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THE BIGGER PICTURE In physical sciences and engineering, the convolutional network (ConvNet) has
been used increasingly to simulate the evolvement of physical fields, e.g., flow field evolvement. Physical
field data are fed as images, and ConvNet treats the field evolvement as a field-to-field/image-to-image
regression problem, i.e., building the mapping from the input flow field to the evolved flow field. The
ConvNet, when trained, can be a cheap substitute for physics-based models, enabling fast simulation of
field evolvement. However, a big challenge still lies in incorporating conditions that dictate field evolvement,
e.g., fluid properties associated with fluid dynamics. We propose a light multi-input ConvNet as a general-
purpose, multi-input, image-to-image regression tool. Its simplicity and usefulness are demonstrated by
modeling various condition-dependent field evolvements and developments. Large- and extreme-scale
simulations are also performed based on its computational superiority.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
There is a compelling need for the regression capability of mapping the initial field and applied conditions to
the evolved field, e.g., given current flow field and fluid properties predicting next-step flow field. Such a
capability can provide a maximum to full substitute of a physics-based model, enabling fast simulation of
various field evolvements. We propose a conceptually simple, lightweight, but powerful multi-input convolu-
tional network (ConvNet), yNet, that mergesmulti-input signals bymanipulating high-level encodings of field/
image input. yNet can significantly reduce the model size compared with its ConvNet counterpart (e.g., to
only one-tenth for main architecture of 38-layer depth) and is as much as six orders of magnitude faster
than a physics-based model. yNet is applied for data-driven modeling of fluid dynamics, porosity evolution
in sintering, stress field development, and grain growth. It consistently shows great extrapolative prediction
beyond training datasets in terms of temporal ranges, spatial domains, and geometrical shapes.
INTRODUCTION

A deep convolutional network (ConvNet) utilizes stacks of con-

volutional layers for automatic, hierarchical representation

learning of high-dimensional data. The convolutional compo-

nents of ConvNet bring great advantages when processing

data in the form of multiple arrays, such as signals and se-
This is an open access article under the CC BY-N
quences (1D), images or audio spectrograms (2D), and video

or volumetric images (3D).1 Since its first remarkable application

in digit recognition nearly 30 years ago,2 ConvNet has served as

the backbone for performing various computer vision (CV) and

image-centered tasks.3–6 Upon realization of its distinct advan-

tage in image modeling, there has been a surge of applications

in different scientific domains where image-involved problems
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Figure 1. Four different regression tasks with increasing complexity and multi-input ConvNet

(A) Parameter(s)-to-parameter(s) regression for conventional structure-property modeling, where the input and output are one or a few parameters; i.e., scalar

quantities.

(B) Image-to-parameter(s) regression for high-fidelity structure-property modeling, where the input is an image and output is parameters.

(C) Image-to-image/field-to-field regression for semantic segmentation and fluid dynamics simulation, where the input and output are images.

(D) Multi-input field-to-field regression for condition-incorporated fluid dynamics simulation, where the mixed input is parameters of fluid properties and an image

of the current flow field and the output is an image of the next-step flow field.

(E–G) The proposed y-shaped multi-input ConvNet for handling the multi-input field-to-field regression tasks (F) and comparison of the conventional flattening-

based (E) and the proposed gating-based (G) signal merging strategy.
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are ubiquitous. Some of these scientific applications include

image classification with respect to scientific images,7,8 micro-

structure characterization and reconstruction (MCR),9–11 and

process-structure12,13 and structure-property14,15 relationship

modeling in materials science and engineering. They all leverage

ConvNets to explicitly process and ‘‘understand’’ scientific im-

ages free from hand-craft featurization and with minimal human

intervention. For example, conventional structure-property

modeling relies heavily on domain experts to design effective

structure descriptors,16,17 whereas ConvNets directly take raw

structure information as input and can construct a high-fidelity

relationship between image-based structure and property

(Figures 1A and 1B).

Another prominent application is ConvNet-based simulation of

field evolvement and development. This also takes advantage

of its superior imagemodeling capability because different types

of physical fields, such as temperature, velocity, density fields,

and structures described by various physical variables, can

eventually be presented as images. In this regard, ConvNets

treat field evolvement and development as a purely data-driven,
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image-to-image/field-to-field regression problem (Figure 1C).

Some typical examples include prediction of transient fluid dy-

namics (i.e., current flow field to future flow field18), microstruc-

ture evolution (i.e., current structure to future structure19), and

stress/strain field development (structure to stress/strain

field20,21). ConvNets simply aim to build these field-to-field map-

pings from training datasets without using any physical differen-

tial equations. Therefore, the ConvNet, when trained, can be an

inexpensive substitute for a physics-based model, enabling fast

but realistic simulations of field evolvement and development.

