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Abstract: Wheat is one of the essential grains grown in large areas. Identifying the genetic structure
of agronomic and morphological traits of wheat can help to discover the genetic mechanisms of grain
yield. In order to map the morpho-phenological traits, an experiment was conducted in the two
cropping years of 2020 and 2021 on the university farm of the Faculty of Agriculture, GonbadKavous
University. This study used two F8 populations, including 120 lines resulting from Gonbad x Zagros
and Gonbad x Kuhdasht. The number of days to physiological maturity, number of days to flowering,
number of germinated grains, number of tillers, number of tillers per plant, grain filling periods,
plant height, peduncle length, spike length, awn length, spike weight, peduncle diameter, flag leaf
length and weight, number of spikelets per spike, number of grains per spike, grain length, grain
width, 1000-grain weight, biomass, grain yield, harvest index, straw-weight, and number of fertile
spikelets per spike were measured. A total of 21 and 13 QTLs were identified for 11 and 13 traits in
2020 and 2021, respectively. In 2020, qGL-3D and qHI-1A were identified for grain length and harvest
index on chromosomes 3D and 1A, explaining over 20% phenotypic variation, respectively. qNT-5B,
qNTS-2D, and qSL-1D were identified on chromosomes 5B, 2D, and 1D with the LOD scores of 4.5,
4.13, and 3.89 in 2021, respectively.

Keywords: wheat; QTL; mapping; marker-assisted selection

1. Introduction

Wheat (Triticumaesivum L.) is a critical crop cultivated in a wide range of areas and is
one of the main sources of carbohydrates, protein, fiber, amino acids, minerals, and vitamins.
Wheat provides about 20% of the total protein and calories needed daily by 4.5 billion
people worldwide [1-3]. Reducing agricultural farms and climate change is a significant
challenge in supplying wheat to the world’s growing population [4]. Therefore, there is
an urgent need to increase wheat productivity, and growing high-yielding wheat cultivars
is one of the main strategies to increase total food production [5]. The main traits that
determine the yield of wheat are the number of spikes, the number of grains per spike,
and the weight of 1000 grains. In addition, spike length and the number of spikelets per
spike, as well as the length, width, and area of flag leaf, greatly affect yield [6-9].

Significant advances in molecular biology and biostatistics have led to identifying
several genes for grain-yield-related traits [10-13].

Identifying the genetic structure of yield-related traits classified as quantitative traits
can help to discover the genetic mechanisms of grain yield [4,14-16].

Using different molecular markers and linkage maps in wheat, it is possible to identify
markers associated with traits and use them in marker selection programs [14,17-20].

Hu et al. [4] have identified 161 quantitative trait loci (QTLs) for yield-related traits,
including grain yield per plant; the number of spikes per plant; the number of kernel per
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spike; spike length; the number of spikelet per spike; flag leaf length; flag leaf width; flag
leaf area; plant height; anthesis date; and date heading on 21 chromosomes except for 2D,
3D, and 6D. Chopra et al. [21] have evaluated a population of 206 recombinant inbred lines
(RILs) leading to wheat cultivars WL711 and C306 under drought stress conditions (F8 and
F10). Major QTLs, including gFLAWD.2D.1, qCMSWD.3B.3, and qCMSWD.3B.3, for flag
leaf area, flag leaf length, flag leaf width, and cell membrane constant were identified on
chromosomes 2DS and 3BS. Liu et al. [22] have examined a population of 276 RILs resulting
from SYN-D x Weebilll under drought and heat stresses. Finally, 71 QTLs were identified
for the study traits. Five QTLs for yield and traits related to drought, heat, and drought
tolerance were identified on chromosomes 2A, 3D, 6D (two QTLs), and 7B.

Owing to the importance of identifying QTLs controlling yield and yield-related traits,
the present study was conducted to detect genes controlling quantitative traits in RIL
populations of Iranian wheat resulting from Zagros x Gonbad and Kuhdash x Gonbad in
2020 and 2021.

2. Materials and Methods

This study was carried out in 2020 and 2021 in the research farm of Gonbad Kavous
University at Latitude and Longitude 37°15'0"” north and 55°10'2" east, with an altitude of
46 m above sea level, which has a warm and semi-arid Mediterranean climate based on the
climatic classification of Koppen.

