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This tutorial aims at promoting good practices for exposure–response (E-R) analyses of clinical endpoints in drug
development. The focus is on practical aspects of E-R analyses to assist modeling scientists with a process of performing
such analyses in a consistent manner across individuals and projects and tailored to typical clinical drug development
decisions. This includes general considerations for planning, conducting, and visualizing E-R analyses, and how these are
linked to key questions.
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Exposure–response (E-R) analyses have become an integral

part of clinical drug development and regulatory decision-

making over the last decades.1 However, the regulatory guidan-

ces and industry recommendations for E-R are still lacking

behind more mature areas such as population pharmacokinetic

(PK) and pharmacokinetic/pharmacodynamic (PK/PD) mod-

eling analyses. Population PK analysis is a mature disci-

pline, and numerous methodological papers on model

building, covariate selection, and model diagnostics exist2–6;

PK/PD modeling, on the other hand, started to evolve at a

later stage but rapidly evolved to an established research

field with a dedicated journal (JPKPD). PK/PD modeling

involves linking the concentration timecourse, including vari-

ation across dosing intervals, to the timecourse of the

pharmcodynamic response.7,8

E-R analysis, in its broad definition, includes PK/PD mod-

eling as a special case where the exposure variable is drug

concentration, but most often the term E-R refers to analy-

ses that differ from PK/PD models in several aspects:

I) The exposure variable is a summary variable such as

area under the curve (AUC), rather than the concentration

timecourse. II) The response is often a clinical endpoint,

typically expressed as the change of response variable

from baseline to the end of trial. III) Response and variabili-

ty in the placebo group (potentially due to changes over

time, concomitant medication, or a placebo effect) is central

to the analysis. IV) In many instances, E-R analysis is con-

ducted by simple regression type of analysis, rather than

timecourse models. For the present tutorial, we shall focus

on E-R in the more narrow sense as described above, and

only briefly refer to PK/PD and timecourse modeling.
The objective of this publication is to provide a common

basis for how E-R analysis may be applied in the clinical

drug development process. The scope of the tutorial is not

to go into theoretical considerations but to highlight practi-

cal aspects of E-R analyses to facilitate consistent imple-

mentation across individuals and projects. This includes

general considerations for planning, conducting, and visual-

izing E-R analyses, and furthermore how to link the ques-

tions that are addressed to the specific analysis. Finally, we

discuss the limitations and assumptions for E-R analysis
along with the perspectives for future applications in clinical
drug development. The focus is on analysis of continuous
response data but similar principles apply to categorical
type data. Likewise, as mentioned above, we focus on the
response at a single timepoint, and share only a few
thoughts on the extension to timecourse E-R analysis, for
which a standard remains to be developed.

We hope that by sharing our perspectives the pharmaco-
metrics community will join forces and begin standardizing
these types of analyses to increase the impact on key drug
development decisions, similarly as Byon and Pfizer col-
leagues have done for population PK analyses.9

GOOD PRACTICES FOR EXPOSURE–RESPONSE

ANALYSIS

One of the primary purposes of E-R analyses in clinical
drug development is to ensure adequate dose selection
and justification after each phase of development and at
the time of submission utilizing the totality of evidence avail-
able. To facilitate this, the following sections provide general
recommendations for conducting E-R analysis aligned with
key questions. Specific examples are presented in a subse-
quent section.

Key questions
Relevant key questions at each stage of drug development
are being utilized to move modeling support towards statis-
tical inferences and quantitative analysis providing more
direct answers, e.g., for justifications of selected doses.
Table 1 suggests key questions to be considered for
design and interpretation purposes across the phases of
clinical drug development in patients. The aim is to focus
on questions addressed by E-R, but for completeness also
including questions addressed by PK/PD and meta-
analysis (e.g., based on summary level data providing an
overview of trial effects for a given indication). The design
questions typically focus on choice of trial parameters such
as dose regimen, trial duration, and sample size, including
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the power of the trial to provide evidence of E-R, whereas
interpretation questions focus on E-R evaluation of trial
data, i.e., identification of a treatment effect or higher
response at higher exposure, or aiming at characterizing
the E-R relationship.

The questions in Table 1 should be regarded as generic
options. It is recommended to supplement or replace these
with specific questions tailored for each separate occasion
in collaboration with relevant stakeholders.

Design questions. E-R analysis is a powerful tool in the
planning stages of the trial to optimize the design to detect
and quantify signals of interest based on current quantita-
tive information of the compound and/or the drug class.
Simulations and quantitative explorations of the proposed
design should be performed prior to conducting the trial in
order to understand the impact of design parameters on
the outcome. This includes capturing the likelihood of
obtaining a prespecified response in a specific population

Table 1 Generic key questions to be considered for design and interpretation purposes across the phases of clinical drug development

Phase Design questions Interpretation questions

Phase I-IIa Does PK/PD analysis, e.g. based on preclinical data support

the starting dose, the regimen, and the dose range explored?

Do simulations indicate that E-R based on phase I/IIa data

can inform development decisions?

• Does the design provide power to detect a signal via E-R

analysis for a biomarker or clinical endpoint?

• Is the design optimized with respect to duration, sample

size, and dose levels? Consider if other design options

reduce the risk of poor decisions, and what decision crite-

ria should be used?

Based on meta-analysis for this indication, do Phase 1 bio-

marker endpoints reliably predict late stage endpoints?

Does the E-R relationship indicate treatment effects?

If safety signals are present:

• Does the E-R relationship support or challenge a relation to

treatment?

� Are safety issues more pronounced in the subjects with

highest exposure?

