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SUMMARY

Increased consumption of fats and added sugars has been associated with an in-
crease in metabolic syndromes. Here we show that mice chronically fed an en-
ergy-rich diet (ERD) with high fat andmoderate sucrose have enhanced the absorp-
tion of a gastrointestinal fructose load, and this required expression of the arrestin
domain protein Txnip in the intestinal epithelial cells. ERD feeding induced gene and
protein expression of Glut5, and this required the expression of Txnip. Further-
more, Txnip interacted with Rab11a, a small GTPase that facilitates the apical local-
ization of Glut5. We also demonstrate that ERD promoted Txnip/Glut5 complexes
in the apical intestinal epithelial cell. Our findings demonstrate that ERD facilitates
fructose absorption through a Txnip-dependent mechanism in the intestinal epithe-
lial cell, suggesting that increased fructose absorption could potentially provide a
mechanism for worsening of metabolic syndromes in the setting of a chronic ERD.

INTRODUCTION

The consumption of energy-dense diets or the ‘‘western diet’’ has coincided with an increase in metabolic dis-

eases including obesity and type 2 diabetes (Chatterjee et al., 2017). An increase in ‘‘added sugars,’’ particularly

in liquid forms such as in sugar-sweetened beverages, has also been associated with an increase in metabolic

diseases (Bray et al., 2004; Khan and Sievenpiper, 2016; Schwarz et al., 2017). Sucrose, or table sugar, is

composed of onemolecule of fructose and onemolecule of glucose. Although they are isomers, fructose meta-

bolismdiffers fromglucosemetabolismas fructose can readily be diverted to the liver into ade novo lipogenesis

pathway (Lyssiotis and Cantley, 2013). Recent evidence suggests that fructose consumption at low doses may

simply be providing more glucose, as intestinal cells can metabolize low doses of fructose into glucose (Jang

et al., 2018). However, at higher doses, fructosemay be absorbed rapidly into the liver, bypassing key regulatory

steps in glycolysis, and thereby stimulating hepatic fat synthesis (Jang et al., 2018).

Txnip, a member of arrestin domain-containing protein family (Patwari and Lee, 2012), is a multifunctional

intracellular protein that coordinates signaling pathways, including oxidative stress, endoplasmic reticulum

stress, apoptosis, DNA damage, and inflammation (Spindel et al., 2011). The function of Txnip has been

defined through in vivo studies as a regulator of carbohydrate metabolism (Chutkow et al., 2008; Parikh

et al., 2007; Waldhart et al., 2017). Txnip regulates glucose metabolism (Parikh et al., 2007) by binding to

glucose transporters, Glut1 and Glut4 (Waldhart et al., 2017; Wu et al., 2013). Txnip can also regulate fruc-

tose metabolism in the setting of severe streptozotocin-induced diabetes (Dotimas et al., 2016), possibly

through binding to fructose transporters, Glut5 and Glut2, in intestinal epithelial cells. Previous epidemi-

ological studies have demonstrated the association of fructose consumption with type 2 diabetes (Malik

et al., 2010; Tappy and Le, 2010). Thus, to explore the relationship of an energy-rich diet (ERD) and fructose

metabolism, we studied acute fructose absorption in mice fed with an ERD.
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RESULTS AND DISCUSSION

Energy-Rich Diet Promotes Fructose Absorption and Elevates Txnip Expression

As hyperglycemia increases Txnip expression significantly (Dotimas et al., 2016), we studied normoglycemic

mice fed with an ERD, generally called a high-fat diet (HFD); this diet includes 7% calories as sucrose or 3.5%
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Figure 1. Energy-Rich Diet Promotes Fructose Absorption and Elevates Txnip Expression

(A) Schematic representation of the experimental procedure.

(B–F) Fructose absorption (i.e., 14C-fructose +metabolites) by various tissues from 4 weeks (n = 7–8) and 16 weeks (n = 3–8)

RD/ERD diet-fed mice after the intragastric oral gavage of 14C-fructose. Values are shown as mean G SEM. *p < 0.05,

**p < 0.01, or ***p < 0.001 as calculated by unpaired t test.

(G) A representative western blot and quantitative analysis of Txnip (molecular weight: 50kDa) and b-actin (loading

control, molecular weight: 42kDa) in the jejunal lysates of RD/ERD-fed mice (n = 7 mice/diet).Values are shown as meanG

SEM. **p < 0.01as calculated by unpaired t test.

(H) Gene expression of Txnip normalized to actb, house-keeping gene, in the jejunal samples from RD/ERD-fed mice

(n = 6–7 mice/diet). Values are shown as mean G SEM. **p < 0.01 as calculated by unpaired t test.

(I) Intestinal uptake of fructose was performed in the intestinal organoids extracted from Txnip wild-type (WT) and

knockout (KO) mice. Both palmitic acid (PA) and 30% fructose (veh+30% Fr) significantly increased fructose uptake in WT

organoids when compared with WT-veh. However, the deletion of Txnip significantly reduced both fructose-induced and

PA-induced fructose uptake. There was no significant increase in the PA-induced fructose uptake by Txnip WT organoids

after the addition of either 4% Fr or 30% Fr (n = 7–8 wells).

Values are shown as mean G SEM. *p < 0.05, **p < 0.01, or ***p < 0.001 as calculated by unpaired t test. WT, wild-type;

KO, knockout; veh, vehicle/BSA; PA, palmitic acid; and Fr, fructose.

See also Tables S1 and S2 and Figures S1 and S2.
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calories as fructose. C57Bl/6J male mice at ages 7–9 weeks were placed on RD (regular diet) or ERD for 4 or

16 weeks and their metabolic profiles (Table S1) were obtained. As seen in Tables S1 and S2, the fasting blood

glucose levels did not change with ERD feeding, suggesting that fasting blood glucose levels did not influence

the differences in fructose absorption in our study. As outlined in the experimental procedures (Figure 1A), the

mice were then administered 2 mCi of radiolabeled [14C-(U)]-D fructose dissolved in 1:1 fructose mannitol solu-

tion using intragastric gavage to examine intestinal fructose absorption. Although fructose is generally

consumed togetherwithglucose, our data indicate that ERD increases acute fructose absorption in the presence

of either glucose or mannitol in the gavage solution (Figure S1A). We assayed tissues at 20 min after gavage as
2 iScience 23, 101521, September 25, 2020



ll
OPEN ACCESS

iScience
Article
this is the peak time for fructose absorption in normal and diabetic mice (Dotimas et al., 2016). There was no

difference in the isotope retained in the small intestine, which includes both lumenal and absorbed fructose (Fig-

ure 1B); but interestingly, in both the short- (4 weeks) and long-term (16 weeks) ERD-fed mice, the amount of

absorbed isotope from gastrointestinal fructose was significantly increased in the portal vein, liver, and heart,

as depicted in Figures 1C–1E. Furthermore, a trend for increased 14C-fructose + metabolites (hereafter termed

only as 14C-fructose) level in the peripheral blood of ERDmice versus RDmicewas also observed, consistentwith

the known first-pass effect of fructose by the liver (Lyssiotis and Cantley, 2013) (Figure 1F). Our acute bolus fruc-

tose dose of approximately 1.0 g/kg was on the same order asmost of the experiments performedby Jang et al.