The rain and temperature values in 2020 and 2021 are presented in Figure 1, and other
meteorological statistics are given in Tables S1 and S2. In this study, 120 lines of two F8 RIL
populations resulting from Zagros x Gonbad and Kuhdasht x Gonbad were cultivated
according to the alpha lattice design. Planting rows were 2 m in length, and the row spacing
was 20 cm. The number of germinated seeds (NGS), the number of days to flowering (NDF),
the number of days to physiological maturity (NDM), grain filling period (GFP), the number
of tillers (NT), plant height (PH), peduncle length (PDL), peduncle diameter (PD), spike
length (SPL), spike weight (WSP), flag leaf length (FLL), flag leaf width (FLW), the number
of spikelets per spike (NSSP), the number of fertile spikelets per spike (NFSP) the number
of grains per spike (NGSP), grain length (GL), grain width (GW), 1000-grain weight (TGW),
awn length (AWL), biomass yield (BYI), grain yield (GYI), straw-weight (STW), and harvest
index (HI) were measured.
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Figure 1. Rainfall and temperature in the experimental region.

In order to extract DNA, young leaves of 120 lines from each population along with
the parents were used, and then genomic DNA was extracted according to the modified
cetyltrimethylammonium bromide (CTAB) method [23]. A polymerase chain reaction was
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performed for 600 simple sequence repeat (SSR) primers (https:/ /wheat.pw.usda.gov/GG3/,
accessed on 30 March 2020) for each population using a 10 pL. BioRad thermocycler. PCR
solution contained 1X PCR buffer, 0.25 uL MgCl,, 1 pldNTPs, 0.5 pL of each primer with
5 mM concentration, Taq polymerase, and 50 ng template DNA. After 5 min of denaturing at
94 °C, 35 cycles were performed, including 1 min at 94 °C, 45 s at an annealing temperature
of 55 °C, 1 min at 72 °C, and final expansion for 7 min at 72 °C. The amplification products
were separated by electrophoresis in a 3% agarose geland visualized under UV after
staining with ethidium bromide or electrophoresis in a 6% polyacrylamide gel visualized
by a simplified silver staining method [24].

A total of 689 SSR primers were used in this research. These SSR primer pairs were
surveyed based on their polymorphism between two parents, and the primers exhibiting
polymorphism were used to amplify the DNA of each plant of the RIL population.

All polymorphic SSR markers were evaluated with the x? test against a 1:1 segre-
gation ratio at a 0.01 probability level using the QGene program [25]. Linkage analysis
was conducted with Map Manager QTX17 [26] for the segregating polymorphic markers.
The maximum-likelihood map order for the markers was determined with a logarithm
of the odds (LOD) score threshold of 3.0, and used as a fixed sequence framework for
integrating the linkage data from the population. All map distances (centi Morgan) were
reported in Kosambi units [27], and the critical LOD score thresholds of 3.0 and 0.05 were
used to determine the linkage groups and calculate map distances. Lander and Botstein [28]
have established an interval mapping framework for mapping QTLs. The genome-wide
composite interval mapping (gCIM) was applied to identify QTLs and examine their effects,
and the point with the highest LOD was identified as the area with the highest probability
of QTL. Chromosome walking was performed at 2 cm, and a LOD score of 2.5 was consid-
ered as a threshold. The QTL.gCIMapping.GUI v2.0 package was used for gCIMapping
methods with R software [29].

3. Results
3.1. Gonbad Zagros RIL Population
3.1.1. Phenotypic Evaluations

The frequency distribution of phenotypic values of the study traits is shown in
Figures S1 and S2 for the population resulting from Gonbad x Zagros in 2020 and 2021,
respectively. The phenotypic distribution of traits was continuous and normal, a reason for
the quantitative inheritance of the study traits.

The GYI had a direct and significant relationship with NT, BYI, and the TWSP in
2020 and 2021. Moreover, in 2020, a positive and significant relationship was observed
between FLW, NSSP (0.556 **), NGSP (0.864 **), and GWSP (0.518), as well as SPL and
FLW (0.53 **) (Figure 2). In 2020, a positive and significant correlation was observed
between NSSP, SPL, and FLL. There was also a positive relationship between WSP and
PDL (Figure 3).

The GYI in both years was directly and significantly correlated with NT, BYL, and WSP.
Stepwise regression was used to select the traits that critically affect grain yield. In 2020,
NSP and TGW explained the most changes in GYI (Table 1). However, in 2021, NT, NGS,
STW, FLW, and INDP formed the regression model and explained 69.50% of phenotypic
variation in the GYI (Table 2).

Table 1. Results of stepwise regression of grain yield per hectare as a dependent variable and other
traits as the independent variables in the F8 population resulting from Gonbad x Zagros in 2020.

Traits Intercept Coefficients Std. Error F R?
b1 b2

NSP 1854.461 43.909 ** 1044.419 160.974 ** 0.577

TGW —1397.54 44.152 ** 83.025 ** 1018.535 88.166 ** 0.594

** significant at the 0.01 probability levels.
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Figure 3. Correlation of study traits in F8 wheat lines resulting from Gonbad x Zagros in 2021.
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Table 2. Results of stepwise regression of grain yield per hectare as a dependent variable and other
traits as the independent variables in the F8 population resulting from Gonbad x Zagros in 2021.