• Does the E-R relationship indicate a potential therapeutic

window?

For PD markers, similar questions may be addressed with PK/

PD analysis, which with more assumptions likely provides higher

power than E-R analysis to detect a signal and identify a thera-

peutic window.

Phase IIb Do PK/PD and E-R analyses based on available data sup-

port the suggested dose range and regimen? A phase IIB

design should explore a dose range, including sub clinical,

and supra clinical doses (if safe).

• What is the PD timecourse, including variability between

subjects?

Do simulations indicate that E-R based on phase IIb data

can inform development decisions?

• What is the predicted power of the primary analysis/E-R

analysis based on exposure-response?

• Does the design provide power to detect if treatment effect

increases with exposure?

• Can E-R analysis assist to determine phase 3 dose

levels?

• Is the design optimized with respect to duration, sample

size, and dose levels? Consider if other design options

reduce the risk of poor decisions, and what decision

criteria should be used?

Based on meta-analysis for this indication, do Phase II

endpoints reliably predict Phase III outcome (if different)?

Does the E-R relationship support evidence of a treatment

effect?

What are the characteristics of the E-R relationship for efficacy

and main safety/tolerability parameters?

• Does treatment effect increase with dose/exposure?

• What is the minimal effective concentration, EC50, maximum

effect level? Does the effect level off at high exposure?

• What is the expected therapeutic dose/exposure window?

• For PD biomarkers: what are the characteristics of the PK/PD

relationship, including variability in response over time, in par-

ticular for trials with different treatment regimens?

If critical safety signals are present:

• Does E-R relationship support or challenge a relation to

treatment?

Phase III and submission Do E-R simulations based on phase II data support the

phase III design, dose, and regimen, also for subpopulations

with different exposure and/or response?

• What is the predicted power of the primary analysis/E-R

analysis?

• What is the expected E-R outcome following phase III,

overall and for relevant subgroups? Consider:

� Uncertainty for the overall population?

� Position on the E-R curve for relevant subgroups?

If peak-to-trough ratio is high: Do PK/PD simulations based

on phase II support the phase III dose and regimen?

• What is the predicted PD timecourse (including variation

between subjects)?

• Does meta-analysis indicate an impact of PD fluctuations

on the clinical endpoints?

Does the E-R relationship obtained from combined phase 2 and

phase 3 data support evidence of a treatment effect?

What are the characteristics of the E-R relationship of efficacy

and main safety/tolerability parameters? Consider:

• Does treatment effect increase with dose?

• What are the minimal effective concentration, EC50, maximum

effect level, and does the effect level off at high exposure?

• What is the expected therapeutic dose/exposure window?

For critical safety issues:

• Does E-R support or challenge a relation to treatment?

Is the proposed dose and dose regimen supported by E-R analy-

ses (overall and in subpopulations)?

• What is the predicted effect of dose changes?

• Is an effect compared to placebo expected in all subgroups?

Exposure-Response Analysis of Clinical Endpoints
Overgaard et al.

566

CPT: Pharmacometrics & Systems Pharmacology



of patients and furthermore exploring inclusion criteria,

demographic distributions, doses, dose regimens, treatment

duration, and models for data analysis.
Careful planning of the trial and of the analysis is crucial

for a successful utilization of E-R analyses in clinical drug

development. Relevant stakeholders involved in the trial

design and analysis discussions should be included to

secure buy-in and focus of the expected analyses as well

as effective utilization of results. For predefined analyses,

the details of the analyses should be defined beforehand in

a modeling analyses plan. For exploratory analyses, plans

should focus on nontechnical aspects, in particular identify-

ing the key questions to be addressed by the analyses in

support of internal decision making (Table 1).

Interpretation questions. The key questions for interpreta-

tion are focused on informing the design of the next clinical

trial or submission to regulatory authorities. In contrast to

classical statistical testing confined to drawing evidence for

the actual clinical trial, E-R and PK/PD analyses focus on

drawing inferences through integration of prior knowledge

based on pharmacology and physiological principles. A

robust characterization of the dose–exposure–response

relationships provides better understanding of the efficacy

and safety of a drug, and enables quantitative decisions,

e.g., for dose selection. Some of the suggested interpreta-

tion questions are relevant across the clinical development

phases, e.g., questions pertaining to the treatment effect;

and since these may often be satisfactorily addressed by

classical statistics, timely application of E-R analysis will

avoid redundant analyses. However, when uncertainty

remains in the statistical evaluation, E-R analysis may con-

tribute with critically important evidence, e.g., in the sense

that a causal relationship to exposure will increase confi-

dence in observed effects. Additionally, when results indi-

cate the need for new studies, e.g., with another dose, E-R

models can be used to simulate, predict, and extrapolate

beyond the observed data and thereby be used to optimize

the dose, design, and analyses, or altogether alleviate the

need for further clinical data.