However, most of the related research19,21–27 just adopted the

CV task-oriented ConvNets, especially those with a typical

encoder-decoder architecture. Obviously, such an encoder-

decoder model, originally used for semantic segmentation, is

inadequate when it comes to modeling field evolvements. In se-

mantic segmentation, the output image or segmentation result is

uniquely determined by the input image to be segmented (Fig-

ure 1C). However, the evolvement and development of a phys-

ical field are usually not only decided by the initial state but

also controlled by the applied conditions. For instance, a flow
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field developed at a future point is concerned with the current

flow field as well as fluid properties (Figure 1D), and stress field

development greatly depends on the condition of applied force.

With a pure image-to-image regression tool, those existing

research have to fix conditions, thus failing to incorporate

condition-related parameters. The trained ConvNet is strictly

applicable to the specific condition used for training. This is

apparently contrary to the general fact of great variability in

applied conditions and prevents wide use of the trained

ConvNet. Developing amore general multi-input field-to-field re-

gressor that can build a functional relationship between multi-

input (i.e., input field and condition parameters) and output fields

would be of huge significance. It will, for example, allow us to

train one single ConvNet applicable to flow fields with

distinct conditions (Figure 1D) instead of training separate

ConvNets for each. Such a multi-input field-to-field/image-to-

image regression capability with well-tested general usefulness

is fundamentally important, as are the other three regression ca-

pabilities. It will solidly advance the border of our reachable

regression tasks, as shown in Figures 1C and 1D.

We propose a multi-input deep ConvNet that naturally exhibits

a signature Y shape as a multi-input field-to-field regressor (Fig-

ure 1F). We thus call it yNet, which conveys its most salient

feature, efficient fusion of an additional input signal of condition-

related parameters, in comparison with the pure image-to-image

regression neural network (I-shaped) in the aforementioned CV

and scientific applications (Figure 1C). The main architecture is

basically composed of an encoder-decoder based on a deep

ConvNet and a branch of multi-layer perceptron (MLP). The

encoder essentially plays the role of non-linear dimension reduc-

tion. It decomposes the original high-dimensional pixel-based

field into N2 information-rich n13n2 feature maps (Figure 1G).

MLP acts to expand the condition-related parameter(s) into N1

neurons that generate a 13N1 embedding vector. In this way,

the encoder andMLP would facilitate effective fusion of input sig-

nals at their ends, as described later. The decoder serves to

correctly reconstruct the merged signal back to a meaningful

and desired output field through the deep deconvolution process.

In the deep deconvolution process, we also concatenate feature

maps extracted during the early autoencoding process. This

technique is commonly adopted in semantic segmentation net-

works, such asU-Net28 and FCN,29with the aimof improving seg-

mentation details. It is expected to compensate information loss

induced by coarsening during max-pooling in the encoding pro-

cess and improve information flow from (image) input to decoder.

After building the main architecture, merging signals of multi-

ple inputs poses a key problem. In fact, such multiple mixed in-

puts (a high-dimensional image and scalar parameters) are not

uncommon in various machine learning (ML) tasks, although

the output is not necessarily an image. However, the merging

strategies in existing multi-input ConvNets can suffer from

various drawbacks associated with dense parameters. A com-

mon merging strategy30–32 is to flatten the image signal, here

represented by its feature maps, into a long vector, making it

compatible and, hence, concatenable to the vectorial output of

MLP (Figure 1E). The flattening-based strategy is suitable and

sometimes unavoidable for predicting a single label or numeric

value but may not be optimal for ConvNets with an image-type

output. The flattening operation would yield large, fully con-
nected layers, as shown, that are known to be parameter inten-

sive. The dense parameters can bring about drawbacks,

including increased training complexity requiring sophisticated

training schemes, more hardware resources demanded during

training and inference, and slow inference speed. This is

clearly shown, for example, in comparative studies33 between

the light-weight SegNet and other semantic segmentation Con-

vNets.29,34,35 Apart from the parameter-efficiency issue, the flat-

tening operation will interrupt the signal flow of 2D feature maps,

which themselves are meaningful as spatial features in coarse

form. The merged signal in those manners however becomes a

skinny numerical vector, which is somewhat meaningless or

less interpretable. After flattening-based merging, ConvNet

would have to take further steps to force the long vector back

to 2D useful maps for the decoding process. A flattening-based

strategy, if workable for multi-input image-to-image regres-

sion,36,37 might make the multi-input ConvNet more like a

brute-force regressor.

