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Abstract

The evolution of antibiotic resistance in microbes poses one of the greatest challenges to the management of human
health. Because addressing the problem experimentally has been difficult, research on strategies to slow the evolution of
resistance through the rational use of antibiotics has resorted to mathematical and computational models. However,
despite many advances, several questions remain unsettled. Here we present a population model for rational antibiotic
usage by adding three key features that have been overlooked: 1) the maximization of the frequency of uninfected patients
in the human population rather than the minimization of antibiotic resistance in the bacterial population, 2) the use of
cocktails containing antibiotic pairs, and 3) the imposition of tradeoff constraints on bacterial resistance to multiple drugs.
Because of tradeoffs, bacterial resistance does not evolve directionally and the system reaches an equilibrium state. When
considering the equilibrium frequency of uninfected patients, both cycling and mixing improve upon single-drug treatment
strategies. Mixing outperforms optimal cycling regimens. Cocktails further improve upon aforementioned strategies.
Moreover, conditions that increase the population frequency of uninfected patients also increase the recovery rate of
infected individual patients. Thus, a rational strategy does not necessarily result in a tragedy of the commons because
benefits to the individual patient and general public are not in conflict. Our identification of cocktails as the best strategy
when tradeoffs between multiple-resistance are operating could also be extended to other host-pathogen systems.
Cocktails or other multiple-drug treatments are additionally attractive because they allow re-using antibiotics whose utility
has been negated by the evolution of single resistance.
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Introduction

Antibiotics and other antimicrobials have played a central role

in the success of modern medicine. Through the use of such drugs

we have witnessed dramatic control of bacterial and microbial

pathogens. However, unlike many other medical practices, the

deployment of antibiotics creates problems for its own sustain-

ability. Because the target is a quickly reproducing organism, the

use of antibiotics initiates a process of natural selection that

counters the efficacy of the drugs on short timescales. The

evolution of resistance in microbes threatens to undermine the

many health benefits that we have come to take for granted [1–4].

Many strategies have been proposed to control the evolution of

drug resistance through the rational use of antibiotics. Some

simple ones are easily justified. Pathogens should be screened

whenever possible to ensure that antibiotics are targeted against

sensitive bacteria [2]. Research should be supported to discover

new antibiotics more rapidly than pathogens are able to evolve

resistance [5]. However, given the slow pace of drug development,

there has also been the desire to consider more complex strategies

that stop, or minimally, slow the evolution of resistance [6]. For

example, is the coordinated use of two drugs better than random

administration? Antibiotics have been cycled and argued to be an

improvement over the status quo [7]. Switching from cephalo-

sporin to carbapenem over a period of one year increased the

frequency of resistance to carbapenem in a hospital while the level

of cephalosporin resistance was reduced [8]. Long-term antibiotic

switching deployments are necessary to determine whether

resistance reductions are sustainable. Multi-drug cocktails have

been deployed with success against cancer, HIV, tuberculosis and

agricultural pathogens [9–11]. However, the mechanisms respon-

sible for these successes and their long-term consequences are not

well understood. Are multi-drug cocktails effective because they

are analogous to a two-front offensive on a pathogen? Can patients

be effectively treated with low-dose multi-drug cocktails? Are

multi-drug cocktails capable of a sustained reduction in the

frequency or level of antibiotic resistance?

Confounding these issues is the perception that the use of

antibiotics necessarily introduces a tragedy of the commons

dilemma [12,13]. While an individual is helped by antibiotic

treatment, the future public is hurt because the treatment naturally

selects for the evolution of more prevalent and increased resistance

in the environment. Limiting antibiotic use can control the

evolution of resistance, but how such a policy translates to
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improved health outcomes remains unclear. The ultimate goal of

sustainable management of limiting antibiotic resources should be

the treatment and healthful recovery of the patient, not necessarily

a reduction in prevalence of antibiotic resistance. Otherwise, the

optimal strategy for antibiotic use is trivial: a global ban.

Increased microbial sensitivity to chemotherapeutic agents

when used in combination, rather than in isolation, was first

documented by a seminal study that sought to classify antibiotics

by measuring cross-resistance [14]. Further inquiry showed that

the minimum drug concentration required to inhibit microbial

growth can be reduced in multiple clinically-isolated drug-resistant

pathogens with the addition of sodium clavulanate [15]. Indeed, in

some cases minimum inhibitory concentrations (MIC) of clinically

relevant pathogens decreased by four orders of magnitude [16].

These early studies show that the evolution of antibiotic resistance

can be managed, but not reversed. However, later research

focused illustrates that the combination of tetracycline and fusaric

acid can selectively enrich tetracycline-sensitive mutants from

clonal populations of tetracycline-resistant bacteria [17]. Mecha-

nistically, this occurs because the efflux pump responsible for

tetracycline resistance (TetA) is hindered in the presence of fusaric

acid [18]. These studies serve as a proof-of-concept that resistance

characters harbored by human pathogens can be controlled in the

lab. This counterbalancing force to the evolution of antibiotic

resistance is also echoed in nature; common soil microbes are

capable of producing fusaric acid in quantities experimentally

shown to selectively enrich sensitive variants in their natural

environment [15,16,19]. Indeed, a recent article reviews a

plethora of naturally occurring mechanisms that have evolved to

counter the evolution of antibiotic resistance [20].