Data considerations
In general, studies are powered to demonstrate effect

against placebo, and not powered to investigate differences

between dose levels. Multiple trials should therefore, if pos-

sible, be included for E-R analysis. At the end of phase IIa,

it would also be relevant to include patient data from phase

I trials, and at submission it would be relevant to include,

both the larger phase III and the phase IIb dose-finding tri-

als, which typically span a broader dose range. However,

such analyses across trials need to take into account differ-

ences in trial design and study populations, e.g., healthy

subjects vs. patients, which may prohibit a meaningful joint

analysis. Furthermore, response data from early clinical tri-

als may be limited to include biomarkers rather than clinical

efficacy endpoints, in which case the analysis will rely on

available methods to link biomarker data to clinical

outcome.
Exposure data may not be available from all patients,

and so the E-R population from a clinical trial can be

defined as the subset of patients from the full analysis set
(FAS) for which exposure data are available. The response
data obtained at the time of the primary endpoint evaluation
should be used with appropriate imputation of missing data
consistent with the primary analysis method; often Mixed-
Effects Model Repeated Measures.10–12 Consider excluding
patients who dropped out before PK steady-state was
obtained in order to reduce the risk of obtaining a biased
E-R evaluation. For timecourse analysis, all data are
included as observed, and analyzed, e.g., by a Mixed-
Effects Model that takes into account that response may be
lower if subjects drop out early. The results of both the sin-
gle timepoint and the timecourse analysis will reflect the
outcome if all subjects had remained on-treatment. Alterna-
tively, it may be relevant to investigate dropouts more thor-
oughly by dropout modeling, to provide a more detailed
picture of the effect of changing the dose.

The most obvious summary measure of drug exposure is
the area under the concentration–time curve (AUC) in a
dosing interval at steady-state, but other measures such as
maximal drug concentration (Cmax) or trough concentration
(Ctrough) may be more appropriate, depending on the indica-
tion, the endpoint, and the PK properties of the drug. Dur-
ing early drug development the exposure data can be
derived by noncompartmental methods. In late-stage devel-
opment, sparse blood sampling often requires the use of
population PK analysis, in which case the individual post-
hoc AUC estimates can be used as the exposure measure.

Type of response variable
For E-R analysis, the response variable could be continu-
ous, categorical, or time-to-event data. Models for contin-
uous endpoints are typically estimated via nonlinear
least-squares procedures. The same type of models can
be used for binary endpoints, but data are typically logit-
transformed in order to apply nonlinear logistic regres-
sion, with an underlying model such as the Emax model,
similar to models of continuous data. Examples of model
code used for analyzing continuous and categorical data
are provided in the online Appendix to this tutorial. Time-to-
event analysis may apply similar models in a proportional
hazards model,13 or use a model independent analysis
such as Kaplan–Meier plots for subjects in different expo-
sure quantiles or placebo.

Assumptions and limitations
E-R analyses are associated with assumptions and limita-
tions that should be considered before collecting the data,
conducting the analyses, or interpreting the results, as
follows.

Assumptions.

• The exposure variable (potentially model-derived) accu-
rately reflects the individual average effective concentra-
tion: i.e., that E-R analysis is independent of dose. This
may be addressed graphically by comparing the E-R rela-
tionship for different dose levels.

• Exclusion of subjects without adequate exposure meas-
urements does not bias the results. This may be
addressed by comparing the response over time for sub-
jects with and without adequate exposure measurements.
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• The use of imputation for efficacy endpoints is assumed
not to bias the results. As the true outcome for subjects
dropping out is unknown, any imputation may create
biased results. For late-stage trials, the primary analysis
is often subject to sensitivity analysis to address this.

• All relevant confounding covariates have been taken into
account in the analysis (see Choice of analysis
method, below). This may be explored by checking the
consistency between the E-R model predictions for the
tested dose levels and the observed dose–response rela-
tionship, since if patients are randomized between dose
levels, no confounding covariates should exist for the
dose–response relationship with, e.g., higher response
and dose levels for a certain subgroup. However, in gen-
eral it is not possible to fully validate this assumption.

• The parametric model adequately represents the shape
of the true E-R relationship. This may be evaluated by
goodness-of-fit plots.

• Values of EC50 and the Hill coefficient (see next section)
are assumed identical in the contributing trials or between
populations. Any differences in these parameters are
unlikely to be identified at the same time as differences in
Emax, since data may be insufficient. However, if data are
insufficient to identify differences between populations,
violation of this assumption is unlikely to have a signifi-
cant influence.

Limitations.

• E-R analysis is generally based on unbalanced data,
since, e.g., heavy subjects could have different exposure
than light-weight subjects, and this may limit applications
in terms of statistical testing. The lack of balancing with
respect to exposure is an inherent limitation due to the
fact that clinical trials are typically controlled with respect
to dose, whereas exposure is an uncontrolled variable.
Some scientists find this to be a critical limitation, leading
to skepticism towards E-R analysis in general, but we
need to stress that most often the lack of randomization
is not an issue, and the strengths of these analyses
should encourage general applications of E-R analyses
adding to the totality of evidence for decision making.

• The most important limitation of E-R analyses is the pos-
sible presence of unrecognized confounders. This is dis-

cussed further in the section on Choice of analysis

method.
• The aim of the E-R analysis is to analyze the response for

a specific endpoint, i.e., at a given timepoint, which does

not necessarily reflect the long-term effects of the drug.

The above-mentioned assumptions and limitations are not

likely to invalidate the analysis unless high rates of data

exclusions have occurred. This is particularly true for late-

phase applications where the important covariates for expo-

sure and response are likely to have been identified, and

confounders have been taken into account.