Int . Coefficients )

Trait nterce Std. E F

raits P b1 b2 b3 b4 b5 Tror R
NT 3682.314 6.156 ** 1005.028 18.641 ** 0.276

NGS 1678.096 6.016 ** 9.014 ** 850.764 23.197 ** 0.491

STW 946.991 5.345 ** 8.019 ** 0.108 * 806.549 19.343 ** 0.552

FLW 2121.728 5.144 ** 7.257 ** 0.121 ** —46,073.598 * 759.584 18.104 ** 0.612
PD —1864.79 5.400 ** 7249 **  (0.124 ** —56,296.787 ** 1591.834 ** 680.978 20.466 ** 0.695

* and ** significant at the 0.05 and 0.01 probability levels, respectively.

To group the study lines, cluster analysis was performed based on the grain yield. In
both years, the lines were divided into two groups. Lines 26, 44, 92, 91, 65, 29, 39, 97, 58, 15,
81, 20, 75, 24, 23, and 37 had high performance in both years, while line 54 and line 22 had
higher performance in 2020 and in 2021, respectively (Figure 4).

GZY1

GZY2

High vield lines in 2020 and 2021: 26, 44, 92,

91, 65, 29, 39, 97, 58, 15, 81, 20, 75, 24, 23, 37

Figure 4. Classification of F8 wheat lines resulting from Gonbad x Zagros in 2020 and 2021.

Examining the reaction of lines caused by Gonbad x Zagros crosses by considering
significant traits in 2020 using Biplot analysis showed that lines 31, 30, 30, 20, and 26 were
the most valuable in terms of PH, NDF, TGW, GYI, and NSP. Considering the traits of PH,
NDF, TGW, GYI, and NSP, genotypes 10 and 66 were selected as the best cultivars. NDF
and TGW show the most diversity for the examined lines.

Moreover, Biplot analysis in 2021 showed that lines 72, 65, 79, 102, and 65 were better
in terms of PH, NDE, TGW, GYI, and NSP. Considering these traits, genotype 102 was
selected as the best cultivar. The traits of GYI and HI were the most diverse for the studied
lines (Figure 5).
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Figure 5. The reaction of lines caused Gonbad Xx Zagros crosses by considering significant traits in
2020 and 2022 using Biplot. Identifying genotypes with higher values for traits (A,D), determining the
best genotype considering significant traits (B,E), and identifying the most important traits affecting
genetic diversity (CF).

3.1.2. Genotypic Evaluations

The linkage map in the population derived from Gonbad x Zagros was created
using 523 SSR markers on 21 wheat chromosomes. This map covered 4749.6 cm of the
wheat genome. The marker distances for genomes A, B, and D were 6.1, 6, and 6.2 cm,
respectively. The length of genome A was 1499.3 cm, and those of genomes B and D
were 1665.1 and 1585.2 cm in the total map length, respectively (Figure 6). A total of 180,
173, and 170 SSR markers were distributed on genomes A, B, and D, respectively. In the
prepared map, the average distance between the flanked markers for the whole genome
was 9014. Chromosome 3B had the maximum map length (271.4 cm) and the highest
number of markers (28 markers), and chromosome 7D had the minimum map length
(147.6 cm) and the lowest number of markers (16 markers).
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Figure 6. SSR linkage map developed using F8 wheat lines resulting from Gonbad x Zagros.

In the Zagros and Gonbad populations, different QTLs were identified for two years.
In 2020, 12 QTLs were identified for 8 traits; in 2021, 22 QTLs were identified for 15 differ-
ent traits.

In 2020, some QTLs were identified for NGS, NDF, FLL, and GW. Two QTLs were
identified on chromosomes 1A and 4B for the number of germinated seeds, explaining
22.15% and 16.01% of phenotypic variation in the trait, respectively. For the number of
days to spiking, a QTL was identified on chromosome 6D, explaining 30.50% of phenotypic
variation. For FLL, two QTLs were identified on chromosome 1D at 70.51 and 161.52 c¢m,
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with LOD scores of 3.86 and 3.17, respectively. In 2020, qSD-2A was identified for GW on
chromosome 2A, explaining 52% of phenotypic variation.

For PDL, there were three QTLs on chromosomes 1B, 4A, and 4B in 2020, and two
QTLs on chromosome 1B in 2021. These QTLs were mapped at 4.85, 97.36, 193.57, 49.22,
and 160.32 cm. One QTL was identified for PDL on chromosome 1B in both years. For GL,
one QTL was identified on chromosome 4D with an LOD score of 2.79 in 2020, and five
QTLs on chromosomes 1D (two QTLs), 3A (two QTLs), and 7D, with LOD scores of 2.2,
2.99,3.97,3.39, and 5.16, respectively, in 2021. For WSP, three QTLs were identified (Q<SW-1B
in 2020, and qSW-2B and qSW-3A in 2021) on chromosomes 1B, 2B, and 3A, respectively.
These QTLs explained 15.50-22.50% of phenotypic variation in WSP. A QTL was identified
for TGW on chromosomes 1A and 1D in 2020 and 2021, respectively. The LOD values for
these QTLs were 3.10 and 2.59, respectively.