Resolving these questions and issues has been difficult because

evolution in a clinical setting is not readily amenable to controlled

experimental studies. As a result, research in the field has relied

heavily on mathematical and computational models to examine

the efficacy of antibiotic strategies [21–27]. A surprising outcome

is that cycling is less effective at minimizing resistance than mixing

(two antibiotics used simultaneously) [21,22]. The outcome is

explained by the fact that more infected patients are cured in

mixing at any point in time [8]. By this argument, mixing three or

more antibiotics should be even more beneficial. All these models

allowed full single-resistance but ignored the possibility of

constraints or tradeoffs on double- or multiple-resistance to more

than one drug. For example, a tradeoff would emerge if mutations

increasing resistance to drug A express negative pleiotropic effects

that decrease resistance to drug B [14,29–31]. Could such

pleiotropy have accelerated the reported decline in above noted

cephalosporin resistance [8]?

Pleiotropic mutations and tradeoffs have historically been of

interest to evolutionary biologists because they can constrain the

evolutionary response to natural selection. If an organism is

responding to two opposing selective forces, the two resulting

adaptive responses could be slowed or curtailed by tradeoffs. While

tradeoffs may be undesirable for maximizing adaptations, they

could be desirable if the goal is to prevent adaptation, such as in

stopping the evolution of antibiotic resistance. Determining

whether a combination therapy is capable of both treating a

drug-resistant infection and modulating the level of resistance is a

non-trivial task [32]. Most drug-pairings have additive antimicro-

bial effects, but some act synergistically to produce more powerful

effects than their constituent parts would suggest [33]. Experi-

mental evidence suggests that synergistic drug pairings may

increase the strength and rate at which single and multiple drug

resistance evolves under treatment [34–36]. However, antagonistic

and suppressive drug-pairings may be capable of treating resistant-

infections while selectively enriching susceptible variants [37]. For

example, when protein and DNA synthesis inhibitors are used in

concert, sensitive variants outcompete their drug-resistant coun-

terparts. Under this suppressive combination treatment, drug-

resistant mutants are unable to maintain optimal regulation of

ribosomal genes and thus incur substantial metabolic costs [28].

Mechanisms that give rise to these complex interactions are not

well understood in vitro and have not, to our knowledge, been

studied in clinical trials. Can cocktails be used safely and effectively

to treat hospital-borne drug-resistant infections? Perhaps more

importantly, can a pathogen’s ability to evolve high-level drug

resistance be constrained by careful selection of drug cocktails that

exploit evolutionary tradeoffs associated with resistance acquisi-

tion? If shown to be valid, two- or multiple-drug treatments

exploiting tradeoffs become increasingly attractive because they

give new life to old antibiotics that have been rendered useless by

the evolution of single-resistance [30]. Indeed, there is evidence to

suggest that chemical compounds, previously disregarded as

ineffective when used in isolation, may be therapeutically effective

in combination [6].

We have developed and analyzed a model that explores the

consequences of tradeoffs on two-drug strategies by modifying the

model of Bergstrom et al. [21]. To describe the joint effect of two

drugs in a cocktail, we added to their model the pharmacodynamic

equations of Regoes et al. [38]. Pleiotropy was introduced through

a new parameter in the pharmacodynamic equations. Although

double positive epistatic mutations can also influence the evolution

of resistance, they are not included in our model because we

consider the effects of single mutations as they arise. The

phenotype of the single mutation could be influenced by its

epistatic interactions with previous mutations, but what matters is

phenotypically expressed double-resistance as represented by the

tradeoff. The model was analyzed by tracking the frequency of

patients infected with resistant bacteria, but unlike previous studies

we sought conditions that maximized the frequency of uninfected

patients, rather than ones that minimized antibiotic resistance.

Following the analysis of Bergstrom et al., we focused on the

general mathematical properties of the dynamical system, rather

than developing detailed quantitative predictions. Thus, we

employed parameter values in the range previously used by

Bergstrom et al. and Regoes et al., and examined the resulting

ecological and evolutionary processes at work in the system.

Model

The model of Bergstrom et al. consists of four differential

equations that describe an open hospital system in which patients

are treated with antibiotics for a nosocomial infection. The patient

population in their model is represented by four frequency groups

X (uninfected), S (infected with sensitive bacteria), R1 (infected with

bacteria resistant to antibiotic A), and R2 (infected with bacteria

resistant to antibiotic B). X patients become infected at a rate b by

contact with S, R1 and R2. Superinfection is also allowed at a rate

sb in which bacteria from S can colonize and take over R1 and R2

patients. The takeover of S by R1 and R2 bacteria is assumed not to

occur because resistant bacteria are inferior competitors due to a

cost c. Infected patients are cured of their bacteria by a clearance

rate c, which can be augmented by an amount t with antibiotic

treatment if the bacteria are sensitive. The system is open and

therefore X, S, R1, and R2 patients enter and leave the system at set

rates. The population growth rate of the four groups is described

as a set of four differential equations that are coupled through

infection, superinfection, clearance, immigration and emigration.