Choice of analysis method
The method used for conducting E-R analysis should be

carefully adjusted to the question that is being addressed.
Fundamentally, we are addressing E-R questions using

three different types of analyses, depending on the ques-

tion, as summarized in Table 2. Whereas the first question

concerns the effect relative to placebo, the two latter analy-

ses elucidate various aspects relevant for selecting and

supporting the dose.
The first two types of analyses, Type A and Type B,

should be predefined or relatively generic to ensure an

interpretable P-value, by avoiding multiple testing. The third

analysis for characterization and prediction (Type C) implies

initiation of model development in order to obtain the best

description of the structural relationship and covariate

effects. The structural model could be reduced to a (log)

linear relationship or expanded with a Hill coefficient, as

implied by the data, and covariates should be selected for

the relevant parameters in order to obtain the best and

most realistic description. These fundamentally different

types of analyses may assist to answer different questions

throughout clinical drug development, as further discussed

below.
For any key question, we recommend applying the sim-

plest possible analysis, which includes the fewest assump-

tions and which readily can be communicated to a wide

range of stakeholders. Therefore, the simplistic single time-

point analyses outlined above are recommended as the

firm starting point. However, it is a gross simplification that

these three types of analyses constitute a sufficient toolbox

for E-R, as many aspects have not been addressed. In

Table 2 Generic key questions with suggested models used for addressing the questions

Type Question Analysis*

A Does data indicate a treatment effect? ECFB � EBASE 1 COVs 1 Slope*Exposure 1Intercept

(analysis based on all data)

B Does treatment effect increase with dose? ECFB � EBASE 1 COVs 1 Slope*Exposure 1Intercept

(data from placebo excluded)

C What are the characteristics of the E-R relationship?

What is the predicted effect of dose changes?

ECFB � EBASE 1 COVs 1 Emax �Exposure
EC501Exposure1Intercept,

(analysis based on all data)

*ECFB indicates the change from baseline of the primary endpoint, EBASE is the baseline value of the effect variable. Exposure is an exposure variable such as

the area under the concentration-time curve in a dosing interval at steady-state. COV is the contribution from covariates for the effect. Slope is the estimated

slope of the E-R relationship on a linear scale. The Emax model (Type C) is parameterized by Emax, the maximal effect obtained at infinite exposure and EC50,

the exposure at half-maximal effect. For any of the analysis, an intercept, representing the response at zero exposure (i.e., placebo) is included. The equations

are written with ECFB as the dependent variable, assuming a continuous endpoint. Similar analyses may be applied for categorical binary endpoints, following

logit transformation, and using the response rate as the dependent variable.
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particular, dropout models and mixed-effects analysis using

the entire timecourse of data can provide valuable addi-

tional insights. Application of these more advanced techni-

ques are typically explorative in nature, being developed

based on the data rather than being predefined. A number

of potential model extensions to account for dropout, toler-

ance development, and disease progression should be

considered on a case-by-case basis. Thorough recommen-

dations for these options are outside the scope of this tuto-

rial. Rather, our recommendations are focusing on the use

of relatively simple models to evaluate relationships

between exposure and treatment outcome at a single time-

point, which we believe will be adequate for the majority of

situations in drug development and closest to the primary

analysis specified in the protocol. However, the following

sections provide general remarks to guide timecourse E-R

analysis and situations where dropout needs to be

accounted for.

Timecourse E-R models. In principle, models of the time-

course of response data constitute the hallmark of E-R

analysis, providing more insight than single timepoint analy-

sis at the expense of more assumptions.14 In particular, if

the response is not at steady state, e.g., due to tolerance

development or disease progression, a time series model

may provide long-term predictions that can be highly rele-

vant for real-world use. However, for investigations of clini-

cal endpoints at a certain point in time, the single timepoint

analysis is often sufficient. In general, we recommend to

supplement the single timepoint analysis outlined in Table 2

with a timecourse analysis when:

1. The interoccasion variability in response is high.
2. The response at the primary endpoint appears inconsis-

tent with the entire timecourse of the response.
3. In situations with frequent or informative dropouts.

For E-R analysis, the response in the placebo group is

an important element that needs to be taken into account.

Similarly, timecourse models need to include a placebo

component changing with time. A frequently applied pla-

cebo model is:

Eplacebo5Emax;pl 12e2kpl �time� �

where Emax,pl is the maximum placebo effect and kpl is the

rate constant for placebo effect development.15 The total

response in the active group may be expressed as the sum

of the placebo effect and the treatment effect.
Although E-R analysis is usually based on a summary

exposure statistic such as the AUC rather than the com-

plete PK timecourse, E-R models may borrow approaches

from classical PK/PD modeling such as indirect response

models to describe the treatment effect over time, taking

into account if, e.g., the dose changes with time. However,

a simple alternative is to use only a single value for the

steady-state exposure, and a similar model as for the pla-

cebo effect described above, e.g.:

Etreatment 5
Emax � ExposureSS

ExposureSS1EC50
12e2ktr �time
� �

where Exposuress is a steady-state exposure variable such
as AUC, ktr is the rate constant for development of the full
treatment effect, and Emax is the maximal response.

One issue with this setup, where an underlying placebo
effect and a treatment effect are added together, is that pla-
cebo effects and treatment effects cannot always be sepa-
rated, i.e., if a subject responds more than average, this
may be due to an elevated placebo response or an ele-
vated treatment effect. In single timepoint analysis, one
often captures such an elevated response by a single resid-
ual with similar variance across placebo and active treat-
ment. For timecourse analysis, the corresponding approach
would be not to include random interindividual variability for
the treatment effect but only for the placebo effect.
Whereas this would be an appealing starting point, it may
not be the optimal option, and should be explored on a
case-by-case basis.

Dropout models. If patient dropout is ignored, the results
of both the single timepoint and the timecourse analysis will
reflect the response which would have been obtained if all
subjects had remained on treatment. If a substantial num-
ber of subjects dropped out of a trial it may be relevant to
investigate dropouts more thoroughly by including a dropout
component in the model, in order to provide a more realistic
evaluation. Thus, for predicting the effects of changing the
dose it can be relevant to predict which patients would
actually complete the trial. This allows for predicting the
response for completers as well as for subjects dropping
out of the trial. Furthermore, the dropout pattern (all drop-
outs, dropouts due to lack of efficacy or due to adverse
events) may be considered as a clinical endpoint in itself,
and would thereby be relevant to include in E-R analyses.