To overcome the shortcomings of the flattening-based

merging strategy, we propose to properly merge signals using

a one-to-one connection via multiplication (Figure 1G), which

is mathematically akin to the excitation/gating mechanism in

SENet for improving image classification.38 The proposed

gating-based signal merging strategy features stunning sim-

plicity and would result in smooth signal flow of feature maps

throughout the encoding-decoding process. In this case, MLP

actually turns as a signal modulator of feature maps, which is

anticipated to rearrange encoded high-level feature maps to-

ward high-level representation of the output field. The effective-

ness of the gating-based merging strategy lies in the fact that

these neurons interact with respective feature maps in a direct,

neat, and therefore strong manner. We posit that, through

training, MLP can learn to precisely manipulate the initial field

represented by high-level feature maps into the developed field

(preliminarily in the form of gated feature maps) for a given con-

dition input; the decoder then appropriately reconstructs the

gated feature maps into the realistic evolved or developed field.

This research focuses on parameter-type conditions only.

However, the core of yNet should shed light on efficiently incor-

porating other conditions in more complex forms, as discussed

later. That said, the umbrella term ‘‘condition’’ in this paper refers

to not only external conditions (e.g., ambient temperature and

applied loading level) but also internal conditions (e.g., materials

and physical properties concerned with evolving kinetics) as well

as the time period of evolvement. As long as one has an associ-

ation with the field evolvement and development, it can be seen

as ‘‘condition,’’ falling within the interest of the proposed yNet.

Next, we present different applications of yNet in physical sci-

ences and engineering, which collectively demonstrate the gen-

eral effectiveness of yNet in handling many field evolvement and

development problems. Following these diverse applications,

we finally discuss its enormous potential for future applications

as well as some limitations.

RESULTS

Fluid dynamics
We start with data-driven modeling of flow fields over a cylinder

using the proposed yNet. This fluid dynamics problem is
Patterns 3, 100494, June 10, 2022 3



Figure 2. Illustration of training and testing of

yNet for fluid dynamics simulation

(A) Overall flowchart of training and testing yNet.

(B) To generate data, a physical fluid dynamics

simulation using OpenFOAM is performed at each

Reynolds number sampling point, followed by

extraction of neighboring snapshots as data pairs.

(C) Each data point is thus a triplet, consisting of

respective Reynolds number and flow fields at tn
and tn+1 (Dt = 0.1 s), where n = 1, 2, 3, ., 159.

(D) Correspondingly, the trained yNet can be used

to predict the flow field for the next time step based

on a given flow field and Reynolds number condi-

tion. Therefore, the trained yNet can also work in a

recursive manner to predict long-term flow field

evolution.
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commonly used as a benchmark in the data-driven modeling

community.39,40 Specifically, a 2D, incompressible, viscous fluid

is studied. In this case, the spatiotemporal evolution of a viscous

fluid field is expressed in the non-dimensional form as

vu0

vt0
= V0 3 ðv0 3 u0Þ+ 1

Re
V02u0; (Equation 1)

where u0, t0 and v0 are vorticity, time, and velocity of fluid in

scaled units with respect to unit length L and unit fluid velocity

V. Re = LV
n
is the Reynolds number related to kinematic viscosity,

unit length, and unit fluid velocity. As implied by Equation 1, the

Reynolds number plays a dominant role in determining flow

behavior and characterizing the flow pattern.41 Therefore, we

will train a single yNet capable of simulating fluid flow evolution

over a range of Reynolds numbers. The trained yNet will be

tested on (1) predicting flow field development characterized

by various Re unused in the training and validation datasets,

(2) simulating dynamic flow field evolution via recursive predic-

tions, (3) temporal extrapolation for predication (i.e., extending

the dynamic simulation beyond the original time domain in

training data), and (4) computational accuracy and efficiency in

comparison with a conventional multi-input ConvNet.
Training and testing procedure
Figure 2A illustrates the overall procedure of training an yNet

applicable to a range of Reynolds numbers. The transient

vorticity field is selected as the flow field of interest and the

Reynolds number as the condition parameter, but we can easily

train yNet for the other flow fields in the same way. To achieve
4 Patterns 3, 100494, June 10, 2022
simulation of dynamic field evolution, the

yNet is trained to predict a next-step flow

field based on the current flow field and

Re condition. Therefore, a long-term flow

field evolution simulation can be per-

formed by yNet through multi-step recur-

sive predictions, as shown in Figure 2D.