(Jang et al., 2018) in their study.We did notmeasure the amount of fructose transmitted to the colon in our study

due to the early times of sacrifice (20 min versus 60–120 min in the experiments by Jang et al., 2018) required to

access the portal vein, but it is possible that it would differ in the setting of ERD or added fructose to drinking

water. Collectively, these data indicate that ERD feeding increased fructose absorption from small intestine via

the hepatic portal vein.

Consistent with increased hepatic Txnip protein expression previously reported in HFD/ERD-fed mice

(Shao et al., 2012), the jejunum from the ERD-fed mice had a significant increase in Txnip protein (Figure 1G

and 2.0 G 0.3-fold, p < 0.01) and Txnip gene (Figure 1H and 2.3 G 0.3-fold, p < 0.01) expressions when

compared with the RD-fed mice. These data show that ERD feeding promotes fructose absorption and

Txnip expression in the jejunum. To determine if the absorbed gastrointestinal fructose load remained

in the form of fructose in the intestinal epithelial cell, a mass spectrometry-based analysis was performed

using [U-13C]-fructose using an identical protocol as that described in the previous paragraph for experi-

ments with [14C-(U)]-D fructose. The intestine contained primarily 13C-labeled fructose and a small amount

of isotope-labeled glucose metabolite (labeled fructose 391.89 G 37.60 nmol/mg tissue versus 0.48 G

0.33 nmol/mg tissue, n = 10 mice, ***p < 0.001 versus labeled glucose), consistent with recently published

results with high fructose influx (Jang et al., 2018). Of note, when compared with RD-fedmice, ERD-fed villin

cre mice showed a trend of increased 13C-fructose-1-phosphate in the jejunum (Figure S1B).

We also determined the impact of chronic fructose consumption on fructose absorption. For this, we conducted

a 4-week-long study wherein we placed C57BL/6J mice on an RD or ERD with and without 30% fructose solution

in drinking water, as described previously (Softic et al., 2017). Mice on RD and ad libitum access to water were

used as the control group. As illustrated in Figure S2C, there was an increase in acute fructose uptake with

chronic consumption of fructose in drinking water, irrespective of the diet consumed. In addition, fructose in

drinking water accelerated the time to peak fructose absorption from 20min to 10min, although the differences

between groups were qualitatively similar. We speculate that there could be an evolutionary advantage as to

why ERD feeding promotes fructose absorption. ERD may lead to an inflammatory state, and in this setting,

adaptation to harness more calories could be beneficial. This concept is similar to a theory of insulin resistance

suggested for HFD and type 2 diabetes (Soeters and Soeters, 2012).

To further explore our in vivo finding, we extracted intestinal organoids from Txnip wild-type (WT) and knockout

(KO)mice to assess fructose absorption according toa protocol describedpreviously (Zietek et al., 2015). As illus-

trated in Figure 1I, we subjected the intestinal organoids to an ‘‘energy-rich environment’’ using 50 mM palmitic

acid (PA) or BSA (vehicle) as previously reported for the intestinal organoids (Beyaz et al., 2016), as well as added

either 4% (approximating the percentage of fructose in the ResearchDiets Inc. High Fat Diet, D12492) or 30%

fructose to the solution for 3 h. Interestingly, as shown in Figure 1I, there was a significant increase in fructose

uptake by the PA-treated WT organoids (p < 0.001 versus WT-vehicle) and 30% fructose-treated WT organoids

(p < 0.05 versus WT-vehicle). However, there was no significant difference between PA-treated groups after the

addition of 4% fructose (p = 0.08 versus PA alone) or 30% fructose (p = 0.1 versus PA alone). We also found that

exogenous fructose alone significantly increased fructose uptake in the WT versus Txnip KO organoids (p <

0.001), indicating that Txnip is crucial for fructose-induced acute fructose absorption by organoids. Overall,

when compared with ERD, the data from Figure S2 suggest that fructose in drinking water has a larger impact

on fructose absorption than ERD. We have previously demonstrated that fructose in drinking water promoted

fructose absorption in intestinal epithelial cells, and for this, Txnip was necessary (Dotimas et al., 2016). Thus,

in the current study, we sought to explore the effect of ERD on fructose absorption.
Deletion of Txnip in the Intestinal Epithelial CellsMitigates ERD-Induced Fructose Absorption

Next, we explored in vivo if Txnip is an essential component of ERD-induced fructose absorption. As a ma-

jority of the fructose is absorbed by the proximal part of the small intestine via intestinal epithelial cells
iScience 23, 101521, September 25, 2020 3
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Figure 2. Deletion of Txnip in the Intestinal Epithelial Cells Mitigates ERD-Induced Fructose Absorption

(A) A representative western blot demonstrating successful abolition of Txnip in the villi of Txnip villin cre mice (n = 5).

(B) Gene expression of Txnip normalized to actb in villi from villin cre and Txnip villin cre mice (n = 5). Values are shown as mean G SEM. *p < 0.05 as

calculated by unpaired t test.

(C–L) (C–G) Fructose absorption (i.e., 14C-fructose + metabolites) by various tissues from 4 weeks (n = 4–8) and (H–L) 16 weeks (n = 4–5) in RD/ERD-fed mice

after the oral gavage of 14C-fructose.

Values are shown as mean G SEM. *p < 0.05, **p < 0.01, or ***p < 0.001 as calculated by unpaired t test.

See also Table S2.
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(Bray et al., 2004), we studied mice with genetic deletion of Txnip in intestinal epithelial cells by crossing

Txnipflox/flox (Txnipfl/fl) mice with villin cre mice. We confirmed Txnip deletion in the villi of Txnipfl/fl

villin cre+/- (hereafter called Txnip villin cre) mice when compared with the villi of villin cre-controls (Txnip+/+

villin cre+/-, hereafter called villin cre) by both western analysis and qRT-PCR (Figures 2A and 2B).

Moreover, unlike systemic Txnip-KO mice (Chutkow et al., 2008), the metabolic profiles displayed by the

Txnip villin cre mice were similar to those of the villin cre mice (Tables S1 and S2), implying that the exper-

imental outcomes were due to the intestinal epithelium deletion of Txnip and not due to the global meta-

bolic effects of Txnip deletion. Also, note that insulin levels were increased by the ERD as anticipated (Ta-

ble 1), and this could influence transport of isotope from fructose into the liver and heart. Interestingly, from

themetabolic studies performed, the only differences noted between the ERD-fed Txnip villin cre mice and

villin-cre controls on the same diet were in their total food consumption (1.6 G 0.2-fold versus ERD-

fed villin cre, n = 4, p < 0.05) and energy expenditure (ERD-fed Txnip villin cre versus ERD-fed villin cre

(kcal/h/kg): 22.5 G 0.3 versus 21.3 G 0.3, n = 4, p < 0.05), which were higher in the ERD-fed Txnip villin

cre mice (Table 1).