Dropout models are time-to-event analysis, typically
based on the principles of proportional hazard models,
extended with terms that depend on concentration/
exposure, level of side effects, and efficacy. Inspiration for
implementation of dropout models, in particular for informa-
tive dropouts, can be obtained elsewhere.15,16

In this tutorial we argue for simplicity, and do not recom-
mend a general implementation of dropout models across E-
R analysis. In fact, it may often be most informative and rea-
sonably sufficient to evaluate the outcome expected if
patients adhere to treatment (as provided by models that
ignore dropouts), rather than aiming at predicting the true
outcome for the intention-to-treat population. However, for
dropout rates above 20% we recommend investigating these
as independent clinical endpoints, in particular for dropouts
related to adverse events. Such evaluations should be
included in the evaluation of benefits and risks, e.g., when
predicting the outcome of different dosing options.

Evaluation of covariates and subgroups
Covariates are important for evaluation of the E-R relation-
ship in subgroups of patients and for adjusting for confound-
ing factors (covariates that influence both the PK and the
response variable). Known and unknown confounding factors
may compromise the analysis if not properly accounted for,
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and this is probably the single most important source of error
in E-R analyses. Figure 1 illustrates the importance of
including sex as a covariate in the model in order to account
for a higher exposure in females than in males. From Figure
1a it appears that an Emax model with Hill coefficient repre-
sents a good fit to the data. However, by including the con-
founding covariate (sex) it becomes evident that the true
model (a simple Emax relationship) is more appropriate, dem-
onstrating now that response is almost constant across the
exposure range, as seen in Figure 1b.

Thus, the analysis needs to take into account possible
confounding factors by including these as covariates. Case-
control adjustment as a sensitivity analysis has recently
been published as a way to adjust for known confounding
factors in a model-independent analysis.17

In general, it is recommended to limit the number of
covariates based on criticality. The following covariates
should be considered:
• Always include the response variable at baseline and

covariates that are known to be relevant for PK and/or
response. Investigation of other covariates may be rele-
vant, such as:

� Trial/population/add-on-treatment.
� Age, body weight, sex, region of the world.
� Additional demographics (e.g., other non-PK relevant

covariates), relevant concomitant medication/illness etc.

Implementation of covariates can be tricky, since too
many covariates on too many parameters will increase the
uncertainty and potentially render parameter estimation
impossible. In general, more covariates can be included for
parameters that are estimated with high precision, e.g.,
covariates on the baseline effect (see below) that have the
same effect on active treatment and placebo, compared to
more uncertain parameters, such as the Emax or EC50.

1. Covariates on the baseline effect (with similar impact on
active treatment and placebo). Several covariates may
be included without problems, but should be kept to rele-
vant and uncorrelated covariates:

• For phase III data with large numbers of patients:
Include the most important covariates listed above.
Consider additional covariates, only if required.

• If the number of patients is limited, e.g., phase IIa:
Include only the baseline value of the response as
covariate. For known confounding covariates (or pre-
specified analysis), e.g., if sex is relevant for both PK
and response, conduct additional analysis separately
in males and females.

2. Covariates on treatment effects:

• These covariates should be investigated, preferably for
Emax. Only a few (e.g., 0–2) covariates should be included
in the final model, to avoid over parameterization.

• Do not include such covariates for statistical testing of
evidence for E-R (Type A analysis). If relevant, test
subgroups of patients separately.

• Do not implement covariates for EC50 unless data
from different dose levels are available for individual
subjects, or if such covariates are obvious from the
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Figure 1 Visualization of E-R relationships (a) without and
(b) with stratification for a confounding covariate (gender).
(c) The proposed method for model visualization compared
to the model fit for each quantile. Data points are mean
effects with 95% CIs for quantiles of AUC values and the
lines represent the estimated E-R relationships. The horizon-
tal lines with diamonds along the abscissa represent
medians and 90% exposure ranges at each dose level. The
three panels are based on identical datasets generated by
simulation of 1,000 subjects equally distributed between
males and females.
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data. Covariates on EC50 can usually be substituted
by covariates on Emax.

Visualization of results
E-R analysis may be performed as graphical data analysis
and/or model-based analysis. Graphical data analysis is
most often performed prior to initiating model-based analy-
sis and to qualify the model-based analysis, when possible.
Occasionally, graphical analysis may be the single method
of choice for particular tasks.

Visualization of observations. Graphical analysis as scat-
terplots of individual response vs. exposure often turn out
to be complex and difficult to interpret due to variability in
response. This is certainly the case for categorical end-
points, but most often also in the continuous setting.
Instead, we recommend dividing subjects into exposure
quantiles, as follows. For each subgroup/trial in the graphi-
cal plot, subjects on active treatment are divided into quan-
tiles based on their exposure values. For each quantile (or
placebo) the mean and 95% confidence interval (CI) for the
response is plotted against the median exposure level, with
a value of 0 exposure for subjects treated with placebo. For
multiple analyses conducted on small datasets, it may be
advantageous to use the same exposure quantiles for all
analyses, in order to better compare one timepoint/endpoint
to another. In other cases, it may be more important to
ensure that the same or similar number of subjects is
included in all quantiles. Such quantile plots usually provide
useful information of the trends of the data, and hence can
be used also for qualifying the model-based predictions.