In 2021, some QTLs were identified for the tiller number, plant height, spike length,
spike weight, harvest index, and peduncle diameter. qNT-2B was identified at 37.23 cm
from the top of chromosome 2B with an LOD score of 3.12 and an additive effect of 104.97 for
the number of tillers.

For PH, two QTLs were identified on chromosomes 1A and 3A, explaining 16.5%
and 10% of phenotypic variation in the trait, respectively. SPL on chromosome 7B at
127.75 cm and with an LOD score of 2.92 was able to explain 26.06% of phenotypic variation.
In 2021, qTSW-6A was identified for total spike weight. This QTL also explained more than
31% phenotypic variation in the total WSP. The additive effect and the LOD scores were
—0.195 and 2.54, respectively. For each of the PD and HI, only one QTL was identified in
2021. qPD-7B on chromosome 7B with 21.58% of phenotypic variation in a trait and qHI-7D
on chromosome 7D with above 30% of phenotypic variation in a trait were recognized as
the significant QTL effects (Tables 3 and 4).

Table 3. QTLs identified using the F8 population derived from Gonbad x Zagrosin 2020.

Trait Chr Position (cM) Additive Effect LOD Left_Marker Right Marker  R2? (%)
gNGS1A 1A 102.29 —17.440 3.42 Xwmc744-1A cfa2219 2215
NGS  oNGs4B 4B 109.25 14.8282 3.15 gwm113 cfd283 16.01
gPDL-1B 1B 485 1.764 3.11 gwm374.1 gwm374.1 13.775

PDL  qPDL4A  4A 97.36 1.5644 273 Xgpw7543-4A  Xgpw7543-4A  10.835
gPDL-4B 4B 193.57 ~1.663 2.76 gwm495 gwm495 12.245
gFLL-1IDa 1D 70.51 12198 3.86 BARC169 Xwmcl47-1D  17.625

FLL  grLLaDb 1D 16152 —1.2523 3.17 gwm232 Xgpw4311-1D 18575
GL  qGL4D 4D 196.25 0.6967 2.79 BARC48 BARC288 27.985
GW  qGW-2A  2A 19.62 0.1408 331 BARC220 BARC220 26.035
NDF  gNDF6D 6D 0 2.52 297 Xgpw7292-6D  Xgpw7292-6D  30.635
TGW  qTGW-ID 1A 177.28 2.6711 310 Xgpw7258-1A  BARC287 28.495
WSP  qWSP2B 1B 74.358 0.3048 2.59 gdm28 BARCS0 2291

Table 4. QTLs identified using the F8 population derived from Gonbad x Zagros in 2021.

Trait Chr P?:;&;’ n Ag;gge LOD Left_Marker Right_Marker R2 (%)
NT gNT-2B 2B 37.23 104.097 3.12 BARCO0 gwm429 27.645
qPH-1A 1A 82.36 —6.064 2.99 Xwmc93-1A  Xwmc93-1A  16.635

PH qPH-3A 3A 53.56 —4.763 2.93 BARCS57 cfa2262 10.265
gPDL-1Ba 1B 14922 2292 2.59 Xwmc85-1B  Xwmc85-1B  16.94

PDL 4PDL-1Bb 1B 160.32 ~2.180 2.68 Xgpw3190-1B BARC302 15325
SPL qSPL-7B 7B 127.75 0.777 2.92 Xwmc335-7B gwm302 26.06
qWSP-2B 2B 73.25 0.224 3.45 gwm630 gwm630 19.585

WSP - qwsp3a  3A 15.65 —0.202 394 Xgpwd221-3A  Xgpw2266-3A  15.925
TWSP  qTWSP-6A  6A 12.36 200.093 4.04 BARC171 BARC171 31.365
GWSP  qGWSP7A  7A 121.47 ~0.195 2.54 cfa2257 cfa2257 2136
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Table 4. Cont.