We then randomized a second cohort of 7- to 9-week-old Txnip villin cre and villin cre mice to RD versus

ERD for short-term (4 weeks, Figures 2C–2G) or long-term (16 weeks, Figures 2H–2L) experiments and as-

sessed fructose absorption. By 4 weeks of ERD feeding, consistent with aforementioned data on RD/ERD-

fed C57Bl/6J mice, we found a significant increase in fructose absorption into the hepatic portal vein, liver,

heart, and peripheral blood in the villin cre mice (Figures 2D–2G). In contrast, we did not observe increased

uptake of the isotope in the livers of the ERD-fed Txnip villin cre mice, where Txnip was absent in the

intestinal epithelium. The impact of deletion of Txnip in intestinal epithelial cells was even more pro-

nounced in the Txnip villin cre mice that were placed on ERD for 16 weeks when compared with villin cre

mice placed on the same diet, with significant reductions in isotope uptake in the hepatic portal vein,

liver, and heart (Figures 2I–2L). These findings were supported by the fructose uptake experiments per-

formed on intestinal organoids (Figure 1I), wherein we showed that deletion of Txnip significantly mitigated

fructose absorption (p < 0.01 for WT-vehicle versus KO-vehicle). Moreover, despite the presence of PA,

Txnip KO organoids failed to show enhanced fructose uptake (p < 0.001 versus Txnip WT-PA). The data

are consistent with the hypothesis that Txnip is required for a chronic ERD to promote intestinal fructose

absorption. Collectively, although basal level of Txnip is adequate to drive physiological/normal

fructose absorption, an increased Txnip expression stimulated by ERD is necessary for ERD-induced fruc-

tose absorption.

Txnip Is Required for the Energy-Rich Diet-Induced Glut5 Expression

We next explored the mechanism for increased fructose absorption by Txnip under an ERD. Although a

reciprocal association between Txnip and tissue responsiveness to nitric oxide has been reported before

(Sverdlov et al., 2013), we examined the changes in NO levels in intestinal lysates obtained from villin cre

and Txnip villin cre mice on RD/ERD to investigate whether NO may be responsible for the difference

observed in fructose absorption and thus serve as a potential mechanism. As seen in Figure S3, the pres-

ence or absence of Txnip in the intestinal mucosal lysates did not appear to have a substantial role in regu-

lating parameters of nitric oxide effect. Next, we assessed the expression of Glut2 and Glut5, the fructose

transporters in the intestine, in the intestinal mucosa from these mice. We performed gene expression of

Glut2 (Slc2a2) in the jejunal tissues, and there were no significant differences in the gene expression of

Glut2 with diets and/or deletion of Txnip in epithelial cells (n = 4 animals per group). Interestingly, we

observed a significant increase in the Slc2a5 gene (2.5 G 0.5-fold versus villin cre RD, n = 3–4, p < 0.05)

and Glut5 protein (7.6 G 1.4-fold versus villin cre RD, n = 4, p < 0.001, double bands) (Figures 3A and

3B) with ERD feeding. Deletion of Txnip in the intestinal epithelium dramatically reduced Glut5 gene

and protein expression under ERD feeding (Figures 3A and 3B). These findings reveal that Txnip is essential

for ERD-induced Glut5 expression in the intestine.
iScience 23, 101521, September 25, 2020 5



Metabolic

Parameters

Villin Cre Txnip Villin Cre

RD (n = 4) ERD (n = 4) RD (n = 4) ERD (n = 4)

Fat mass (g) 2.9 G 0.5 19.5 G 0.5 2.4 G 0.4 17.3 G 1.9

Lean mass (g) 26.0 G 1.3 27.2 G 0.9 24.9 G 1.4 25.8 G 1.4

Body weight (g) 30.4 G 1.4 47.7 G 0.5 28.7 G 1.3 43.8 G 3.2

AUC (ipGTT) 17,132 G 918 24,707 G 1,858 17,070 G 2,193 26,256 G 2,919

24-h food

intake(kcal)

12.5 G 0.6 5.2 G 0.5 11.8 G 0.6 8.3 G 1.0*

24-h water intake

(mL)

3.4 G 0.2 0.8 G 0.2 3.2 G 0.3 1.5 G 0.2*

VO2 consumption

rate (mL/h/kg)

4,110 G 74 4,466 G 69 4,050 G 70 4,700 G 71*

VCO2 production

rate (mL/h/kg)

3,673 G 62 3,347 G 56 3,661 G 68 3,599 G 58**

Energy expenditure

rate (kcal/h/kg)

20.3 G 0.4 21.3 G 0.3 20.0 G 0.3 22.5 G 0.3*

Respiratory

exchange ratio

0.9 G 0.0 0.7 G 0.0 0.9 G 0.0 0.8 G 0.0**

Total physical

activity (counts/h)

6,958 G 475 2,722 G 360 4,653 G 337*** 3,245 G 188

Liver triglycerides

(mmol/g)

12.8 G 1.7 18.3 G 4.6 11.8 G 2.4 22.1 G 6.0

Plasma cholesterol

(mg/dL)

81 G 2.0 210 G 15.0 78 G 3.0 198 G 14.0

HDL (mg/dL) 71 G 2.0 172 G 12.0 68 G 3.0 155 G 4.0

LDL (mg/dL) 74 G 3.0 172 G 6.0 68 G 4.0 170 G 17.0

Insulin (ng/mL) 0.56 G 0.2 (n = 5) 2.2 G 0.5# (n = 4) 0.56 G 0.1 (n = 5) 2.7 G 0.5## (n = 4)

Table 1. Metabolic Outcomes from Villin Cre and Txnip Villin Cre Mice

AUC, area under the curve; HDL, high-density lipoprotein; ipGTT, intraperitoneal glucose tolerance test; LDL, low-density

lipoprotein;

Results are expressed as mean G SEM (n=4 mice/ group).

p values were calculated using an unpaired Student’s t test. *p<0.05, **p<0.01, and ***p<0.001 versus villin cre with the same

diet; # p<0.05, ##p<0.01 versus RD-fed mice from the same strain.
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Recently, it was reported that carbohydrate responsive element-binding protein (ChREBP) bound directly

to Slc2a5 (Kim et al., 2017) in the intestine. As Txnip promotes the de-phosphorylation and nuclear trans-

location of ChREBP (Chen et al., 2014), we hypothesized that ERD-induced Txnip would enhance the bind-

ing of ChREBP to the promoter region of Slc2a5. To test for this possible mechanism, we performed

ChREBP chromatin immunoprecipitation (ChIP)-qPCR on intestinal samples from mice that were fed either

an RD or ERD and also confirmed that the ChREBP ChIP assay responded to classical stimuli (Figure S4). We

assayed previously reported ChREBP-binding sites in the thioredoxin-interacting protein (Txnip) (Poung-

varin et al., 2015) and pyruvate kinase L/R (Pklr) promoter regions (Kim et al., 2017), including observing

changes in their gene expressions after challenging with ERD (Figure S4C). At the Txnip and Pklr promoter

regions, we found an enrichment of H3K4me3, therefore indicating an active promoter (Figures 3C and 3D,

top panel). We also found enrichment for ChREBP at the Txnip (r1) and Pklr (r2) promoters in both RD and

ERD samples when compared with control IgG samples as well as compared with a previously reported

ChREBP-negative control region (Kim et al., 2017) (Figures 3C and 3D). We noted that a previous

ChREBP-binding region in the Slc2a5 locus (Kim et al., 2017) suggested to be the promoter contains
6 iScience 23, 101521, September 25, 2020
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Figure 3. Txnip Is Required for the Energy-Rich Diet-Induced Glut5 Expression

Villin cre and Txnip villin cre mice were placed on RD/ERD for 16 weeks.