More condition parameters can be

easily incorporated by simple adjustment

of the input layer of MLP, as executed for

the next application. To provide a dataset,

physical simulations by solving differential
equations, including Equation 1, are performed at 30 equally

spaced Reynolds numbers (i.e., Re = 75, 78, 81, ., 159, 162),

where 20 cases would be randomly chosen for training, 5 for vali-

dation, and the remaining 5 for testing (see data splitting in Fig-

ure 2A). For all physical simulations, extraction of neighboring

snapshots is performed to generate one-step-distance data

pairs, as illustrated in Figure 2B. A physical simulation will put

out a total of 160 frames, indicative of 159 data pairs obtained

at each Re sampling point or 4,770 for the entire dataset (Fig-

ure 2C). They are split into training, validation, and testing data-

sets based on Re as mentioned.

For yNet instantiated in this application, the detailed

architecture is illustrated in Figure S1A and explained under

Experimental procedures. We train yNet for 100 epochs with a

mini-batch size of 2 by using Adam Optimizer with a learning

rate of 0.001, b1 of 0.9, and b2 of 0.999.

Testing under new Re conditions
Figure 3 presents a set of testing results under four different Re.

As indicated by the predictive error, yNet can accurately predict

the next-step flow field in all cases, with a minor difference from

the original physics-based simulation. For all 795 testing results,

yNet achieves a negligibly small root-mean-square error (RMSE)

of 0.426 s�1. It represents one of the first cases of data-driven

modeling that directly incorporates the Reynolds number. Previ-

ous strategies for considering the Reynolds number are usually

used to train a neural network that takes as input a series of his-

torical flow fields,18,42,43 which, as a whole, embed correspond-

ing Re information (see LSTM + ConvNet model in Figure S2B).

Thus, the neural network can predict the next step based on



Figure 3. Testing results of yNet under

different Re conditions

We randomly picked a set of testing results that

show yNet in predicting next-step flow field devel-

opment under different Re testing conditions.
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the evolving trend of consecutive flow fields without being

informed by any additional inputs like the Reynolds number.

yNet, however, explicitly incorporates the important condition

of the Reynolds number and takes as input only one image at

the last step, tn. This is to some extent analogous to PDE-based

temporal simulation, where the state at tn+1 is computed based

on that at tn only instead of a series of historical states. yNet

thus possesses two major advantages over previous LSTM +

ConvNet strategies.

First, yNet is as conceptually simple as a basic ConvNet

without the complexity of integrating a sequence-modeling-pur-

posed LSTM model.18,42 Second, yNet is widely applicable to

general condition-dependent fluid flow simulation problems.

One typical example is to predict the development of a flow field

for different bluff body shapes.25,37 This is essentially a different

mapping problem between distinct field quantities; i.e., from a

structural field (bluff body structure) to a flow field (see compar-

ison in Figure S3). For such regression tasks beyond standard

field evolvement, the aforementioned LSTM + ConvNet model

apparently will no longer work. We have to explicitly incorporate

effects of condition parameters on flow field development

by developing a general multi-input field-to-field regression

capability.

Testing on dynamic fluid simulation and temporal
extrapolation
Figure 4A shows a representative testing result of predicting

multi-step evolution, under the testing condition of Re = 84,

through recursive inference as depicted in Figure 2D. Note-

worthy is that predictive errors can accumulate after many

steps of recursive predictions. However, compared with the

ground truth of physics-based simulation, yNet well repro-

duces the long-term dynamic flow field evolution, suggestive

of a rather small error during recursive prediction at every

step. The predictive error over multi-step predictions for

different Re testing conditions is summarized in the left half

of Figure 4C. The quantitative result reveals that predictive

error does accumulate as recursive prediction proceeds but

remains at a small level, (i.e., <10.0 s�1) for different testing

conditions.

Attempts have been made to predict fluid dynamics toward

the distant future; i.e., beyond the time domain in training

data (see the visualized example for Re = 84 in Figure 4B).

Correspondingly, for validation purposes, we also extend the
physical simulation for another 32 frames.

Despite the big challenge associated with

temporal extrapolation, predictive error

generally continues to display gradual

accumulation without a sudden rise, as

shown in the right half of Figure 4C.

Notably, predictive error can finally reach
a maximum RMSE of 19.43 s�1 for Re = 150. However, such a

predictive error is acceptable, still providing good prediction

of the flow field, as clearly shown by the inset in Figure 4C.