Position

Additive

Trait Chr (M) Effect LOD Left_Marker Right Marker  R? (%)
GW qGW-7B 7B 209.45 0.216 2.12 gwmé611 Xwmc792-7B 21.58
qGL-1Da 1D 67.69 —2.630 2.99 BARC169 Xwmc147-1D 6.875
qGL-3Aa 3A 76.32 —3.134 3.39 Xwmc640-3A  Xgpw7213-3A 9.765
GL qGL-1Db 1D 37.23 —1.828 2.77 Xwmc489-1D Xwmc489-1D 3.32
qGL-3Ab 3A 44.28 2.393 3.97 BARC57 BARC57 5.69
qGL-7D 7D 78.32 3.345 5.16 Xgpw4385-7D gdm145 11.12
TGW qTGW-1D 1D 70.51 2.041 2.59 BARC169 Xwmc147-1D 22.54
HI qHI-7D 7D 35.22 6.22 3.18 cfd41 Xgpw2160-7D  30.235
NEFSP gNFSP-5D 5D 4424 —0.28 2.07 BARC143 Xgpw7238-5D  18.765
NDF qNDF-4A 4A 18.09 —2.603 3.37 Xgpw4545-4A BARC106 26.095
NDM qNDM-6B 6B 174.36 —1.452 2.65 gwme626 gwm626 25.99
GFP qGFP-5D 5D 138.29 —1.966 2.89 Xwmc264-5D cfd7 23.185

3.2. Gonbad Kohdasht RIL Population

3.2.1. Phenotypic Evaluations

The frequency distribution of phenotypic values of the study traits is shown in
Figures S3 and 5S4 for the population resulting from Gonbad x Kuhdasht in 2020 and
2021, respectively. In this population, the phenotypic distribution of traits was continuous
and normal.

The results showed that FLL had a positive and significant relationship with the traits
of SPL, FLW, and NSSP in 2020 and with NSSP in 2021. In 2020, GYI had a positive and
significant relationship with NSP (0.692 **) and total WSP (0.737 **). There was a positive
and significant relationship between AWL, PH, and NDM (Figure 7).
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Figure 7. Correlation of study traits in F8 wheat lines resulting from Gonbad x Kohdasht in 2020.



BioTech 2022, 11, 32 11 of 20

In 2021, a significant and positive relationship was observed between BYI, GYI,
and STW. The results showed that there is a positive and significant relationship between
WSP and PDL, as well as between NSP and NT (Figure 8).
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Figure 8. Correlation of study traits in F8 wheat lines resulting from Gonbad x Kohdasht in 2021.

The results of stepwise regression showed that, when GYl is considered as a dependent
variable and other traits as independent traits, GYI is explained by NSP and INDP (Table 5).
However, NT and NGS and GL in 2020 best explained GYI (Table 6).

Table 5. Results of stepwise regression of grain yield per hectare as a dependent variable and other traits
as the independent variables in the F8 population resulting from Gonbad x Kohdasht cross in 2020.

Coefficients
Traits Intercept b1 b2 Std. Error F R? (%)
NSP 2671.308 37.511 ** 1142.479 108.576 ** 0.679
PD —557.581 37.939 ** 1201.858 ** 1093.953 65.065 ** 0.726

** significant at 0.01 probability levels.

Table 6. Results of stepwise regression of grain yield per hectare as a dependent variable and other traits
as the independent variables in the F8 population resulting from Gonbad x Kohdasht cross in 2021.

I Coefficients )

Traits Entered in Mod ntercept Std. E F R* (%

raits Entered in Mode P b1 b2 b3 Iror (%)
NT 4584.416 4.059 ** 1022.691 21.971 ** 0.157
NGS 3179.422 4.136 ** 5.922 ** 963.953 20.274 ** 0.257
GL 2183.118 3.682 ** 6.310 ** 78.775* 943.137 16.193 ** 0.295

* and ** significant at the 0.05 and 0.01 probability levels, respectively.
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The cluster analysis results divided the study lines into two groups based on study
traits. In both years, lines 63, 90, 26, 119, 99, 72, 74, 7, 115, 20, 103, 11, 114, 12, 15, 60, 56, 101,
and 45 had high GYI (Figure 9).

GKY1

GKY2

High yield lines in 2020 and 2021: 63, 90, 26, 119,
99,72, 74,7,115, 20,103, 11, 114, 12, 15, 60, 36, 101,
45,73, 62, 4, 116, 28, 120,75, 112, 104, 53, 42, 23, 85,
36,9, 38, 8,4, 34,37

Figure 9. Classification of F8 wheat lines resulting from Gonbad x Kohdasht in 2020 and 2021.

The reaction of lines caused by Gonbad x Kohdasht crosses in 2020 showed that lines
106, 103, 103, 60, and 75 were the most important in terms of PH, NDE, TGW, GYI, and NSP.
Considering these traits, genotypes 26, 67, 60, and 63 were selected as the best cultivars.
The traits of NDF and TGW show the most diversity for the evaluated lines.

Moreover, Biplot analysis showed that lines 38, 103, 59, 59, and 59 were the most
valuable in terms of plant height, NDF, TGW, GYI, and NSP in 2021. The genotypes 59 and
38 were selected as the best cultivars. The traits of GYI, NSP, and HI showed the most
diversity for the studied lines (Figure 10).