Visualization of model-derived predictions. A key pur-
pose of the model-based analysis is to take into account
that the subjects with the highest exposure are more likely
to be of a different demographic composition than subjects
with the lowest exposure. To address such issues, it is rec-
ommended to generate a mean exposure–response model
prediction by the following procedure:

1. For each subject in the dataset, take the actual covari-
ates (sex, body weight, etc.), and use the model to pre-
dict the response across the entire exposure range for a
number of discrete prefixed exposure values.

2. At each of these exposure values, calculate the mean
model prediction for all subjects within each trial/
subgroup.

This procedure ensures that the model-predicted differen-
ces in response across the exposure range are driven by
differences in exposure, rather than by a shift in covariate dis-
tributions across the exposure range. The proposed method
for presenting model results has been used for all models
and figures throughout this tutorial. Figure 1c illustrates the
importance of this method by comparing the proposed
method to the mean model fit obtained for each quantile of
exposure. As seen, the proposed method for model visualiza-
tion illustrates that the true E-R relationship is flat and thereby
provides additional information besides a simple illustration of
data. On the other hand, if we choose to present the mean
model fit in each quantile (which may be a relevant model

diagnostic plot), we may falsely conclude that the model sup-

ports that higher exposure provides higher response.
Often, visualizations of E-R include different extensions,

e.g., variability between subjects, or uncertainty in the pre-

dictions. Inclusion of prediction uncertainty can be relevant,

e.g., for a statistical conclusion, or when analyzing and

comparing the benefits and risks from several different end-

points. However, a general introduction of model uncer-

tainty may be less relevant, as uncertainty may depend

heavily on the assumptions, parameterization, and com-

plexity. For example, if the modeler includes components

that are not monotonically increasing with dose, these could

easily provide a similar mean E-R relationship, but with

large changes to the uncertainty estimates. Confidence

intervals around the quantiles, as presented in this tutorial

provide a model independent assessment of the

uncertainty.

Visualizing the timecourse of response. Diagnostic plots

of timecourse models most often include response data vs.

time with overlay of model predictions. To focus the applica-

tion of timecourse models towards the influence of expo-

sure, we recommend also including quantile plots of

response vs. exposure, e.g., at end of trial with model pre-

dictions, with similar analysis overall, and for subgroups

(similar to the recommendation for the single timepoint

analysis described above). In situations where timecourse

models are not pursued, we recommend including explora-

tory graphs of response vs. time for subgroups of expo-

sure/dose to investigate if a single endpoint analysis is

sufficient.

EXAMPLES: LINKING KEY QUESTIONS AND

ANALYSES

The link between key questions and the corresponding E-R

analyses is introduced in Table 2. The following section

explains in more detail when and why to apply the different

types of analyses.

Do data indicate a treatment effect? (Type A question)
During early development, the most important question is

whether the compound has an effect or not, i.e., to estab-

lish clinical proof of principle following phase I/IIa, in order

to decide whether to proceed with full clinical drug develop-

ment. Due to the limited number of patients contributing

data at this stage, the power may be limited when using

classical statistical testing of treatment outcome vs. placebo

for each dose. For this reason, an E-R analysis using all

available data across doses may provide important support-

ive evidence of effectiveness.
Although the true E-R relationship may be more compli-

cated, a generic analysis using a linear approximation is

recommended for this purpose using the prespecified

model (see Type A in Table 2). As depicted in Figure 2,

the variability in data from phase I/IIa trials may preclude

any conclusions regarding the shape of the E-R relation-

ship, but nevertheless, a treatment effect may be estab-

lished using the assumption of a linear relationship and
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testing if the slope of the line is significantly different from
zero.

Obviously, identification of a treatment effect as statisti-
cally significant will be relevant, not only at the end of
phase I/IIa, but for many questions throughout the develop-
ment. This may not be relevant for primary endpoints in
phase III, but in other situations E-R analyses may assist in
concluding if a borderline effect is real. For example, for
safety data, it can be extremely important to conduct E-R
analyses as part of the totality of evidence, either to sup-
port or challenge findings that appear unclear or question-
able using classical statistical analyses.

Does the drug effect increase with higher doses?
(Type B question)
For an already established effect, it is often relevant to test
if the effect increases across the studied dose range to
evaluate the benefits and risks for one dose level against
another. Such a question is generally applicable when using
E-R analysis to bridge from one dose level to another, e.g.,
by illustrating that the response for a safety biomarker is
similar at all dose levels, as seen in Figure 3. This question
may be particularly useful at the submission phase, when
attempting to reach solid (yes/no) conclusions for different
endpoints to justify a recommended dose. At earlier phases
in drug development, e.g., when designing phase III trials,
dose selection may be based on the expected E-R relation-
ship, i.e., using a Type C analysis (Table 2) to ensure that
phase III dose levels will provide adequate efficacy and
safety, also in subjects with particularly high or low
exposures.

Similar to Type A questions, Type B questions (Table 2)
can be addressed by establishing a P-value for the slope
using a prespecified linear model of effects vs. exposure.
However, in this analysis the placebo data must be
excluded from the analysis to ensure that the placebo
group does not drive a false-positive conclusion. As seen in

Figure 3, a treatment effect may be obvious when compar-

ing to placebo data, but nonetheless, an E-R relationship

may be absent when considering only the studied dose

range and disregarding the placebo effect in the analysis.

What are the characteristics of the E-R relationship?