(A) Gene expression of Slc2a5 normalized to actb in mucosal lysates extracted from jejuna (n = 3–4/group).

(B) A representative western blot (top) with quantitation (bottom) from the mucosal lysates obtained from jejuna (n = 4/group) showing the Glut5 protein

levels. Values are shown as mean G SEM. *p < 0.05 or ***p < 0.001 as calculated by unpaired t test.

(C and D) ChIP for ChREBP and H3K4me3 on intestinal tissues frommice on an RD or an ERD, followed by quantitative PCR to assay enrichment at Txnip, Pklr,

and Slc2a5 genomic loci. H3K4me3 enrichment shown in the top panel (one of two independent biological replicates shown). Error bars represent the

meanG SEM of n = 2 ChIPs for mice on RD and ERD and n = 3 IgGChIPs. Positive control regions for ChREBP at the (C) Txnip promoter (r1) (Poungvarin et al.,

2015) and (D) pyruvate kinase L/R (Pklr) promoter (r2) (Kim et al., 2017) along with a previously reported ChREBP negative control region (Kim et al., 2017).

(E) Slc2a5 promoter and gene body showing five different ChIP regions assayed (assay was conducted on 2 biological replicates and 3 technical replicates).

Regions (r3, r4, and r7) contain previously identified ChREBP-binding sites (Kim et al., 2017; Oh et al., 2018). Regions (r5 and r6) overlap with the Slc2a5

promoter and are in proximity to previously reported ChREBP-binding sites (Oh et al., 2018). Error bars indicate the mean G SEM of two independent

ChREBP ChIP experiments for chromatin from n = 2mice on RD (n = 3 ChIPs per biological replicate indicated by open or solid circles), n = 2mice on ERD (n =

3 ChIPs per biological replicate indicated by open or solid squares), and control IgG (n = 3 to 4 ChIPs per biological replicate indicated by open or solid gray

triangles) with either RD or ERD chromatin. Two of seven IgG samples for r4 have undetermined Ct values and therefore are not shown. Genomic loci shown

are from University of Santa Cruz Genome Browser (UCSC), mm10.

See also Figures S3 and S4.
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enrichment of chromatinmarks such as H3K4me1 and H3K27ac, which are consistent with a potential role as

an enhancer element (Creyghton et al., 2010). We then assayed ChREBP enrichment at the Slc2a5 promoter

and gene body at previously reported ChREBP-binding regions (r3, r4, r7) (Kim et al., 2017; Oh et al., 2018).

We noticed ChREBP enrichment at three of five regions in mice fed an RD (r5, r6, and r7) and in two of five

regions in mice fed an ERD (r6 and r7) (Figure 3E, bottom panel). We then determined if there was a differ-

ence in ChREBP enrichment in mice fed an RD compared with an ERD. In one of five regions examined (r5),

we observed a reduced trend in ChREBP-bound chromatin in mice fed an ERD compared with an RD (Fig-

ure 3E, bottom panel). It is also notable that in our ChREBP control regions (Txnip and Pklr promoters) we

also observed a decreased trend in ChREBP-bound chromatin in mice fed an ERD compared with an RD

(Figures 3C and 3D, bottom panel). ChREBP has been described to have a role as a transcriptional activator

or repressor on gene expression (Adamson et al., 2006; Bricambert et al., 2010; Caron et al., 2013; Jeong

et al., 2011; Noordeen et al., 2010; Sae-Lee et al., 2016). Thus, the decrease in ChREBP binding at the Txnip

and Slc2a5 promoters in mice fed an ERD suggests that the ERD-induced increase of Txnip (Figure 1H) and

Slc2a5 (Figure 3A) expression likely functions by an alternative transcriptional mechanism that has yet to be

identified. Furthermore, we did not study if loss or gain in Txnip regulates methylation of the Slc2a5 gene.

Future comprehensive studies of promoter and enhancer regulation could support the role of changes in

Txnip level in gene regulation.

Txnip Interacts Endogenously with Rab11a and Is Needed for Apical Localization of Glut5

In addition to augmenting Glut5 gene and protein expressions, we also studied another potential mech-

anism for how Txnip might promote fructose uptake under ERD. Rab11a, a GTPase Rab-family member

that plays a role in membrane trafficking and vesicle formation, is crucial for the apical localization of

Glut5 in the intestinal epithelial cells (Patel et al., 2015). An interaction between Txnip and Rab11a was sug-

gested in mass spectrometry data from an unbiased proteomics experiment in our previous studies (Lee

et al., 2014). As Rab11a-mediated Glut5 trafficking to the apical membrane is necessary for fructose uptake

(Patel et al., 2015), we speculated that Txnip could be facilitating the apical localization of Glut5 by forming

a super-complex with Rab11a. To assess the difference in the co-localization of these proteins in the jejuna

of RD and ERD mice, we performed an imaging analysis with dSTORM, a super-resolution digital micro-

scope. A major advantage of using STORM is that it combines high-accuracy localization of the individual

fluorophores in three dimensions, allowing for the most precise visualization of molecular interactions at

the nanoscopic level (Schmider et al., 2019). We compared the effects of an RD and ERD on the colocaliza-

tion of Txnip with Glut5 (Figure 4A) or Rab11a at the apical brush border (Figure 4B). The apical brush

border was selected using the dSTORM acquisitions where we selected the region of interest (ROI) from

the apical side of the tissue to the nuclei. Clus-DoC was then used to determine the colocalization of Txnip

with either Glut5 (Figure 4A) or Rab11a (Figure 4B). Localization maps and colocalization maps of Txnip

relative to Glut5 or Rab11a from ERD- or RD-fed mice are shown (left panels). Frequency histograms

from all tissue sections analyzed are shown (middle graphs). The colocalization of Txnip with Glut5 was

increased over 3-fold in ERD-fed mice compared with RD-fed mice (right panels, Figures 4A and 4B, p <

0.05). Although there was colocalization, no significant difference in percentage of colocalization was

observed with Txnip and Raba11 (Figure 4B). Cluster maps of Txnip with Glut5 or Rab11a for the whole

ROIs analyzed are shown in Figure S5, along with the analysis of various cluster properties of Glut5 and

Txnip clusters that did not change. These results suggest that ERD may increase fructose transport by

increasing the number of Txnip/Glut5 interactions in the apical brush border.

We also performed confocal microscopy with Airyscan mode (for super-resolution images) on the cryostat

sections obtained from Txnip WT and KOmice that were fed RD/ERD for 1 month to assess the localization

of Glut5 in enterocytes. As shown in Figure 4C, we saw that the intensity of Glut5 staining was elevated at

the apical brush border of WT-ERD versus WT-RD (for quantified cellular Glut5 expression, please refer to

Figures 3B and 4A). Notably, Glut5 appeared to be located in vesicles in the Txnip KO enterocytes, sug-

gesting that Txnip is required for Glut5 apical localization.