3.2.2. Genotypic Evaluations

The linkage map was provided using 423 SSR markers of the genetic map. The markers
were distributed on 21 wheat chromosomes. The length of this map was 2975 cm, and the
average marker distances for genomes A, B, and D were 7.12, 6.96, and 5.78 cm, respec-
tively. The share of genome A in the length of the map was 948.2 cm, and the genomes B
and D were 946.9 and 890.9.9 cm of the wheat genome, respectively (Figure 11). Out of
423 SSR markers, 133, 136, and 154 SSR markers were identified on genomes A, B, and D,
respectively. In the prepared map, the average distance between adjacent markers in the
whole genome was 7.033. Chromosome 2B had the maximum linkage length (189.3 cm)
and the highest number of markers (25 markers), and chromosome 4B had the minimum
linkage length (85.5 cm) and the lowest number of markers (11 markers).
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Figure 10. The reaction of lines caused by Gonbad x Kohdasht crosses by considering significant
traits in 2020 and 2022 using Biplot. Identifying genotypes with higher values for traits (A,D),
determining the best genotype considering significant traits (B,E), and identifying the most important
traits affecting genetic diversity (C,F).

In 2020, QTLs were identified for GYI, BYI, GWSP, WSP, GW, and HI. For GY]I,
two QTLs were identified on chromosomes 1B and 5B. The LOD scores and their ad-
ditive effects were 3.23, 3.51, —526.73, and —747.96, respectively. The QTLs controlling
biological yield were identified on chromosomes 1B, 4A, and 5D, and explained 18% of
phenotypic variation in the biological yield. gGGWSP-2B and qGWSP-6D were identified on
chromosomes 2B and 6D at 1.57 and 141.22 cm from the top of chromosomes for GWSP with
13 and 10% phenotypic variation, respectively. For spike weight, five QTLs were identified
on chromosomes 1A, 5A, 7B, 2B, and 2D, explaining 5-12% of phenotypic variation in WSP.
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Figure 11. SSR linkage map developed using F8 wheat lines resulting from Gonbad x Kohdasht.

In 2021, only one QTL was identified on chromosomes 2A, 5B, 2A, 4D, 6B, and 6B for
NGS, NT, PDL, and NSP. Among these QTLs, gNT-5B with an additive effect of 0.413 and
an LOD score of 4.05 could explain over 21% of phenotypic variation in a trait. For AWL,
two QTLs were identified on chromosomes 4D and 6B at 53 and 17 cm, respectively. For the
number of grains per spike, three QTLs were identified on chromosomes 1D, 2A, and 4B.

For GL and NSSP, several QTLs were tracked in 2020 and 2021. A QTL was identified
on chromosomes 3D and 1D in 2020 and 2021, explaining 23% and 21% of phenotypic
variation, respectively. For NSSP, one QTL was identified on chromosome 2A at 86 cm
in 2020 and two QTLs on chromosome 6D and 4A at 57 and 97 cm, respectively, in 2021.
For NSP, three QTL were identified on chromosomes 1B, 2A, and 5D in 2020, and one QTL
on chromosome 2D in 2021, explaining 8, 7, 13, and 23% phenotypic variation, respectively.
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For PH, two QTLs were identified on chromosomes 1A and 3A, explaining 33% and
20% of phenotypic variation in a trait, respectively. For spike length on chromosome 7B at
127.75 cm with an LOD score of 2.92, it was able to explain 52.12% of phenotypic variation.
In 2021, qSTW-6A was identified for total STW. The QTLs also explained over 62% of
phenotypic variation in the total spike weights. The additive effect and the LOD score were
—0.195 and 2.54, respectively. In 2021, only one QTL was identified for each PDL trait and
harvest index. qPD-7B on chromosome 7B explaining over 43.16% of phenotypic variation
in a trait and qHI-7D on chromosome 7D explaining over 60% of phenotypic variation in a
trait were recognized as the significant QTL effects.

4. Discussion

GYI is a complex genetic trait strongly influenced by environmental conditions.
Therefore, direct selection for performance, regardless of the characteristics of its com-
ponents, can have misleading results. Therefore, grain-yield-related traits should be used
to increase yield [30].

Correlation analysis is an effective tool to determine the relationship between different
traits in genetically diverse populations to improve the crop modification process and indi-
cates the severity of dependence between the study traits. Breeders explain the relationship
between grain yield, agronomic, and morphological traits [31-33].

A positive and significant correlation was reported between grain yield, the number
of spikes, plant height, spike weight, spike length, the number of grains per spike, flag leaf
length, and 1000-grain weight. In the present study, NSP also significantly correlated with
yield [34]. In a study [35], NT, HI, and BIO had a significant positive correlation with GYI,
confirming our results.