(Type C question)
A model of the E-R relationship based on primary efficacy

endpoints to support proposed dose levels is perhaps the

most common type of E-R analysis. More so for phase IIb/

III, compared to early clinical drug development, where less

information is available. Often phase III is conducted with

one or two doses, and as seen in Figure 4, the inclusion of

phase II data for this analysis may be crucial in order to

cover a sufficiently large dose range.
Whereas these thorough Type C analyses are currently

more common for efficacy endpoints, they would be equally

important for safety or tolerability endpoints, in order to jus-

tify the benefit–risk of different dose levels, e.g., summar-

ized in a table such as Table 3, for the population as a

whole, and for selected subpopulations. This may involve

exploration of alternative doses, e.g., to illustrate that a

lower dose would provide insufficient effects and that higher

doses would be associated with limited additional benefit or

unacceptable tolerability. In order to provide an accurate

description of the data and the best possible predictions, it

will most often be necessary to adapt the structural model

and covariates to the actual data. Whereas this type of

analysis provides the most accurate predictions of the

expected impact of a dose change, a Type B analysis

(Table 2) would be more useful to provide firm conclusions,

whether a difference exists between effects of e.g., the two

highest dose levels.
In addition to such Type B analysis, comparing one dose

to another, a Type C analysis with characterization of the

entire dose/exposure–response relationship is often applied
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Figure 2 Plot to visualize a prespecified analysis for establishing
supportive evidence of effectiveness. Data points are mean and
95% CI of effects for quantiles of AUC values. The horizontal
lines with diamonds along the abscissa represent medians and
90% exposure ranges at each dose level. Data was simulated
with 8 active 1 4 placebo subjects at the two lower dose levels,
and 16 active 1 8 placebo subjects at the highest dose level.
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Figure 3 Plot to visualize the analysis used to test if already
established effects increase with dose in the studied dose range.
Data points are mean and 95% CI of effects for quantiles of AUC
values. The vertical lines with diamonds along the abscissa rep-
resent medians and 90% exposure ranges at each dose level.
Data were simulated with 240 subjects at each dose level or
placebo.
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to substantiate that the dose is adequate, providing expo-
sure within the therapeutic range. Before entering into
phase III, it is relevant to apply this overall E-R characteri-
zation to illustrate the expected outcome for subjects with
extreme exposure and to ensure that at least one of the
dose levels included is expected to provide adequate safety
and efficacy. Similar analyses should be applied for the
submission, both for the population as a whole, and for rel-
evant subgroups of patients.

DISCUSSION

E-R analysis has evolved as a discipline in its own right
during the past decade, and many specific cases have
been presented in the scientific literature during this
period.18–23

Summary of recommendations for E-R analyses
This tutorial emphasizes the importance of applying E-R
analyses throughout clinical drug development as tools for
understanding efficacy and/or safety data and as quantita-
tive support for decision making. An overview of key recom-
mendations is provided in Table 4.

Of major importance, we recommend linking the specific
E-R analyses with key questions in order to provide clarity
of results and to facilitate communication with internal and
external stakeholders, including regulatory agencies. For
communication purposes, it is important to show relation-
ships between exposure and response as model-derived
estimates overlaid with data. Use of individual data points
for this purpose will often blur the trends of the data, and
for this reason we recommend using quantiles of exposure
values for display of the observed data. The number of
quantiles may be adjusted in order to display data with the
appropriate resolution.

The use of model-based E-R analyses is generally based
on assumptions that should be defined and communicated
to stakeholders. In principle, it may not be possible to verify
all assumptions and so it may be considered to use a pure
data summary as an alternative to a model-based analysis.
However, using model-based analysis the presence of con-
founders may be investigated by inclusion of appropriate
covariates in the model. This is not always possible by
means of stratifications in graphical data analysis. More-
over, model-based E-R analyses provide additional oppor-
tunities in terms of investigating subgroups of patients and
exploring doses, which have not been tested in a trial. For
these reasons we consider model-based analyses to be the
method of choice unless evidence against it has appeared.

Applications of E-R analyses in clinical drug
development
At the outset, E-R analyses were explored mainly as a tool
for late-stage clinical drug development. The widespread
use of sparse PK sampling and population PK analyses in
confirmatory clinical trials have opened the possibility of
providing individual steady-state estimates of drug expo-
sure in terms of AUC values, which are suitable for E-R
analyses. Since then, many applications have emerged
covering the entire chain from early- to late-stage clinical
drug development, as outlined in this tutorial.

In general, E-R analyses aim to quantify effects at spe-
cific exposure ranges rather than providing statistical proof
of effect. As such, E-R analyses are often regarded as sup-
portive evidence of effectiveness, supplementing the statis-
tical evaluation of trial endpoints because the underlying
data are generally unbalanced and the model assumptions
cannot always be verified.

Nevertheless, the use of model-based evaluation of clinical
trials has been shown to increase power considerably24 and
time will show if this approach has an increasingly important
role as a primary analysis tool in future clinical trials.

On the other hand, in this tutorial we have shown that E-
R analyses have a clear potential for establishing early-
phase clinical proof of principle. This can be accomplished
in terms of statistical verification of a significant slope in a
linear approximation of exposure vs. response. Such con-
firmatory applications may be of value for the decision to
move into full clinical drug development with a drug
candidate.