The above results indicate successful learning of the underlying

evolution dynamics by yNet, which supports its temporal scal-

ability to reasonably predict flow field evolvement into the

distant future.

yNet versus conventional multi-input ConvNet
Figures 5A and 5B compare the computational accuracy and

efficiency, respectively, of yNet and the conventional flat-

tening-based multi-input ConvNet. For fair comparison, both

networks are implemented with the exact same encoder and

decoder parts (38 layers in total) but using gating- and flat-

tening-based signal-merging strategies respectively. Also,

because there are a few variants of the flattening-based strat-

egy, we implement one by directly concatenating Re to the

flattening result. The detailed architectures and configurations

of the two implemented ConvNets are graphically compared in

Figure S1. As the validation loss curves in Figure 5A indicate,

after reaching convergence of training (>60 epochs), the two

models exhibit the same level of validation accuracy. The

testing result of the finally trained yNet (RMSE = 0.426 s�1)

is also comparable with that (RMSE = 0.421 s�1) of the con-

ventional multi-input ConvNet. The inset in Figure 5A shows

almost the same prediction by the two trained models at a

randomly selected testing data point. However, yNet has

only one-tenth of the model size of the conventional multi-

input ConvNet (yNet, 7,907,685; conventional, 74,900,837)

and thus has various computational benefits compared with

the conventional ConvNet, such as significantly reduced

memory consumption, shorter training time, and faster infer-

ence speed (Figure 5B).

These merits of yNet are attributed to the gating-based signal

merging strategy, which permits effective interaction between

two input channels while inducing only a minimal number of

model parameters. The root reason for the effectiveness of

directly manipulating feature maps lies in the high expressive-

ness and meaningfulness of encoded feature maps, which are

widely recognized in ConvNet visualization and interpretation

studies in the CV community. That is, a feature map would

strongly correlate with a certain internal feature/pattern if one

projected them back to a pixel-based image.44,45 Thus, direct

manipulation of these feature maps will effectively generate
Patterns 3, 100494, June 10, 2022 5



Figure 4. Testing results of yNet for dynamic fluid simulation

(A) Testing of yNet in predicting dynamic flow field evolution with time through recursive predictions. In the dynamic simulation, we start from step 128, which is

around the wake of unstable flow showing significant evolution. We present snapshots at some time points to show the dynamic evolution process.

(B) Testing of yNet in predicting dynamic flow field evolution beyond the original time domain in training data.

(C) Predictive errors over the long-term simulation of fluid dynamics under five Re testing conditions.
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newly weighted combinations of features toward the target im-

age. This is, in spirit, not inconsistent with proper orthogonal

decomposition (POD),46 by which different high-dimensional im-

ages can be expressed as different linear combinations of

orthogonal modes; i.e., extracted features. However, POD relies

on a linear-theory-based feature extraction, which may impair

the expressiveness of POD modes.47,48 In addition, the deep

decoder of yNet can contribute to accurate reconstruction of

the target or output image through the non-linear and complex

deconvolution process.

Porosity evolution in selective laser sintering
Here we apply yNet to simulation of porosity development in

selective laser sintering (SLS) to demonstrate (1) the capa-

bility in spatially extrapolating prediction and (2) extreme
6 Patterns 3, 100494, June 10, 2022
computational efficiency over a physics-based model. SLS49

is one of the most popular additive manufacturing (AM) tech-

niques, widely adopted for fabricating metal, ceramic, and

polymer components in a layer-by-layer manner.50 Fast pre-

diction of porosity formation in a realistically large area with

multiple sintering layers is of huge practical significance.

However, accurate simulation of porosity formation in SLS

usually requires proper consideration of rigid-body translation

and rotation of powder particles for particle calescence, grain

growth by boundary migration through various diffusion

mechanisms, and densification (Figure S4).51 Physics-based

SLS simulation is thus usually restricted to a few layers with

limited length, far from SLS practice. There is an urgent

need for an inexpensive surrogate for the cumbersome phys-

ics-based SLS model.



Figure 5. Comparison of yNet with conven-

tional multi-input ConvNet

(A and B) Validation loss curves of yNet and con-

ventional multi-input ConvNet (A) and comparison

of model size (i.e., total number of parameters)