Stepwise regression is used to select the most influential independent variables in
forming dependent variables, such as GYI. This method aims to create a regression equation
that includes the traits explaining the most changes in total performance [36,37]. Many
researchers have used stepwise regression to eliminate ineffective traits in GYI [38-41].

Adilova et al. [42] have classified wheat genotypes into four groups using clus-
ter analysis. There was a significant difference between the groups regarding morpho-
physiological traits [42]. In the present study, the lines were divided into two high-yield
and low-yield groups.

The comparison of two linkage maps showed that, among the 600 markers used,
151 markers were polymorphic for both populations and were used to prepare maps in
both populations. The highest similarity belonged to chromosome 2B, which had common
polymorphic markers, and the lowest similarity was related to chromosome 7B, which
had five markers in common. One of the reasons for these similarities can be pointed to a
common parent of the two populations.

Marza et al. [43] have examined a wheat RIL population resulting from Clarkxning
and 7840 crosses in several environments. In the present study, QTLs for grain yield and
their components were identified on chromosomes A1, Bl, B2, B3, A4, B4, A5, B5, B6,
A7, and D7 of the bread wheat genome. Sourdille et al. [44], in the study on genetic loci
associated with major agronomic traits of wheat, have identified four QTLs controlling plant
height. Marza et al. [43] has identified five significant QTL effects of 16.7, 16.9, 12.3, 14.9,
and 12.1 for plant height in wheat on chromosomes BS2, BL2, D2, DL2, and A6, respectively.

Sourdille et al. [44] have identified the genetic loci of wheat height. Four QTLs have
been reported for plant height. Keller et al. [45] have examined QTLs controlling lodging
resistance and identified 11 QTLs for plant height. A QTL with R? above 20% was identified
in this study on chromosome A3. Identifying this QTL on chromosome 3A could increase
the reliability of our result.

Borner et al. [46] have reported a QTL on chromosome 6A for peduncle length. An ob-
vious point about the identified QTLs is identifying QTL controlling the peduncle length in
both years on chromosome 1B, indicating the stability of QTL and confirming the results.
Borner et al. [46] have identified two QTLs for spike length on chromosomes D2 and B6,
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whereas, in the present study, only one QTL was identified for spike length on chromosome
7B in Gonad x Zagros in 2021.

In the present study, three QTLs were identified for the number of grains per spike
in the population resulting from Gonbad x Kuhdasht in 2021, two of which were on
chromosomes 2A and 4B, under different environmental conditions. As QTLs did not
appear in the same region on the chromosome under different environmental conditions,
it can be concluded that the interaction of QTLs in the environment regarding the number
of grains per spike is significant. Sishen et al. [47] have also identified several gene loci
for the number of spikelets per spike. Huang et al. [48] have identified several QTLs on
chromosomes 1 BL, 2AL, 2DL, 3BS, 4DS, 5DL, 6DL, and 7AS for spike. Kumar et al. [49]
mapped three QTLs for tiller number, two QTLs for biological yield, and three QTLs for
harvest index.

5. Conclusions

QTLs are significant in growth and phenotype development, but are not the only factor.
Plant phenotypes are prejudiced by several environmental factors, including temperature
and water availability. Stable and unstable QTLs in different environments or populations
strongly influenced by environmental conditions have emerged as a common feature
of quantitative traits in previous QTL studies [50]. Moreover, genetic factors, such as
epigenetics, affect phenotypes. Epigenetics acts as a connection between environment
and gene expression. Epigenetics refers to reversible inherited changes that occur without
altering the DNA sequence. In the present study, QTL mapping was employed to dissect
the genetic bases of morpho-phenological traits under two years using two populations.
In our study, many significant QTLs were identified for the traits in each population in
2020 and 2021. These QTLs differed in size and phenotypic variation ratio (Tables 7 and 8).

Table 7. QTLs identified using the F8 population derived from Gonbad x Kohdasht in 2020.