Tradeoffs Are Key to Sustainable Antibiotic Use
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Our new model consists of the five differential equations

_SS ~ (GS { c) S z bSX z sbcS (R1 zR2 zR3) ð1Þ

_RR1 ~ (G1 { c) R1 z bR1X (1 { c) { sbcSR1 ð2Þ

_RR2 ~ (G2 { c) R2 z bR2X (1 { c) { sbcSR2 ð3Þ

_RR3 ~ (G3 { c) R3 z bR3X (1 { c) { sbcSR3 ð4Þ

_XX~{(GS { c) S {(G1 { c) R1 {(G2 { c) R2

{(G3 { c) R3{ bSX { bX (1 { c) (R1 zR2 zR3)
ð5Þ

where the raised dot denotes a time derivative (e.g. _XX = dX/dt);

and X, S, R1, R2, b, s, c and c are as defined by Bergstrom et al. It

should be noted that our model is constrained to situations where

there exists a cost of resistance acquisition, such as large plasmid-

borne resistance genes. While Equations 1–5 preserves the main

features of the Berstrom et al. model, two major changes were

incorporated.

First, we made our model a closed system because we wanted to

examine the consequences of drug management without the

constraints of immigration and emigration. For example, if

immigration rates are extremely high, they can dominate the

outcome of the model and negate the effects of drug management.

The effects of drug management only emerges as immigration is

sufficiently reduced, in which case it is just as reasonable to remove

immigration and emigration completely. Thus, our model can be

construed to represent hospitals in which the immigration and

emigration are sufficiently low as to not influence the qualitative

results.

The second modification was made to allow the modeling of

both a resistance tradeoff between drugs A and B and the use of

cocktails with the two drugs. To account for resistance tradeoff, we

introduced R3 patients (Equation 4), who are infected with bacteria

resistant to both drugs A and B. To incorporate a cocktail, we

replaced Bergstom et al.’s drug-clearance rate t, which is a constant

independent of drug concentration, with a function G that varies

with the concentration of drugs A and B. Because G should be

proportional to bacterial growth rate, we chose to model it with

Regoes et al.’s pharmacodynamic equation of bacterial net

growth. However, because Regoes et al. developed their equation

to describe growth as a function of the minimal inhibitory

concentration (MIC) of only one antibiotic, we added new MIC

parameters, MICA and MICB, for drugs A and B. Additionally, we

developed two pharmacodynamic equations, termed combined and

separate, to model cocktails. Separate is thusly named because the its

constituent antibiotics are additive and thus held separate in the

equation. The constituent antibiotics of the combined cocktail are

not additive, but suppressive, and are therefore combined in the

equation. Thus,

G
sgl
i ~ Qmax {

(Qmax{ Qmin) (a=MICAi)

(a=MICAi) { (Qmin=Qmax)
ð6Þ

Gcmb
i ~Qmax {

(Qmax{ Qmin) (a=MICAi z b=MICBi)

(a=MICAi z b=MICBi) { (Qmin=Qmax)
ð7Þ

G
sep
i ~Qmax {

(Qmax{ Qmin) (a=MICAi)

(a=MICAi) { (Qmin=Qmax)
{

(Qmax{ Qmin) (b=MICBi)

(b=MICBi) { (Qmin=Qmax)

ð8Þ

where the subscript i denotes the four bacterial strains S, R1, R2,

and R3 (see Equations 1–4); a and b are concentrations of drugs A

and B; Qmax is the maximal growth rate in the absence of a drug;

Qmin is the minimal growth rate in the presence of a drug at high

dosage; and sgl, cmb, and sep denote single, combined and separate.

The Hill coefficient k of Regoes et al.’s equation is assumed to

equal one and is therefore not included in Equations 6–8.

Equation 6, which is the equation of Regoes et al., was used when

we modeled use of only one antibiotic. A detailed interpretation of

the difference between combined and separate is presented in the

Discussion.

The strength of the tradeoff between the resistance of R3

bacteria to drugs A and B was quantified by a new parameter 0 #

v # 1 (Figure 1). A value of v = K corresponds to a mutation

with a linear tradeoff relative to R1 and R2 bacteria. For example,

if R1 and R2 have, respectively, [MICA, MICB] values of [240, 0]

and [0, 240], a linear tradeoff gives R3 bacteria MIC values of [(1–

v)?240, (1– v)?240] or [120, 120] with v = K. A pleiotropic

mutation that produces greater than linear tradeoff has a v . K.