(B) and three other performance metrics between

yNet and conventional multi-input ConvNet. The

performance is measured purposely based on a

laptop (Intel Core i7-7500U CPU, NVIDIA GeForce

GTX 950 M GPU, 16 G RAM). Memory use is

measured with a single unit input instead of a batch.
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Training and testing procedure
A multi-physical SLS model52 is used to generate training,

validation, and testing datasets. In current SLS modeling, the

sintering effects (particle calescence, grain growth, and porosity

evolution) are largely decided by the heat-affected zone (HAZ),

which depends on the laser condition, and inter-layer interaction,

which mainly includes re-sintering of previous layers during

scanning of the newly added layer in the layer-by-layer fabrica-

tion. It is assumed that the sintering effect (i.e., sintering strength

as a main function of laser conditions) and the layer interaction

behavior can be transferred from a small patch to a long track

as long as the size of the small patch is larger than the HAZ

size. With this above assumption, we will train yNet based on da-

taset of small 128 3 128 patches (greater than the maximum

HAZ depth of 117 pixels) and then demonstrate its spatial scal-

ability to handlingmultiple layers of long tracks. Datasets of stan-

dard patches are obtained by cropping as-received simulation

results every 10 pixels (Figure 6A). The detailed training and

testing procedure is illustrated in and Figures S5 and S6 and is

described in Note S1, and the detailed yNet architecture imple-

mented in this application is illustrated in Figure S7.

Figure 6A illustrates the data generation of standard patches

for training and testing from raw simulation results. The gener-

ated dataset is split into training, validation, and testing parts

based on laser power and scanning speed sample points; i.e.,

75 [P, V] conditions randomly selected for training, 25 for valida-

tion, and the other 25 for testing (see detailed partition of [P, V]

points in Figure S6), and Figure 6B shows 5 testing results on

standard patches. yNet predictions closely resemble physics-

based simulations, and only a minor morphological error (see

last row of Figure 6B) can be observed through pixel-wise

comparison of their phase variables. In addition to visual resem-

blance, we calculate the pixel-wise global accuracy (i.e., the per-

centage of correct pixels) for such two-phase, high-contrast

fields. yNet achieves a similarity as high as 99.53% to ground

truth on average for all 43,500 testing results.

Testing on long tracks and spatial extrapolation
The as-trained yNet is scalable to modeling multiple layers of

long tracks. To test step by step, we first examine the spatial

extrapolation of the trained yNet to handling a single-layer long

track (Figure 7A, and 7B compares the accuracy of yNet in

modeling small patches of original size and long tracks. For

different laser power conditions, yNet consistently shows a

comparably high accuracy when dealing with long tracks. On

average, yNet achieves a pixel-wise accuracy of 99.04% in
modeling long tracks, which is close to 99.24% in modeling

small patches. The second step is testing of sintering multi-layer

long tracks that involves inter-layer interaction. Figure S8 shows

an example of a detailed simulation process for 3 layers. By

adopting such a layer-wise simulation, we obtain the multi-layer

sintering results by yNet and a physics-based model under

different laser conditions (Figure 7C). By increasing laser power,

we can see that the results by yNet and the physics-based

model both show a transition from the layer-scale unsintered re-

gion (Figure 7C, top left inset) to small scattered unsintered areas

(Figure 7C, bottom left inset) and, eventually, to a fully sintered

state (Figure 7C, bottom right inset). The unsintered regions

are located between layers because of insufficient sintering

depth under small laser powers. The detailed labeling results

of unsintered regions can be also found in Figure S9. The quan-

titative results of measured unsintered regions (Figure 7C, top

right) further prove the good agreement between yNet-based

and physical multi-layer simulations.

The tested spatial scalability can help address the computa-

tionally daunting task of large-scale sintering simulation, even

including a full-component SLS simulation. To demonstrate

this, we perform an extreme-scale sintering simulation of a

practical 315-layer SLS component with dimensions of

70.8 3 44.1 mm2 (or 3,5416 3 22,050 pixels), as illustrated in

Figures S10 and S11 and described in Note S2.

yNet versus physics-based model
As discussed earlier, physics-based SLS simulation, especially

at the component level, is notoriously computationally dema-

nding. It is therefore an ideal case to demonstrate the computa-

tional superiority of yNet over a physics-based model. We look

into the computation time of yNet and the original physics-based

SLS model. Again, yNet and the physics-based model are inten-

tionally tested on a laptop used in the benchmark study in appli-

cation 1.

Figure 8 shows the computation time as a function of the length

of the modeled powder bed. Simulation of small tracks, like the

640-pixel-long tracks in Figure 7A, is just a matter of tens of mil-

liseconds by using yNet. In striking contrast, the original physics-

based model used in this study will take a few hours to complete

the same task in the same computational setting. The test for the

physics-basedmodel stops at a length of 2,048 pixels because it

can be predicted that, by modeling an even longer track, the

computation time will increase rapidly to days. For the 8 different

lengths tested for both models, yNet is generally 5–6 orders of

magnitude faster than the physics-based model; see Table S1
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Figure 6. Testing of yNet on small standard

patches

(A) Pre-processing of raw simulation results for a

dataset of standard patches.