Trait QTL Chr Position (cM) Additive Effect = LOD Left_Marker Right_Marker R? (%)
NGS qNGS-6B 6B 33.26 —8.0386 2.76 Xgpw4175-6B cfd13 18.91
FLL qFLL-1Db 3A 40.26 0.6082 2.89 BARC284 Xwmc264-3A 18.05
GL qGL-3D 3D 110.25 0.2817 2.70 Xgwm645-3D Xgpw7114-3D 23.92
GW qGW-2A 2A 144.17 —0.0598 2.56 gwm?71.1 BARC208 9.90
NSSP qNSSP-2A 2A 86.25 0.3751 2.88 BARC201 BARC201 11.07
qNSP-1B 1B 45.23 8.8226 3.07 Xgpw4134 Xgpw4134 8.72
NSP qNSP-2A 2A 119.54 —8.4177 2.68 Xwmc261-2A Xwmc261-2A 7.94
qNSP-5D 5D 1.80 —10.8852 2.77 Xgpw4467-5D cfd18 13.28
HI qHI-1A 1A 108.75 —3.8254 3.15 gwm135 Xwmc24-1A 21.35
qGYI-1B 1B 0 —526.736 3.23 BARC181 BARC181 9.71
GYl qGYI-5B 5B 102.39 —747.969 351  Xgpw3124-5B  Xgpw5257-5B 195
qBYI-1B 1B 32.26 1579.43 3.03 Xgpw3122-1B Xgpw3122-1B 8.23
BYI qBYI-4A 4A 74.59 —1627.6 3.04 Xwmcl73-4A.1  Xwmcl73-4A.1 8.74
qBYI-5D 5D 130.18 —2353.14 4.05 Xwmcl61-5D cfd12 18.28
qGWSP-2B 2B 1.57 0.0966 5.71 BARC1027 gwmo614 13.35
GWSP .GWSP6D 6D 141.22 —0.0853 509  Xgpw7433-6D fd219 10.41
qWSP-2B 1A 108.75 —0.3722 3.07 gwml135 Xwmc24-1A 12.81
qWSP-2B 5A 37.26 0.331 2.71 Xgpw2249-5A  Xgpw3049-5A 10.13
WSP qWSP-2B 7B 39.86 0.3526 2.51 gwma333 Xgpw4314-7B 11.49
qWSP-2B 2B 83.26 —0.2552 3.06 Xgpw7641-2B Xgpw7641-2B 6.02
qWSP-2B 2D 103.26 0.2436 2.59 XwmcD6-2D XwmcD6-2D 5.48

We found many QTLs with minor and significant genetic effects in only one year.
Tables 3, 4, 7 and 8 report the flanking marker intervals of all QTLs identified in different
years and those resulting from different rain, temperatures, and other meteorological
factors. In two years, only one QTL (qPDL-1B) was identified for PDL during both years
on the same chromosome. It should be noted that gPDL-1B identified under deferent
meteorological factors were in the same genetic region (Tables 3 and 4).
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Table 8. QTLs identified using the F8 population derived from Gonbad x Kohdasht in 2021.

Trait Chr Position (cM) Additive Effect LOD Left_Marker Right_Marker R? (%)
NSG qNSG-2A 2A 62.23 22.2059 3.23 BARC279 BARC279 13.67
NT qgNT-5B 5B 64.30 0.413 4.05 Xgpw3035-5B BARC1120 21.16
PL qPL-2A 2A 28.82 1.0326 247 BARC220 Xgpw5177-2A 15.83
qOL-4D 4D 53.65 0.3434 2.44 Xgpw4132-4D Xgpw7795-4D 12.79
AWL qOL-6B 6B 17.61 —0.3967 291 BARC354 gwm?705 17.06
STW qSTW-6B 6B 42.16 —94.138 2.37 Xgpw7739-6B gwmo644 18.35
NTS gNTS-2D 2D 43.05 77.9566 4.13 Xgpw332-2D cfd233 23.87
qNSP-6D 6D 57.25 0.6214 2.71 Xwmcl13-6D gwml133 19.53
NSP gNspaa  4A 97.96 0.4065 244  BARC206  Xgpw7051-4A 836
gNGSP-1D 1D 499 3.145 3.52 Xgpw7082-1D Xgpw?7109-1D 15.25
NGSP gNGSP-2A 2A 173.50 —2.5984 2.69 Xgwm382-2A Xgwm356-2A 10.41
qNGSP-4B 4B 8.43 2.9969 3.12 gwmb38 BARC60 13.85
GL qGL-1D 1D 499 1.3773 3.89 Xgpw7082-1D Xgpw7109-1D 21.63

Apparently, the environmental effect on QTL arises from differential gene expressions
in different environments and may occur in any of the following three situations: (1) a QTL
is expressed in one environment, but not in another; (2) a QTL is expressed strongly in
one environment, but weakly in another, as indicated by the variation in its effects across
environments; and (3) a QTL is expressed very differently with opposite effects in different
environments [51,52]. As previously reported, one and three cases were also observed in
our study.

However, in this study, we identified significant QTLs that can be used in marker-
assisted selection wheat breeding programs thanks to the high percentage of explanations
of changes in each trait. It is expected that, after the result validation in different places and
populations, the QTLs identified in this study can be used in marker-assisted selection.
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from Gonbad x Kohdasht in 2020; Figure S4: Frequency distribution of observed values of study
traits in F8 wheat lines resulting from Gonbad x Kohdasht in 2021; Table S1: Meteorological statistics
from Gonbad Kavous Agricultural Research Station in 2020; Table S2: Meteorological statistics from
Gonbad Kavous Agricultural Research Station in 2021.
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