For example, if v = L, R3 bacteria have [MICA3, MICB3] of [(1–

L)?240, (1– L)?240] or [60, 60]. Conversely, a pleiotropic

mutation that produces less than linear tradeoff has a v,K. A

value of v = 0 denotes R3 bacteria that have [MICA3, MICB3] of

[240, 240] and that are able to resist fully both drugs A and B

without any tradeoff.

A more intuitive summary of our model is provided by noting

that all terms that contain either c, sb, or b (without s) in

Equations 1–5 denote gains and losses due to clearance,

superinfection, and infection, respectively. Gains and losses are

inherent because any positive term in one equation surfaces as a

negative term in another. For example, the term (Gi – c) is always

negative in our model because Gi # 0 with our parameter values

(see below). Thus, (Gi – c) in Equations 1–4 quantifies the curing

and loss of infected patients in the S, R1, R2, and R3 populations,

and – (Gi – c) in Equation 5 represents the addition of cured and

uninfected patients to the X population.

Analytical Solutions

Using the numerical solutions for the computer simulations as a

guide, we were able to obtain analytical solutions of equilibrium

frequency of uninfected patients X̂X for NONE, CONTROL,

SINGLE, and COCKTAIL. Solutions were not found for

CYCLING and MIXING because the systems fluctuated over

time. Thresholds for transitions of the dominant patient type were

also derived for COCKTAIL. Analytical solutions were evaluated

with the parameters (hereafter the standard values) presented in

Figures 1 and 2: c = 0.25; b = 1; c = 0.1; Qmax = 0.25; Qmin = – 0.25;

MICAs = MICBs = MICA2 = MICB1 = 0; MICA1 = MICB2 = 240;

MICA3 = (1 – v) MICA1; and MICB3 = (1 – v) MICB2. All

comparisons between the numerical (Figure 2) and analytical

solutions yielded matching results. Because we often relied on the

numerical simulations to eliminate variables, the analytical

solutions are valid only in the neighborhood of the parameter

Tradeoffs Are Key to Sustainable Antibiotic Use
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values and equilibria we examined in our study. Nonetheless,

besides providing a more detailed interpretation of our results, the

analytical solutions verify that the numerical solutions were valid

and accurate for the reported conditions.

Results

Antibiotic deployment strategies (NONE, SINGLE, MIXING,

CYCLING, COCKTAIL, and CONTROL) are evaluated with

respect to variable multi-drug resistance tradeoff (0,v,1)

conditions. Strategy outcomes are compared according to the

value of populations X, S, R1, R2 and R3 at equilibrium. Excluding

NONE as a no-treatment baseline, the total amount of drugs

administered under each strategy remains constant at 240 dosage

units (see Tables S1–S3). SINGLE strategy dictates that all

patients receive the same drug (e.g., drugs A:B at dosage 240:0 and

vice versa). While MIXING assumes that 50% of patients receive

drugs A:B at 240:0 (and the other 50% of patients receive drugs

A:B at 0:240). Under MIXING, each half of the population

alternates A:B dosage (240:0 R 0:240, and vice versa) every time

period of length p. CYCLING represents a scenario where all

patients receive a single drug for a time period of length p, after

each period all patients receive the alternate drug. COCKTAIL

dictates that all patients receive both drugs A and B simulta-

neously, but each at reduced dosage (drugs A:B, 120:120). Finally,

CONTROL represents the optimal outcome when resistance cannot

evolve and an antibiotic successfully controls the infection. In

CONTROL, the frequency of R1, R2 and R3 were set and

maintained at zero and a single antibiotic was administered to

infected patients (drugs A:B, 240:0).

We analyzed our model by solving the equations numerically

over time by the Runge-Kutta 4th Order method in MatLab until

equilibria were obtained. Analytical solutions for equilibria were

obtained for NONE, CONTROL, SINGLE, and COCKTAIL

(see File S1). We report in Results only the numerical solutions to

provide data that were collected by a single procedure. Whenever

analytical solutions were possible, they matched the equivalent

numerical solutions. For static treatment regimens, numerical

solutions were collected 100,000 timesteps after convergence to the

sixteenth decimal. COCKTAIL treatment regimens impose drug

clearance on all variants and therefore converged in ,200

timesteps. In contrast, SINGLE requires 10,000 timesteps to

converge to the sixteenth decimal. SINGLE requires more time to

reach equilibrium because, at any given moment, at least one

variant can resist drug treatment and can only be cleared by the

patient’s immune response. Given fluctuation of population

frequencies, analytical solutions were not obtained for CYCLING

and MIXING. For these treatment regimens, numerical values

were collected after cyclical upper and lower bounds converged to

the sixteenth decimal. After which point, numerical solutions were

collected and averaged for each successive timestep for 1000

periods, p.