Conclusion

These data collectively demonstrate that a chronic high-energy diet promotes acute fructose absorption

from the intestine and the arrestin domain protein Txnip in intestinal epithelial cells plays a crucial role

in this process. As seen in Figure 5, we show two molecular mechanisms for this, which we speculate

may be working in concert. First, a high-energy diet increases Glut5 protein and gene expression, and

Txnip is required for this process. Second, by forming a complex with Rab11a as well as Glut5, Txnip
8 iScience 23, 101521, September 25, 2020
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Figure 4. Txnip Interacts with Rab11a and Is Needed for Apical Localization of Glut5

Semi-thin sections (1 mM) from the small intestine of mice were imaged following ERD or RD using two-color dSTORM.

Localization data was analyzed using the Clus-DoC algorithm. Representative images of Txnip and Glut5 and Txnip and

Rab11a are shown.

(A) Localization maps for Txnip (red) and Glut5 (green) and colocalization maps for Txnip relative to Glut5 (right panels).

Txnip molecules are color-coded according to their degree of colocalization (DoC) scores (color scale bar at bottom).

Frequency histograms of DoC scores of all molecules for Txnip from all cells analyzed (middle panels). The percent

colocalization of Txnip molecules with Glut5 is shown in the bar graph.

(B) Localization maps, histograms, and bar graphs for the colocalization of Txnip (red) and Rab11a (green). Statistical

significance was assessed by two-way ANOVA with multiple comparisons and a Tukey post-test with significance

indicated by *p < 0.05. Bars show mean G SEM from 5–13 ROIs over 3 separate mice (scale bar, 10 mm). See Figure S5 for

more details.

(C). Representative images showing the distribution of Glut5 in enterocytes of Txnip WT and KO mice. One-micron

sections from jejuna of RD- or ERD-fed Txnip WT and KO mice (n = 3 mice/group) were stained for Glut5. Expression of

Glut5 (green) is remarkably elevated at the apical brush border (red arrows) of WT-ERD versus WT-RD. Notably, Glut5 is

trapped in vesicles (as shown by *) in the Txnip KO enterocytes. Scale bars, 5 mm, magnification = 633 with Airyscan.
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Figure 5. Schematic Representation of Intestinal Fructose Absorption

Energy-rich diet increases intestinal Txnip expression, which in turn increases fructose absorption by elevating both Glut5

protein and gene expressions. Second, Txnip binds with Rab11a, a small GTPase protein essential for Glut5 apical

localization, to potentially promote Glut5 trafficking to the apical surface for more fructose uptake.
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may be promoting Glut5 trafficking to the apical membrane for enhanced fructose uptake. Thus, our find-

ings suggest that an ERD increases absorption of fructose. This could then have synergistic effects in the

liver by promoting more hepatic de novo lipogenesis, a key factor in the pathogenesis of metabolic dis-

eases (Schwarz et al., 2017). It is important to note that although the basal level of Txnip is sufficient to

conduct fructose absorption and that the higher expression of Txnip leads to increased fructose absorp-

tion, this does not prove that the increase in Txnip was solely responsible for the increased fructose absorp-

tion. Our study cannot exclude other possibilities that could have been driven by ERD.

Limitations of the Study

The experiments in this study did not isolate high fat content from the moderate sucrose content of the ERD.

Chronic fructose consumption can increase acute fructose absorption (Dotimas et al., 2016), and thus the

modest amount of fructose in the ERD may be partially responsible for inducing the acute

fructose absorption effect. However, our experiments show that, in this model of metabolic disease, Txnip is

a molecular mediator of an increase in acute fructose absorption. Future experiments will attempt to isolate

an HFD away from all dietary fructose, to determine if high fat alone can promote fructose absorption.

Resource Availability
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Materials Availability
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FIGURE S1: ERD increases acute fructose absorption in the presence of glucose or mannitol in the 
administering solution and ERD also raises 13C -F1P levels. Related to Fig 1. 
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Figure S1. ERD increases acute fructose absorption in the presence of glucose or mannitol in the
administering solution and ERD also raises 13C -F1P levels. (A) C57BL/6J mice placed on RD or ERD for
8 weeks were subjected to a bolus oral gavage of radiolabeled fructose prepared in cold 1:1 mannitol:
fructose (Man:Fru) or 1:1 glucose: fructose (Glu:Fru). Hepatic portal vein blood was obtained 0, 5, 10 or 20
min post gavage. Administration of radioactive fructose prepared in glucose solution elevated fructose
absorption (i.e. 14C-fructose+ metabolites) significantly in the ERD-fed mice (*p<0.05 vs Glu:Fru RD) as
early as 5 min post- gavage, unlike the mannitol administered group. However, at 20 min, fructose absorption
increased significantly in the ERD groups regardless of glucose or mannitol mixed in the administering
solution. (*p<0.05 vs Glu:Fru RD, # p<0.05 vs Man:Fru RD, n=6 (5 for time 0 min) /group for each time point).
All values are mean± SEM and the statistical analyses were performed using an unpaired two-tailed t-test. (B)
Txnip villin cre and villin cre mice placed on RD/ ERD for 16 weeks were given bolus intragastric gavage of
13C-fructose to assess 13C-F1P level in the jejuna after 20 min post gavage. All values are mean± SEM and
the statistical analyses were performed using an unpaired two-tailed t-test where *p<0.05 vs and **p<0.01
(n=3-4 mice/ group).
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FIGURE S2: Acute fructose absorption increases with chronic exposure to fructose in the diet. Related to 
Fig 1.
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Figure S2. Acute fructose absorption increases with chronic exposure to fructose in the diet. A 4-week
long study on RD or ERD-fed mice in the presence or absence of 30% fructose in water caused (A) a
significant increase in body weight in mice fed a ERD as compared to ERD-fed mice with ad libitum access to
water only (n=10 mice/ group, **p,0.01, ****p<0.0001). (B) Glucose tolerance tests illustrate that fructose in
drinking water did not worsen glucose intolerance by ERD in 4 weeks (n=10 mice/ group, *p<0.05,
****p<0.0001 vs RD+Fr, ##p<0.01 and ####p<0.0001 vs RD). (C) Kinetics of fructose (i.e. 14C-fructose+
metabolites) absorption in hepatic portal vein blood assessed at 0, 5, 10, 20, 30, and 60 min post-oral gavage
of radiolabeled fructose. For each time point, n=6 mice/ group were sacrificed to harvest tissues for analysis.
Consistent with our previous study (Dotimas et al., 2016), fructose absorption peaked at 20-min after
radiolabeled fructose gavage in mice that did not receive fructose in drinking water. However, mice that
received fructose in drinking water had a peak portal vein absorption at 10 minutes, in the presence or absence
of ERD. All values are mean± SEM, and the statistical analysis was performed using an unpaired two-tailed t-
test; n=6 for each group at each time-point, #p<0.05 and ####p<0.0001 vs RD; †p<0.05, ††p<0.01, †††† p<0.0001
vs ERD.
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FIGURE S3: Intestinal Txnip does not alter tissue responsiveness to nitric oxide. Related to Fig 3.

Figure S3. Intestinal Txnip does not alter tissue responsiveness to nitric oxide. Intestinal mucosal
lysates from villin cre and Txnip villin cre mice placed on a RD were not significantly different in soluble
guanylate cyclase b1(sGCb1) protein expression (left panel, n=4) or its the activation (via cGMP activity) (right
panel, n=3-5) after ERD feeding. Moreover, intestinal Txnip expression did not affect these parameters. All the
values are mean± SEM and the statistical analyses were performed using an unpaired two-tailed t-test, with
no significant differences found.
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FIGURE S4: Chromatin immunoprecipitation (ChIP) on intestinal tissue from mice with H2O (n=2) and
mice with fructose (n=1) for ChREBP, H3K4me3, and IgG followed by quantitative PCR (QPCR) to assay
enrichment at three different loci. Related to Fig 3.

