational framework employed previ-
ously (33). Briefly, we first performed quality control on raw data and then used MetaPhlAn2 (34) to pro-
file the microbial compositions in samples. Species detected in more than three samples were reserved
as the final reference set, and one reference strain was selected as a reference for each species. Then, we
filtered the strains by mapping reads to the reference with the Burrows-Wheeler Aligner (35) and
retained only strain genomes with sufficient reads (>40%) and sequencing depths (>10x) covered in at
least 20 samples in each of the respective HC and LC groups. SAMTools (36) was used to call SNPs with
the parameters “-vmO z -V indels,” and the results were filtered using VCFTools with the parameters
“+/d=10/a=4/Q=15/q=10/." To reduce the number of false-positive results, VarScan2 (37) was also
used to call SNPs with the parameters “--min-coverage 10 --min-reads2 4 --min-var-freq 0.2 --p-value
0.05.” SNPs detected by both SAMTools and VarScan2 were selected for the next step of the analysis.

Downsampling. We compared the distributions of read counts in samples between the HC and LC
groups. The two groups had similar read count distributions, except that several more deeply sequenced
samples from the LC group had read counts exceeding 40 million. We randomly downsampled these
outlier samples to the mean populational read count to make the two sets of samples consistent in size
distribution (Mann-Whitney test, P=0.002 before downsampling; P=0.08 after downsampling; see
Fig. S2 in the supplemental material).

Strain diversity inference. To rigorously infer the strain diversity of F. prausnitzii in metagenomic
samples, we first removed reads from other bacterial genomes using the reference genome set that we
built using MetaPhlAn2. We mapped the total reads against this background reference set using Bowtie
2 (51); reads that mapped to any background genome were discarded. We downloaded a total of 136
assembled F. prausnitzii genomes from the NCBI genome database (26). Two mapping steps were imple-
mented to assign reads more reliably to their genomes of origin. First, the reads were mapped to the ref-
erence collection of 136 F. prausnitzii genomes in competitive mode to identify those that mapped best
to single genomes. To avoid noise and bias induced by genome mixture and the alignment tools, we
then aligned the reads to each F. prausnitzii genome separately in exclusive mode. All reads that
mapped to a given genome (G) were considered to be candidate reads assigned to G. Reads that
mapped best only to G (type 1 [T1]) were retained, those that mapped best to other genomes (type 2
[T2]) were discarded, and reads that mapped simultaneously to G and to other genomes (type 3 [T3])
were assigned conditionally to those multiple genomes. A T3 read aligned to G with mismatches was
not assigned to G if it overlapped with T1 reads with fewer mismatches; in all other cases, T3 reads were
assigned to G. Alignments with =5 mismatches per 100 bp were not considered to be valid.

Simulation of the in silico community. To test the performance of the strain diversity pipeline, we
simulated metagenomic samples in silico. We used the modified reference set (without F. prausnitzii) as
a background genome set and mixed it with subsets of the 136 F. prausnitzii genomes to generate the
simulated samples. For each sample, 1 to 10 F. prausnitzii genomes and 1 to 100 background genomes
were selected randomly. The read fraction of each genome was also determined randomly, with all read
fractions summing to 1. The read length was set to 100 bp. For each read, a mutation mechanism was
also introduced, and a maximum of five substitutions was allowed.

Support vector machine and random forest model training. The Python package scikit-learn (38)
was used to train both support vector machine (SVM) and random forest (RF) models. For both models,
a randomized search of hyperparameter and 5-fold cross-validation strategy was utilized to achieve the
best performances. For SYM models, parameter C, gamma, kernel, and class weight were searched; for
RF models, estimator numbers, maximum depth, maximum features, maximum leaf nodes, minimum
sample split, and bootstrap or not were searched.

Conserved gene identification and phylogenetic tree building. We collected coding DNA sequen-
ces (CDSs) from the RefSeq GFF files (39) for the F. prausnitzii strains. The M21/2 strain CDS was taken as
a reference for the alignment of CDSs from all other strains using parasail-python (40). Pairwise align-
ment scores for two sequences were normalized using the self-aligned scores of each sequence. When a
similar copy of one reference CDS (score > 0.5) was detected in all available strains, this CDS was desig-
nated conserved. Clustal Omega was used for multiple-sequence alignment (41) and RAXML (42) version
8 was used for phylogenetic tree building. Clustering using TreeCluster (43) was performed based on
the phylogenetic tree.

Functional analysis. We used the data files from HMP Unified Metabolic Analysis Network (HUMANN)
version 3.0 (44) to annotate the functions of F. prausnitzii genomes. Diamond (45) was used to align the F.
prausnitzii protein sequences to the HUMANnN-derived UniRef90 database (46). The relationships among
UniRef90, Gene Ontology (GO) (47, 48), and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology
(KO) (49) terms were also determined using the HUMANN data files. Thus, each protein sequence was
annotated with UniRef90, GO, and KO terms. Then, we used KEGG Mapper (52) to reconstruct genome
pathways.

Statistical analysis and other software utilizations. The Mann-Whitney test was used to identify
differences in strain relative abundance and SNP densities between the LC and HC groups. The R pack-
age gvalue (version 2.10.0) (50) was used to control the false-discovery rate. Fisher’s exact test was used

July/August 2021 Volume 6 Issue4 e00775-21

mSystems’

msystems.asm.org 9


https://www.ncbi.nlm.nih.gov/sra/ERP005860
https://www.ncbi.nlm.nih.gov/sra/SRP129027
https://msystems.asm.org

Chenetal.

mSystems’

to measure the significance of the functional difference among different clusters. PERMANOVA was per-
formed using the skibio (http://scikit-bio.org) package. Adjusted Rand index was calculated using Scikit-
learn (38). The Python package statsmodel (53) was used to perform the confounder analysis.

Source code availability. The source code of our pipeline and related Jupyter notebooks have been
posted on GitHub (https://github.com/labomics/; “metagenomic_SNP_calling” and “strain_profiling”
projects).
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