Figure 1. Tradeoffs in resistance to two antibiotics. Plot
represents resistance as the minimal inhibitory concentration (MICA
and MICB) to the pair of drugs A and B. The three resistant bacteria R1

(m), R2 (&), and R3 (N) are depicted. R1 is resistant only to drug A, and
R2 only to drug B. R3 is double-resistant and four representatives are
shown to denote different levels of tradeoffs. The MICA3 and MICB3

values for R3 were derived as MICA3 = (1–v)?MICA1 and MICB3 = (1–
v)?MICB2, where MICA1 and MICB2 are the minimal inhibitory
concentrations of R1 and R2 against drugs A and B, v is the tradeoff
parameter, and 0#v#1. With the highest tradeoff constraint and v = 1,
MICA3 and MICB3 equal zero and are same as the MICAS and MICBS

values for sensitive S bacteria (#). As v is decreased from 1.0, 0.75, 0.50,
0.25 to 0, the progression (R) represents the double-resistant R3

experiencing less and less tradeoff. The solid lines ( ) through three of
the R3 points represent families of mutants that connect R1 and R2 and
have the same approximate level of tradeoff. If v = 0.5, the tradeoff is
linear. Our examination of tradeoffs uses R3 as the representative of the
family.
doi:10.1371/journal.pone.0086971.g001

Figure 2. Effect of tradeoff strength on equilibrium X for
different antibiotic treatments. Tradeoff strength is measured as
the parameter v (Figure 1). The equilibrium frequency of uninfected
patients X

ˆ
was determined by running simulations of the model until all

frequencies were stable. In cases where the values fluctuated, the
equilibrium frequency was the average for the cycles. All simulations
were run with parameter values of MICA1 = MICB2 = 240; MICAS =
MICBS = MICA2 = MICB1 = 0; MICA2 and MICB3 as defined in Figure 1;
Qmax = 0.25; Qmin = –0.25; c = 0.1; s = 0.25; b = 1.0; and c = 0.25. These
values are in the range of the numbers used by Bergstrom et al. and
Regoes et al. During simulations, an MIC with a value of zero was reset
to 0.000001 to avoid division by zero in Equations 6–8. Treatments:
NONE ( ); CONTROL (N); SINGLE (#); CYCLING (p = 50,m); MIXING
(p = 50, m); Combined COCKTAIL (%); Separate COCKTAIL (&). Our
analysis included values of p greater and smaller than 50 for CYCLING
and MIXING, but the data are not presented to avoid crowding the
figure. We note here that if p = 1, X̂ values in both treatments became
indistinguishable from those in MIXING with p = 50 and for all sampled
values of v. If p was increased above 50, X̂ values in CYCLING converged
downwards to match those in SINGLE, while in MIXING they decreased
to match those in CYCLING (p = 50). The largest value examined was
p = 50,000. The matching of MIXING (p = 50,000) and CYCLING (p = 50) is
coincidental, as the value of p = 50 was chosen arbitrarily. The
composition of the infected population (S+R1+R2+R3) is shown in the
graph by using the line pattern to represent the most common
bacterium in the population; S (– – –); R1 and/or R2 (? ? ?); R3 (—). For
example, in Combined COCKTAIL (%), the most common bacterium is
R3 from 0#v,0.86, but changes to S from 0.86#v#1.
doi:10.1371/journal.pone.0086971.g002

Tradeoffs Are Key to Sustainable Antibiotic Use
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For single-drug strategies the effect of tradeoff, v, on the

equilibrium frequency of uninfected individuals has a lower bound

set by the NONE strategy (X̂X = 0%) and an upper bound set by

the CONTROL scenario (X̂X = 50%). In the absence of antibiotics

(NONE), the susceptible variant is able to infect all patients in the

system. In the absence of resistant mutants, half of the patients

remain uninfected. Given that R1, R2, and R3 were rare or non-

existent in NONE and CONTROL, the results were not affected

by variation in v. After inclusion of R1, R2 and R3 under the

SINGLE regimen, X̂Xdecreased by nearly half (X̂X = 27.8%). X̂X is

not affected by changes in multi-drug resistance tradeoff, v,

because the single resistant mutants (R1, R2) outcompete the multi-

resistant variant (R3) when only one drug is present in the

environment. These results serve as a baseline with which to

compare two-drug implementations that exploit variation in space

(MIXING), time (CYCLING), or dose concurrency (COCK-

TAIL).

CYCLING and MIXING treatment regimens responded to

changes in tradeoff strength, v. In both cases, X̂X was equivalent to

the SINGLE treatment regimen when the multi-resistant variant is

super-resistance, v = 0. As v was elevated, X̂X increased, but never

converged with the CONTROL scenario wherein drug resistance

cannot evolve. At p = 50 and v.0, MIXING always outper-

formed CYCLING (X̂X = 42.7% and 36.5%, respectively; v = 1).

As p decreases from 50 to 1, X̂X values remain unchanged for

MIXING over all examined tradeoffs, (0,v,1). However, as p

decreases from 50 to 1, X̂Xvalues achieved by the CYCLING

regimen approach that of MIXING. Put another way, as the rate

of antibiotic cycling increases, the difference between CYCLING

and MIXING become negligible. If p is increased beyond 50,

CYCLING and MIXING responded differently. While CY-

CLING converged downwards onto SINGLE as p is increased,

MIXING decreased to equilibrium above SINGLE.