C

Figure S4. Chromatin immunoprecipitation (ChIP) on intestinal tissue from mice with H2O (n=2) and
mice with fructose (n=1) for ChREBP, H3K4me3, and IgG followed by quantitative PCR (QPCR) to assay
enrichment at three different loci. (A) H3K4me3 ChIP in H2O treated (n=2 ChIPs), fructose treated (n=1
ChIP), and IgG samples (n=3 ChIPs). Enrichment assayed at Slc2a5, Txnip, and Pklr. (B) ChREBP ChIP in
H2O treated (n=4 ChIPs), fructose treated (n=2 ChIPs), and IgG samples (n=3 ChIPs). Slc2a5 promoter and
gene body showing two different ChIP regions assayed r5 and r7, which is previously identified ChREBP
binding region (Kim et al., 2017). r5 is in proximity to two previously reported ChREBP binding sites (Oh et al.,
2018). Positive control regions for ChREBP at the Txnip promoter (r1) (Poungvarin et al., 2015) and Pyruvate
kinase L/R (Pklr) promoter (r2) (Kim et al., 2017). And a ChREBP negative control region at the Pklr promoter
(Kim et al., 2017). The mean is shown and the error bars represent the standard error of the mean. Genomic
loci shown are from University of Santa Cruz Genome Browser (UCSC), mm10. (C) Relative gene expression
of intestinal Txnip and Pklr after mice were fed a RD or ERD. All values are mean± SEM, and the statistical
analysis was performed using an unpaired two-tailed t-test; n=5, * p<0.05 and **p<0.01 vs RD.
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FIGURE S5: Cluster maps for Txnip with Glut5 and Txnip with Rab11a . Related to Fig 4.
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Figure S5. Cluster maps for Txnip with Glut5 and Txnip with Rab11a. (A) Localization maps for Txnip (red)
and Glut5 or Rab11 (green) encompassing apical to basolateral brush border (whole) or only apical brush border
(brush). Maps for Txnip relative to Glut5 left panels. Txnip localizations are pseudocolor-coded according to their
degree of colocalization (DoC) scores (score bar at the bottom). Right panels show localization maps for Txnip and
Rab11a. Clusters were defined as having ³ 10 localizations with a DoC score of ³ 0.4 for figures B-E. Glut5 cluster
properties: (B) relative density; (C) average area; (D) average number of localizations; and (E) average number of
cluster per ROI. The relative density of clusters was calculated by dividing the local density within 20 nm of each
localization by the average density of the cluster, a measure of the local concentration maxima within the cluster.
Statistical significance was assessed by two-way ANOVA with multiple comparisons and a Tukey post-test with
significance indicated by *p<0.05. Bars show mean ± SEM from 5-13 ROIs over 3 separate mice. Scale bar
represents 10 µM.



 
 
 

Table S1.  Metabolic profile of RD or ERD-fed mice. Related to Fig 1. 

 
 
 
Table S1.  Metabolic profile of RD or ERD-fed mice. Results are expressed as mean ± SEM (n=7/ group 
(4 weeks-diet) and n=14-17/group (16 weeks-diet). P-values were calculated using an unpaired student’s 
t-test for body weight and fasting glucose, and one-way ANOVA followed by Bonferroni’s post-hoc test was 
employed for the AUC from Glucose tolerance test (GTT).  **p<0.05 and ***p<0.0001 vs their own RD diet 
control.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 4-weeks diet 16-weeks diet 
RD (n=7) ERD (n=7) RD (n=14-16) ERD (n=14-16) 

 
Body weight (g) 

 

28.9±0.2 
 

35.7±1.5** 
 

31.4±0.5 
 
 

42.7±1.0*** 
 
 

 
Fasting blood glucose 

(mg/dL) 

117.3±3.8 
 

108.0±9.3 
 

109.2±10.4 115.1±5.7 

 
AUC- Glucose tolerance 

test (a.u.) 

31707.5± 
1040.8 

 
 

51019.3± 
2116.2*** 

 
 

36596.0± 
989.6 

 
 

60884.5± 
1583.6*** 

 
 



Table S2. Metabolic profile of Txnip villin cre and Villin cre mice. Related to Fig 2. 
 

 
Table S2. Metabolic profile of Txnip villin cre and Villin cre mice. Results are expressed as mean ± 
SEM (n=4-5/ group (4 weeks-diet) and n=3-5/ group (16 weeks-diet). P-values were calculated using an 
unpaired student’s t-test for body weight and fasting glucose, and one-way ANOVA followed by Bonferroni’s 
post-hoc test was employed for the AUC from Glucose tolerance test (GTT). *p<0.05, **p<0.01, and 
***p<0.001 vs their own regular diet control; +++p<0.001 vs villin cre ERD. 
 

 
4-weeks diet  

Villin cre Txnip villin cre 

RD (n=5) ERD (n=5) RD (n=5) ERD (n=4) 

Body weight (g) 
 

25.8±0.8 
 

33.9±1.9** 
 

27.2±0.1 
 

35.9±1.9* 
 

Fasting blood glucose (mg/dL) 116.0±9.0 
 

132.0±5.5 
 

117.2±6.5 
 

132.5±7.7 
 

AUC- Glucose tolerance test 
(a.u.) 

23794.5± 
722.4 

 

42777.0± 
1639.0*** 

 

24030.0± 
766.6 

 
 

34346.3± 
1058.3***,+++ 

 
 

 
16-weeks diet 

Villin cre Txnip villin cre 

RD (n=5) ERD (n=5) RD (n=5) ERD (n=3) 

Body weight (g) 
 

28.0±0.9 
 

48.5±1.3*** 
 

30.8±1.1 
 

51.2±0.8*** 
 

Fasting blood glucose (mg/dL) 104.4±5.9 
 

114.4±7.3 
 

117.4±5.4 
 

122.0±17.0 
 

AUC- Glucose tolerance test 
(a.u.) 

30343.5± 
939.0 

53818.5± 
2483.6*** 

23788.5± 
640.2 

55617.5± 
3188.1*** 

 



TRANSPARENT METHODS 
 

Animal care and diets 
All experiments were conducted in accordance with the Guidelines for the Use and Care of Laboratory 
Animals and approved by the Harvard University Institutional Animal Care and Use Committee (protocol 
number 16-05-271 and 16-05-272). All the mice were housed at controlled temperature (20-21°C) on a 12h 
light/dark cycle. Txnip knockout (KO) mice were generated in our lab and C57Bl/6J was used as Txnip 
wildtype (WT) control. For fructose absorption studies, C57Bl/6J male mice, subjected to either 4-weeks or 
16-weeks of regular (RD) or energy rich diet (ERD), were obtained from JAX. Txnip villin cre (Txnip fl/fl villin 
cre +/-) mice were generated by breeding Txnip fl/fl mice (Yoshioka et al., 2007), generated in our lab, with 
villin cre mice (Vil-Cre 1000, JAX). Age-matching villin cre (Txnip+/+ cre +/-) mice were used as controls. 7-9 
weeks old mice were randomly subjected to RD (ProlabÒIsoProÒ RMH 3000, 5P75/ 5P76) or ERD (60% 
kcal HFD, ResearchDiets Inc., D12492), and provided free access to water. In the experiments where mice 
were supplemented with fructose solution to their diet, 30% fructose solution in drinking water was used.  
 