Currently, applications of E-R analyses in clinical drug
development may be summarized as follows:

1. Establishing clinical proof of principle.
2. Providing a rationale for the recommended dose(s).
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Figure 4 E-R relationship obtained from phase II and phase III
trials. Data points are mean effects with 95% CI for quantiles of
AUC values and the line represents the estimated E-R relation-
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Table 3 Predicted response by hypothetical dose increase from 120 to

180 mg

Dose increase

120 mgfi180 mg

Predicted effect

increase

Predicted increase

in percentage of

subjects with

tolerability issues

All subjects 5% 7%

10% Heaviest subjects 8% 9%

10% Lightest subjects 3% 5%
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• Rationale for the recommended dose in subpopulations;
• Bridging results from one dose level to another;
• Exploring hypothetical dose changes.

3. Interpretation of unexpected findings.
4. Providing supportive evidence of effectiveness.
5. Exploring if adverse effects are related to drug exposure.

Perspectives
The successful application of E-R analyses in many con-

texts raises the question of whether new and more wide-

spread applications are likely to emerge in the future.21

One possible development could be to use model-based E-

R analyses for evaluation of trial outcome as a replacement

or supplement to a classical statistical evaluation. As men-

tioned above, studies have shown superior power com-

pared to statistical testing using model-based E-R analyses

as the primary trial analysis. Examples of the use of such

tools for evaluation of trial outcome exist for Parkinson’s

disease and hypertension.24 Whether the inherent limita-

tions and assumptions for model-based evaluation of treat-

ment outcome will limit development of this particular

application remains to be seen.
In order to facilitate E-R analyses, it is recommended to

include PK sampling in late-stage clinical drug develop-

ment,22 when it makes sense. We have experienced that
such analysis facilitates a deeper understanding of the data
to support the recommended dose(s), not the least in order

to address regulatory questions, both in terms of efficacy
and safety. However, we do acknowledge that for some pro-
grams widespread PK sampling will not make sense, e.g.,

for a drug where the dose is titrated to effect.
An E-R model may be used for estimating trial outcome

at doses not included in the pivotal trials, and cases exist

where such doses have been approved based on E-R.25

Time will show if increased focus on E-R analyses will stim-
ulate more applications of this kind, thus providing attractive

opportunities in terms of cost and time reduction.
Given the widespread use of E-R analyses for drug

approval, not only for efficacy but also for safety evaluation,

the question arises whether model-based analyses will
develop into a standard tool for benefit–risk evaluation.

Table 4 Summary of key recommendations provided in this tutorial

Key questions � Apply key questions, aligned with stakeholders as a central part of the Modeling Analysis Plan.

� Supplement generic questions with tailored questions for each investigational drug.

� Consider if traditional PK/PD models or E-R models will be most appropriate to address the questions.

Data considerations � Specify the relevant dataset and data imputations that will allow useful interpretation of exposure-response results without

obvious bias of the results.

� For medium to high dropout rates, dropout may be relevant to study as an independent clinical endpoint.

� Argue for the choice of exposure variable (AUC is a common choice, but is not always appropriate).

� Include PK sampling in late stage clinical drug development when it makes sense.

Assumptions and

limitations

� Address the assumptions when possible, e.g., by diagnostic graphs and sensitivity analysis.

� E-R analyses will most often be supportive evidence rather than the primary analysis, due to the possible presence of unknown

confounders.

Choice of analysis

method

• Align the analysis with the key questions.

• Consider if the model should be prespecified or if data based model development/selection is

more appropriate.

• Always estimate a single time point model and investigate, possibly by explorative graphs, if more advanced models are relevant.

� Timecourse E-R models may be relevant due to high inter-occasion variability or bias due to dropouts.

� Dropout modeling may also be relevant to provide a more nuanced picture of the response when looking into

completer populations or ITT analysis with specific imputation strategies.

Covariates • Covariates are important, in order to adjust for confounding factors.

• More covariates can be included for parameters that are estimated with high precision.

� Several covariates (with limited correlation) can be included for baseline effects; also in prespecified models.

� Limit the number of covariates for Emax (reduce by forward inclusion and backwards elimination).

� Include covariates for EC50 and Hill coefficients only when obvious from data and when

predictions are physiologically plausible.

Visualization of results � Visualize results by quantile plots, showing e.g. mean and 95% CI of response vs. median exposure.

� Always add a model prediction that takes into account the known confounders.

� The model prediction should reflect all subjects at all exposure levels.

� Consider if prediction intervals or confidence intervals provides relevant and objective additional information.
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Movement towards this situation has already been seen,

but many barriers need to be “removed” to further continue

this development.26

Development of guidelines and good practices
The expanded use of E-R analyses during the last decade

has been driven in part by regulatory initiatives such as the

US Food and Drug Administration (FDA)’s End of Phase 2a

meetings27 and the question-based clinical pharmacology

review, which includes several E-R questions.28,29

Regulatory guidance is available from the FDA and Euro-

pean Medicines Agency (EMA) for E-R analysis.30,31 It is

believed that revised guidelines with more specific recom-

mendations are likely to further stimulate consistent use of E-

R analyses by sponsors. Such guidelines would benefit from

specific recommendations for I) collecting PK samples

across late-stage clinical trials; II) expectations for establish-

ing a therapeutic window; III) evaluation for the entire patient

population as well as for subgroups of patients including

analysis of patients with extreme demographic characteris-

tics such as low and high body weight; and IV) for evaluation

of doses not specifically tested in clinical trials. One step in

this direction is the current EMA/EFPIA initiative to develop a

good practice guidance with the aim to improve consistency,

quality, and transparency for model informed drug discovery

and development (MID3).32

This good practices document is a first attempt to share

industry good practices for conducting E-R analyses in clini-

cal drug development. The authors encourage other com-

panies to share their internal recommendations to facilitate

an informed discussion of how to standardize these types

of analyses for maximum impact on clinical drug develop-

ment decisions.
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