We interpret the dependency of X̂Xon v in CYCLING and

MIXING to result from the transformation of R3 into super-

sensitive or super-resistant bacteria as a consequence of the

tradeoff. When v equals zero or is low, R3 bacteria are super-

resistant and the system becomes effectively equivalent to having

one resistant bacterium and one antibiotic (as in SINGLE). On the

other hand, R3 bacteria become super-sensitive when v equals one

or is high. As a result, R3 are eliminated by the antibiotics and R1

and R2 become common. However, because R1 and R2 are

resistant to only one antibiotic, they are held in check more easily

and X̂X increases as a result. This interpretation was verified by

tracking the most common bacterial type (S, R1, R2 or R3) in the

treatments. In both CYCLING and MIXING, the dominant

bacterial type switched from R3 to a mixture of R1 and R2 as v was

increased beyond threshold values of v = 0.44 and 0.70, respec-

tively.

The value ofX̂X also rose as values of v were increased in the

combined and separate COCKTAIL treatments (Figure 2). However,

the gains were greater than in CYCLING and MIXING, and X̂X
increased to 50% and 74.1%, respectively, as v approached a

value of one. These values of X̂Xcome close or exceed the 50% that

we observed before the evolution of resistance (CONTROL;

Figure 2). In combined COCKTAIL, there was no advantage for

v = 0 because R3, as a super-resistant bacterium, was again the

most common. As v was increased, R3 was replaced at a threshold

of v = 0.86 and S became the most common bacterial type. In

separate COCKTAIL, there was an advantage when v = 0 and X̂X
attained a value of 37.0%, which easily beat the 27.8% baseline of

SINGLE, despite the fact that R3 dominates. As v was increased,

R3 was replaced at a threshold of 0.75 by R1 and R2. The reason

for the dominance of S bacteria and the greater than baseline

value of X̂X in the COCKTAIL treatments are addressed in the

Discussion.

An issue in the design of strategies for antibiotic use is whether

benefits to the individual and the population are in conflict. Our

maximization of X̂X to assess the efficacy of different antibiotic

treatments assumes that a benefit to the patient population is

paramount. To determine whether a benefit to the population is

beneficial or detrimental to individual patients, we also monitored

the equilibrium per capita recovery rate of patients as a function of X̂X
(Figure 3). In all of the treatment with two antibiotics (COCK-

TAIL, MIXING, and CYCLING), X̂X and the per capita recovery

rate were positively correlated. Thus, at least from this perspective,

there is no conflict between benefits to the individual and

population in our model at equilibrium. Additionally, for the

same values of X̂X , separate COCKTAIL yielded the highest per

capita recovery rates when compared to all the other two-drug

treatments.

Discussion

Genetic tradeoffs, also known as developmental constraints,

have long been regarded as barriers to evolution by natural

selection [39–41]. If two phenotypic traits are linked by tradeoffs,

selection cannot easily maximize fitness at both. Tradeoffs are

considered undesirable because they can slow and even possibly

stop adaptation. Our work attempts to turn the tables and asks if

tradeoffs could be made useful for slowing or stopping the

evolution of adaptations that are detrimental to us, e.g. antibiotic

resistance in bacteria. If two antibiotic drugs are used against an

infectious bacterium, natural selection should favor increased

resistance to both drugs. If resistance is constrained by tradeoffs,

conditions could arise in which the patient population would

benefit. To explore this possibility, we developed and analyzed a

Figure 3. Positive correlation between X and per capita
recovery rate for double- drug treatments at equilibrium. The
equilibrium value X̂ determined as in Figure 2. The per capita recovery
rate at equilibrium was measured by obtaining first the population
recovery rate from Equation 5 as z = – (GS –c) ? S – (G1 –c) R1 – (G2 –c) R2

– (G2 –c) R3, where S, R1, R2, & R3 are equilibrium values. The per capita
recovery rate was then derived as z/(S+R1+R2+R3). The per capita
recovery rate is positive because (Gi –c) # 0 for the parameter values in
our model (see Figure 2). Treatments: CYCL ING (p = 50, m); MIXING
(p = 50, m); Combined COCKTAIL (%); Separate COCKTAIL (&);
doi:10.1371/journal.pone.0086971.g003
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population model with clinical patients experiencing infections by

a hospital-acquired pathogen. Two drugs were deployed and the

tradeoff was represented by three resistant bacteria, R1, R2 and R3.

While R1 and R2 were resistant only to one drug (A and B,

respectively), R3 was double resistant. However, the resistance of

R3 was subject to a tradeoff that was quantified by a parameter v,

which ranged from zero to one to represent increasing strength of

the constraint (Figure 1).