(B) Testing results of yNet on standard patches. We

randomly selected 5 of 43,500 testing results.
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for a more detailed quantitative comparison. yNet can easily

handle extremely large layers with a maximum length of

�21,248 pixels with such a limited computational resource.

Modeling even this large layer remains nearly instant for yNet.

In this regarding, the component-level SLS simulation (i.e., hun-

dreds of large layers), which previously was a formidable task

even for high-end computing facilities, can now be accomplished

in a few minutes with yNet by simply using a laptop.

Stress field development
Here we present another application of yNet: predicting stress

field development. The main objective of this application is to

test the robustness of yNet in (1) handling an input and output field

with striking differences and (2) extending the stress field predic-

tion for structures beyond the specific type of shape used in

training. Stress field development is a totally different type of field

evolvement problem compared with the previous two. The task in

this application is to constructmapping between fields of different

physical meaning: a structural field and a stress field. Compared

with standard field evolvement of a certain typeof field, stress field

development showsa radical differencebetween input andoutput

images. The input structure is a simple high-contrast field,

whereas the output stress field is characterized by complex

texture and great variability. Therefore, this application may
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push the performance limit of the proposed

yNet in the tough application scenario of

strong ‘‘field evolvement.’’

Training and testing procedure
For illustration purposes, we trained yNet

to predict stress field development in a

typical perforation structure (i.e., a solid

structure with a hole) subjected to

compressive loading (Figure S13). Note

S3 describes the detailed training and

testing procedure. As briefly illustrated in

Figure 9A, the basic idea is to train yNet

with specific types of perforation struc-

tures that feature elliptic holes but with

random combinations of hole orientation,

size, and aspect ratio. When trained, yNet

is expected to predict stress field develop-

ment for perforation structures with holes

of not only elliptic shape but also other

geometries.

We first routinely test yNet for perfora-

tion structures with elliptical holes unused

during training; see Figure S14 for more

details. Briefly, the prediction by yNet

overall agrees well with the finite element

(FE)-based simulation. The RMSE for all
1,000 testing results is as small as 12.70 MPa. Therefore,

although the input and output images are totally different and

display huge changes, yNet can correctly predict these signifi-

cant ‘‘evolvements.’’

Testing on other types of perforation structures and
shape extrapolation
Besides routine testing, we tested yNet for perforation structures

with other categories of holes, including triangular, rectangular,

and polygonal ones, as illustrated in Figure 9A. For the 5 random

testing results shown in Figure 9B, the RMSEs are 20.97, 50.43,

49.66, 41.33, and 51.71 MPa, respectively, which are relatively

higher than that of testing with elliptic holes. Although the predic-

tive performance shows a slight decrease, from the comparison

of detailed stress distribution, yNet still reasonably predicted

stress field development. It is thus believed that yNet has learned

the basic rule for stress field development. For example, stress

concentration tends to take place during sharp geometrical tran-

sitions along the loading direction and also initiates from two bot-

tom corners with increasing loading (associated with the fixed

boundary at the bottom in the current modeling); the discontin-

uous geometrical changes transverse to the loading direction,

however, do not serve as significant stress risers. These rules

are fully contained in the training dataset and universally valid



Figure 7. Testing of yNet on extrapolating prediction for long tracks

(A) Schematic of the as-trained yNet for predicting sintering of a long track.

(B) Testing results of yNet for predicting sintering of a long track under different laser conditions.

(C) Extension of yNet to predicting sintering of 3-layer long tracks under different laser conditions. By following the workflow in Figure S8, we perform sintering

simulation of multiple layers under three laser power conditions (power = 20, 25, and 30 W). Other settings are the same as that used in Figure S8. The overall

sintering effect of multiple layers (measured by the percentage of unsintered region) as a function of laser power is then obtained for yNet and the physics-based

model, as shown.
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for perforation structures of any type. Learning these funda-

mental rules endows yNet with great extrapolation capability

for coping with different perforation structures.

DISCUSSION

The proposed yNet should be generally applicable to many con-

dition-dependent field evolvement and development problems.