The number of mice required for the study was determined by using the sample size calculations from the 
IACUC at Boston University (https://www.bu.edu/researchsupport/compliance), and an alpha of 0.05 and 
statistical power of 90% were used as parameters to estimate the appropriate sample size. All the 
experiments were performed as independent biological replications (for example: n=3 means three mice), 
except for the qPCR and ChIP assays that have both biological and technical replications. Moreover, the 
inclusion and exclusion of data was verified by the Graphpad Outlier calculator 
(https://www.graphpad.com/quickcalcs/Grubbs1.cfm) where alpha=0.05. 
 
In vivo bio-distribution assay with radiolabeled fructose 
Intestinal fructose uptake and bio-distribution was assessed as previously described (Dotimas et al., 2016) 
but with a slight modification. Briefly, 20 minutes after the intragastric administration of 2 µCi [14C(U)]-D-
fructose (Moravek Inc.) in 200µl 30% of non-radioactive fructose/ mannitol, blood samples were collected 
from tail and portal veins and tissues were harvested. We used mannitol instead of glucose in the 
administering solution in order to avoid effects of glucose on fructose uptake as shown in Supplemental 
Figure S1A. Ba(OH)2 and ZnSO4 were used to precipitate proteins in plasma, and the supernatants were 
counted using Ultima Gold Scintillation fluid (PerkinElmer). Similarly, 100-150mg of tissues were 
homogenized using 10X volume of water and boiled for 10 min at 100°C. The samples were then 
centrifuged and 500µl of clear supernatant was added to 5 ml scintillation fluid. Pre-weighed intestinal were 
dissolved in 1ml soluene (Soluene®-350, PerkinElmer) at 55°C for 4h before adding them to 5 ml 
scintillation fluid. Radioactivity in tissues was measured in the Beckman Coulter LS 6500 Liquid Scintillation 
Counter. 

Glucose tolerance test 
Glucose tolerance test (GTT) was performed after overnight fasting. After obtaining body weight and basal 
blood glucose reading from a tail clip, mice were administered a bolus glucose (2g/kg body weight) 
intraperitoneally. Blood glucose values were then obtained at 15, 30, 60, 90, and 120 minutes using a Bayer 
Contour Blood Glucometer. 
 
Metabolic studies 
Metabolic changes were measured at the National Mouse Metabolic Phenotyping Center (MMPC) at the 
University of Massachusetts Medical School. Briefly, mice were individually placed in metabolic cages 
(TSE-Systems Inc., Bad Homburg, Germany) for 3 days to non-invasively assess their indirect calorimetry 
and energy balance parameters, including physical activity, food/ water intake, respiratory exchange ratio, 
and energy expenditure. Whole body fat and lean fat were non-invasively assessed in awake mice via 
proton magnetic resonance spectroscopy (1H-MRS) (Echo Medical Systems, Houston, TX). Liver 
triglycerides, plasma cholesterol, and HDL/ LDL were assessed by the Analytical Core of UMass MMPC.  
 
Immunoblotting  
Villi were extracted from the small intestine using the procedure as previously described (Booth and 
O’Shea, 2002). Immunoblotting on homogenized jejunal samples and villi were performed as described 



 

previously (Shah et al., 2015).  For primary antibodies, anti-Txnip (MBL) and anti-Glut5 (EMD Millipore, 07-
1406) were used at 1:1000 dilution, and  b-actin (Santa Cruz) at 1:10000. 
 
Quantitative PCR analysis 
Frozen tissues were homogenized in TRIZOL reagent (Invitrogen) to extract RNA. cDNA synthesis on 1µg 
RNA was performed using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems). The 
cDNA was then used for real-time PCR analysis using the Taqman Gene Expression System, where the 
following mouse-specific primers were used: Txnip (Mm00452393_m1), Slc2a5 (Mm00600311_m1), Pklr 
(Mm00443090_m1), and the housekeeping gene, Actb (Mm02619580_g1). Relative gene expression was 
calculated as mentioned before (Dotimas et al., 2016). 

Extraction and fructose uptake in intestinal organoids 

Intestinal organoids from Txnip WT and KO mice were extracted and maintained according to the protocol 
previously described by Zietek et al., 2015. Fructose uptake assay was performed on differentiated 
organoids (proliferated/ budded organoids), from days 5-7, also following the protocol from the same 
article. 

Histology, N-STORM and co-localization analysis 
Cryostat sections of jejuna (1-µm) were incubated overnight in 1:100 dilution of primary antibodies: anti-
Txnip (MBL), anti-Glut5 (EMD Millipore, 07-1406) and anti-RAB11A (US Biological, R0009) in PBS 
containing 0.2 % skim milk and 1% BSA. Tissues were then incubated for 1h at room temperature with 
3µg/ml secondary antibodies that were made in house to achieve a near ratio of 1:1, antibody: fluorophore, 
respectively. After nuclei staining with DAPI (1:1000), tissues were fixed with 4% PFA followed by 
visualization and analysis via Stochastic Optical Reconstruction Microscopy (N-STORM). Briefly, the 
imaging buffer containing 100 mM 2-mercaptoethanolamine (MEA) and 1% (v/v) GLOX was used to 
promote photoswitching and reduce photobleaching. An inverted Nikon Ti2 Eclipse STORM 5.0 system 
with Perfect Focus focal plane lock was used for image acquisition. This system contains a NSTORM 
quadband filter, and 405, 488, 561, and 647 nm lasers and was equipped with an HP APO TIRF AC 
100x/1.49 NA oil objective and ORCA-Flash4.0 SCI CMOS PLUS camera (Hamamatsu Photonics). 15,000 
frames for each dye were collected at 30 ms exposure time in continuous mode. Localizations were 
identified with NIS Elements 5.0 (Nikon Instruments) and exported as tab-delimited text files. 
To produce reporter antibodies for dSTORM, donkey anti-rabbit and donkey anti-mouse affinity purified 
secondary antibodies (H+L chains) (Jackson Laboratory) were conjugated to Cy3B (GE Healthcare) or 
AF647 dyes, both with carboxylic acid succinimidyl ester moieties. For the conjugation reactions, 240 μg of 
the secondary antibody was reacted with 6 μg of dye in 56 mM carbonic buffer for 2 hours at room 
temperature. After the reactions, the antibodies were separated from unconjugated dye by gravity filtration 
through Sephadex G-25 DNA grade size exclusion columns (GE Healthcare) by visual detection. Antibody 
and dye concentrations were determined using a NanoDrop spectrometer (Thermo Fisher) to record 
absorbance at 280 nm and at the dye absorbance peak. Antibody concentration was calculated by 
subtracting the contribution of each dye to absorbance at 280 nm using correction factors provided by the 
dye manufacturers (Cy3B: 0.09, AF647: 0.03) and the molar extinction coefficient of the antibody (210,000). 
The final ratio for the donkey-anti-rabbit: Cy3B was 1:2 with antibody concentration of 151 μg/μL. The final 
ratio for the donkey-anti-mouse:AF647 was 1:5 with antibody concentration of 200 μg/μL.   
 