We examined first the NONE, CONTROL and SINGLE

treatments. The resulting equilibrium frequency of uninfected

patients (X̂X ; Figure 2) showed clearly the advantage of antibiotics

when resistance was absent (or has not yet evolved). Without the

application of antibiotics in NONE, X̂X = 0% and the entire

population was infected. Without the presence of resistance in

CONTROL, the use of antibiotics controlled the infection and X̂X
increased to 50%. With the presence of resistant mutants in

SINGLE, X̂X was reduced 27.8% when only one antibiotic is used.

NONE, CONTROL, and SINGLE correspond to the baselines to

which all other treatments have to be compared. NONE

represents the condition when patients are infected by a bacterium

before the advent of antibiotics. CONTROL demonstrates the

benefits an antibiotic provides before the evolution of resistance.

SINGLE is the scenario when resistance evolves and undermines

the efficacy of the antibiotic. Thus, SINGLE serves as the

minimum baseline that any two-drug treatment must surpass to be

advantageous while CONTROL sets the baseline to which any

resulting advantage must be compared.

The two-drug treatments CYCLING and MIXING generated

similar outcomes (Figure 2). In both cases, X̂Xcould be higher than

the level in SINGLE, but never more than that in CONTROL,

and the advantage depended on v. When v = 0 (no tradeoff),

there was no advantage because R3 is resistant to both drugs

(super-resistant). At the other extreme of v = 1 (maximal tradeoff)

the advantage was greatest because the two resistances in R3

interfere with each other and the bacteria are rendered super-

sensitive. The response of CYCLING and MIXING to v depend

on the length of the time period p. For small values (p = 1) X̂X for

the two treatments converged to the same value. The convergence

results because cycling two antibiotics with a vanishingly small

period is effectively equivalent to mixing [21]. While X̂X for these

strategies converge to the same value, CYCLING requires more

time to reach equilibrium than MIXING. For intermediate values

(p = 50), X̂X in MIXING achieved higher values than in

CYCLING. For longer values (p .. 50), X̂X in CYCLING

converged downwards to the values in SINGLE, while X̂X in

MIXING converged downwards to an equilibrium above SIN-

GLE. CYCLING converges to SINGLE because as p becomes

infinitely long, the bacteria in CYCLING encounter effectively

only one antibiotic over time. X̂X in MIXING is always higher at

both intermediate and higher values of p because of the presence

of two antibiotics at all times [8]. As a result, R1 and R2 bacteria

can encounter the drug to which they are sensitive (B and A,

respectively) through infection or superinfection, even as p
becomes infinitely long in MIXING.

Bergstrom et al.’s previous results demonstrating the superiority

of mixing over cycling are replicated by our outcomes for v = 1.

Because Bergstrom et al. did not model double-resistant mutants,

we reproduced their conditions by letting v = 1 and making R3

super-sensitive. Thus, our model extends the model of Bergstrom

et al. by introducing R3 and shows that CYCLING and MIXING

can be more advantageous than using only one antibiotic (as in

SINGLE), but only when strong or moderate tradeoffs and a cost, c,

of resistance are present. With weak or no tradeoff, R3 is able to

dominate and render CYCLING and MIXING no better than

using only one antibiotic. If the cost of resistance is negligible, S

cannot compete with resistant mutants in cases of superinfection.

To model COCKTAIL treatments, we formulated the combined

and separate (Equations 7 and 8) to describe the simultaneous effects

of two drugs on bacteria. Although the advantage of the two-drug

COCKTAIL treatments again increased with v, their behaviors

were qualitatively different (Figure 2). In combined COCKTAIL,

X̂Xequaled the baseline of 27.8% in SINGLE when v = 0, but

increased to 50% when v = 1. At higher values of v, the larger X̂X
results because R3 is unable to persist and is replaced by the

sensitive bacteria S. Separate COCKTAIL yielded even larger

X̂Xvalues. At v = 0, X̂X was 37.0% and considerably higher than the

27.8% baseline of SINGLE. At v = 1, X̂X rose to 74.1%, which is

better than the high frequencies of uninfected patients that were

generated by CYCLING, MIXING and combined COCKTAIL.

Most surprisingly, the highest values of X̂X in separate COCKTAIL

surpassed even the frequencies we had observed in CONTROL.

Thus, the two-drug combined COCKTAIL treatment, even when

facing single- and double-resistance, can outperform a single drug

treatment in the absence of resistance (cf. CONTROL).

The distinct behaviors of our COCKTAIL treatments result

from our formulation of Equations 7 and 8. The presence of only

one negative term in Equation 7 explains why S dominates at low

values of v in the combined COCKTAIL treatments, despite the

presence of antibiotics. With only one negative term, S and

resistant bacteria are all cleared at approximately the same rate as

v approaches zero. Thus, S dominates because it does not pay the

cost c of resistance while all else is approximately equal (see

Equations 1–5). It is important to note that selective enrichment of

S under combined COCKTAIL treatment requires resistant mutants

to pay a cost c and experience a powerful trade as v approaches

zero. Alternatively, the advantage of separate COCKTAIL over all

values of v results from the presence of two negative terms in

equation 8. With two terms detracting from their growth rate, the

resistant bacteria are doubly hurt and X̂X increases beyond the

values in SINGLE, CYCLING, MIXING and CONTROL. The

effect is sufficiently strong even when R3 dominates and v = 0 or

intermediate.

The interplay between the tradeoff strength v and the rise of R3

governs the outcomes of all the two-drug treatments we examined.

If v is high or intermediate, R3 is held down and an advantage

emerges over using a single antibiotic for CYCLING, MIXING,

separate COCKTAIL, and combined COCKTAIL (in increasing

rank). It is noteworthy that separate COCKTAIL achieved an

advantage over CONTROL even when v = 0.5 (Figure 2). While

an extreme tradeoff of v = 1 may be biologically unrealistic, a

linear one of v = 0.5 may not. If our results can be replicated in

vivo, antibiotic cocktails will provide a powerful tool to control the

evolution of bacterial resistance while maximizing the health of a

patient population. Cocktails are additionally desirable because

their administration would be free of the complex timing required

by cycling and mixing strategies.

It is also noteworthy that the per capita recovery rate correlated

positively with X̂X in our model for CYCLING, MIXING, and

COCKTAIL (Figure 3). Moreover, separate COCKTAIL again

stood out as a better treatment when individual and public welfare

are compared. For a given X̂X (e.g. X̂X = 40%; Figure 3), per capita

recovery rate was higher in separate COCKTAIL relative to the other

two-drug treatments. These results show that it is not necessarily

valid that the general public must be hurt by the evolution of

resistance whenever a sickened individual patient is helped by
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antibiotics [12,13]. It strikes us that the conflict between the

individual and the public may not emerge with two-drug cocktails

that effectively exploit tradeoffs. The tragedy of the commons was

clearly represented in our model by the progression of NONE,

CONTROL, and SINGLE. Because antibiotic use in one-drug

treatment creates unconstrained directional selection for stronger

resistance, the tragedy never ends. On the other hand, if

directional selection is stopped by the tradeoff constraints in a

two-drug treatment, equilibrium conditions arise in which there is

no conflict between the individual and the public. In our two-drug

treatments, the same conditions maximized individual health by

speeding recovery and public health by increasing the frequency of

uninfected patients. Thus, the tragedy of the commons need not

constrain all rational strategies of antibiotic use.

Because COCKTAIL yielded the best results, the question

arises as to what are the biological bases of Equations 7 and 8. We

can suggest one scenario based on the Y model of tradeoffs [39].

Let resistance to both drugs A and B result from the activity of two

independent efflux pumps that are fueled by a shared and limiting

pool of ATP. If a mutation increases MICA by directing more

energy to pump A, the pleiotropic consequences are that MICB is

decreased because pump B is slowed. Thus, the shared and

limiting pool of ATP explains the tradeoff. Linear and non-linear

properties in the tradeoff lead to the different values of v. We

imagine that both pumps and their stated properties operate in

both the combined and separate cocktail equations. The difference

between the equations emerges in the action of the drugs that are

not pumped out of the bacterial cell. If drugs A and B are

sufficiently similar such that they attack the same cellular or

metabolic process (e.g., DNA translation pathway), the single

equation in combined is justified. This formulation is therefore an

approximation of antagonistic or suppressive combinations [28].

On the other hand, if drugs A and B are sufficiently different such

that they attack distinct pathways, they can inflict double damage

and two equations are required as in the separate equation. This

formation serves as an approximation for additive drug combina-

tions. Because there is evidence that synergistic drug combinations

increase the strength and frequency of multi-resistant mutants

[34–36], our model is limited to the separate and combined cocktail

strategies.

Although we invoke efflux pumps, ATP pools, and targeted

metabolic pathways, we accept that other scenarios are possible.

However, we hope that our interpretation offers a first step in

developing a conceptual framework for our model. A conceptual

guidance could help the search for drug pairs to be used in

experimental cocktails. Although much is known about the

metabolic and genetic basis of drug resistance, our understanding

of how tradeoffs and pleiotropy may constraint multiple-drug

resistance remains limited. Are additive drug pairs, exemplified by

the separate equation, more likely to be realized than antagonistic or

suppressive pairs expressed by the combined equation? It is our hope

that our model will stimulate the needed conceptual and

experimental explorations to answer such questions.

A final and critical question is whether the tradeoffs we require

are possible and general. They have clearly been identified in

clinically relevant pathogens [14–20,27–37,41,42]. Evolutionary

and ecological tradeoffs are often identified as genetic co-variances

and have been well documented in a wide range of organisms [40].

If tradeoffs are general, the results of our model could be applied

to control more than just bacteria in clinical settings. Plants and

pest insects or pathogenic fungi offer another system in which trials

could be readily implemented. Of course, it remains to be

determined if the constraints of tradeoffs can be broken by long-

term evolution. However, unless evolutionary and ecological

biology has oversold the importance of tradeoffs, it should be

possible to use tradeoffs to our advantage in combating the

evolution of antibiotic resistance, at least in the short term.
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