Clus-DoC analysis of single molecule localizations 
We employed Clus-DoC (Pageon et al., 2016), which quantifies colocalization of individual proteins and 
molecules (localizations) and cluster properties (Schmider, 2019) to analyze dSTORM localization Clus-
DoC allows for the user to define the number and DoC threshold. 

In brief, co-localization between two proteins (localizations/molecules) is analyzed at the single-molecule 
level.  This coordinate-based co-localization method uses algorithms that detect and save coordinates of 
single molecules. The spatial distribution surrounding localizations from both proteins of interest is 
compared to a single point. The density gradients of both proteins are generated. Next, the two distributions 
(densities) are compared by calculating a rank correlation coefficient where each molecule is assigned a 



 

degree of co-localization (DoC) score ranging from -1 (segregated) to 0 (non-co-localized) to +1 (perfectly 
co-localized). Finally, because majority of the DoC scores where >0.4 with a peak at 1 (high col-
localization), a threshold of 0.4 was used to distinguish co-localized from non-co-localized localizations. 

Fructose Isotope gavage and sample collection 
Animals were starved for 5h before administering them with 1:1 mixture of unlabeled mannitol and labeled 
[U-13C]-fructose (Cambridge Isotope Labs, CLM-1553-PK), 2g/kg each via intragastric gavage. Mice were 
euthanized 20 min later and their tissues were harvested and frozen in -70°C until extraction. 
 
Metabolite extraction and LC-MS 
Tissues were extracted in guidance of the Harvard Small Molecule Mass Spectrometry facility. Briefly, 
tissues were homogenized with a homogenizer in HPLC grade cold methanol (4°C) before adding HPLC 
grade chloroform and LC/MS grade water. After centrifugation, the aqueous phases were isolated, dried 
using nitrogen evaporator and then submitted to the Mass Spectrometry facility. LC-MS analysis was 
performed using a Thermo Q- Exactive Plus Hybrid Quadrupole- Orbitrap mass spectrometer, coupled with 
a Thermo UltiMate 3000 LC and a Millipore zic-pHILIC column.  
 
Immunostaining and Confocal Microscopy 

Cryostat sections (1-µm) from jejuna of Txnip WT and KO mice fed with either RD or ERD for 1 month were 
incubated with 1:100 dilution of anti-Glut5 (EMD) overnight in 4°C. Incubation with secondary antibody 
(1:500, goat anti-rabbit Alexa Flour 488 from Invitrogen) along with 1:1000 Hoechst 33342 was done for 1h 
at RT. Confocal imaging to assess expression of Glut5 in the tissues was carried out using Zeiss LSM 880 
with Airyscan detector (GaAsP-PMT super-resolution detector) at the Harvard Center for Biological 
Imaging. The Airyscan detector (Huff, 2015) was used to get a high-resolution image of Glut 5 expression 
in enterocytes and the brush-border membrane using a 63X oil immersion objective.  

Chromatin immunoprecipitation (ChIP) 
ChIP experiments were performed using the iDeal ChIP-qPCR kit (Diagenode, C01010180) according to 
the manufacturer’s instructions. We performed two independent ChREBP ChIP experiments. We used 
C57Bl/6J male mice that were fed a RD (n=2) or ERD (n=2) for 15 weeks. We then extracted approximately 
200 mg of mucosal layer from the jejuna and crosslinked the tissue in 1% methanol-free formaldehyde 
solution (Thermo Scientific, 28906) for 20 min at room temperature with gentle agitation. The isolated 
chromatin was sheared with a Bioruptor (Diagenode) using 18 cycles of 30 s ‘on’ and 30 s ‘off’. Fresh 
chromatin was used for multiple individual ChIP reactions. We added either 2µg of ChREBP (Abcam, 
ab92809), 2 µg of IgG (Diagenode, K02921003), or 2µg of H3K4me3 antibodies (Diagenode, K02921004). 
1% of the sheared chromatin was retained for the input control. The occupancy of ChREBP and H3K4me3 
at the promoters of Slc2a5, Txnip, and Pklr was assessed by real-time qPCR on a ViiA7 Real-Time PCR 
System (ABI) using FastStart Universal SYBR Green Master (Rox) (ABI, 4913914001) with the following 
cycling parameters: 95°C for 10min, followed by 40 cycles of 95°C for 10 seconds and 60°C for 30 seconds. 
The enrichment values were determined by the ∆∆Ct method of normalized IP over normalized input using 
the baseline primer pairs F-baseline and R-baseline (Vokes et al., 2007), where ΔΔC(t) = ΔC(t)ChIP - 
ΔC(t)Input; ΔC(t)ChIP = C(t)experimental primer - C(t) baseline primer in the ChIP sample and ΔC(t)Input 
= C(t)experimental primer – C(t) baseline primer in the input sample. We used the following primers for 
qPCR: 
F-r1: GGGGTTTCCAGAGTTTCTCC; R-r1: CTCCGTAAAGTCAGGGCTTG (Poungvarin et al., 2015)  
 
F-r2: TTTGATCCAGGCTCTGCAGAC; R-r2: TCTTGCCAATGGAAGCCTTG (Kim et al., 2017)  
 
F-r3: GAT TTC CTG CCG CAT TCA GA; R-r3: TTT TCAGAC CTC CCA GAT GGA (Oh et al., 2018)  
 
F-r4: TCC ATC CAC ACA CTTTCA AAC; R-r4: CAA GCC ACG GCC AAC AG (Oh et al., 2018)  
 
F-r5: AGTTGAAGAGCCACCGTGTT; R-r5: AGTGTAGATCCGCTCGGGTA 
 



 

F-r6: AGCACAGGCAATCCGTACTC; R-r6: GCCTAGTGTTTCCCACCACA 
F-r7: GGGACTGAGAAACATCCGGG; R-r7: TGTTGCCCAAGGTGCTGATA (Kim et al., 2017)  
 
F-neg: TGGACATTTGACTCCAGAGC; R-neg: AACATGGAGAAGAAGGCAGTG (Kim et al., 2017)  
 
F-baseline: CTGGCCTCCATACACACATA; R-baseline: AGTCAGCAGGATCCACACTT (Vokes et al., 
2007)  
 
ChREBP ChIP response to a classical stimuli (fructose) was assessed in C57Bl/6J mice following the 
protocol described by Kim et al. (Kim et al., 2017). 
 
Statistical analyses 
Data are presented as mean ± SEM, unless otherwise stated. P-values were calculated using an unpaired 
student’s t-test since we were specifically comparing 2 groups at a time (such as comparison between the 
fructose absorption due to two different diets on the same strain of mice, or difference in the absorption by 
two different strains of mice placed on same diet). To calculate the statistical significance of AUC for glucose 
tolerance test (GTT), one-way ANOVA followed by Bonferroni post hoc method was used (Graphpad Prism, 
version 7.0). Two-way ANOVA with multiple comparisons and a Tukey post-test was employed for the 
colocalization studies via STORM, where significance was indicated by *p<0.05. 
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