Note S4 describes another interesting application of yNet for

grain growth simulation; see Figure S15 for the detailed training

and testing processes and Figure S16 for some testing results. In
addition, we utilize the spatial and temporal scalability of yNet

to enable long-term, large-scale grain growth simulation; see

Videos S1–S3 for simulations performed at different time resolu-

tions. The four presented applications (3 major and 1 supple-

mental) have helped us examine the general effectiveness of

yNet in handling many distinct field evolvement and develop-

ment problems. As a general-purpose regression tool, the well-

tested yNet should have an enormous potential for future

applications. Some promising applications would be ultrafast

modeling of structural/morphological evolution in materials sci-

ence and engineering,53–55 temperature field development in
Patterns 3, 100494, June 10, 2022 9



Figure 8. Comparison of computation time of

yNet and a physics-based model

yNet is not only computationally much faster than

the physics-based model but also able to handle

extremely long tracks with limited computational

resources.
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thermal design and control,56 and geometrical distortion in

manufacturing,57 to name a few.

Physics-informed ML58 is now emerging as a revolutionary

technique by which physics constraints can be imposed to

learning processes by directly formulating physical diffe-

rential equations into loss function59 or casting them into

an energy minimization framework that naturally fits in the

loss minimization task of ML training.60 In doing so, ML

would be penalized for its violation of physical laws and

forced to learn physical governing equations. Anitescu

et al.61 adopted adaptive collocation to selectively refine

training grids at regions with large residuals, which can

significantly reduce errors of physics-informed ML. With the

rapid advancement of physics-informed ML, the large data-
10 Patterns 3, 100494, June 10, 2022
sets required for training yNet will be

potentially alleviated or even completely

eliminated62 with increased robustness

and generalization.

In the future, the extension to real-

world data is crucial to fully showcase

the modeling capability and realize the

practical significance of yNet. Nowa-

days, data-driven modeling of field

evolvement and development still relies

principally on simulation-derived data-

sets because performing highly con-

trolled experiments and measuring 2D

or even 3D physical fields with the

desired resolution is not only costly but

also often technically challenging. How-

ever, there have recently been advances

in obtaining experimental data at high

resolution and even in real time for

some physical phenomena. For example,

in the fluidics community, besides con-

tinued advancement of experimental

imaging technologies,63,64 data postpro-

cessing techniques have been explored

to obtain high-resolution flow fields, in

time,65,66 space,67,68 or both,69 from as-

measured imperfect data. In AM, X-ray

computed tomography (XCT) has been

increasingly used for characterizing 3D

porosity.70–72 In experimental mechanics,

the digital volume correlation (DVC) met-

hod permits characterization of 3D dis-

placement, strain, and stress fields with

ever-increasing spatiotemporal resolution

because of parallel improvement of DVC

algorithms and internal imaging instru-

ments.73–75 It is thus expected that yNet
will be readily applied to experimental data in these fields,

with fast development of data acquisition techniques and

upon availability of (sufficient) high-quality experimental data

in the near future.

The main limitation of yNet is that the trained yNet is some-

times limited in scaling to fields of large and variable dimen-

sions. In yNet-based component-level SLS simulation, the

scalability to long tracks relies on the assumption of globally

uniform evolving kinetics of porosity evolution in SLS. That

is, the sintering effect depends on the applied laser condition

and is consistent along the length of the sintered track for a

given laser condition (see the illustration in Figure S12). The

large-scale simulation of natural grain growth is also based

on its completely uniform evolving kinetics over the modeling



Figure 9. Testing of yNet on predicting stress

development for various types of perforation

structures

(A) yNet is trained based on a simple dataset con-

taining elliptical holes only. The as-trained yNet can

predict stress fields for other types of holes. All

holes used in training, validation, and testing are

randomly generated based on the descriptive

methods as shown.

(B) Testing of yNet on different types of perforation

structures. The perforation structures have com-

pletely different types of holes than that used in the

training dataset. Five randomly generated rectan-

gular, triangular, and polygonal holes are tested.
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domain. This is, however, not always the case; e.g., for fluid

dynamics simulation and stress field prediction where such

simple scalability may not hold. Other solutions are needed

for developing more advanced scientific ConvNets. However,

the core of yNet is still expected to play a role whenever it

comes to developing multi-input ConvNets and merging input

signals.

Another limitation is that only parameter-type conditions

are considered and demonstrated in the current study. There

are, however, higher-dimensional and more complex condi-

tions for various physical and engineering problems. For

example, the applied loading in stress field modeling in

Figure 9 can be non-uniform and, thus, not describable by

a single scalar parameter. Also, besides natural grain growth

(Note S4), grain growth in practice can be influenced by the

temperature of the field because the preferred growth direc-

tion is along the local thermal gradient.76 These complex

conditions, no matter how many dimensions they have, can

be eventually converted to an embedding vector of the

desired length. It would then allow adoption of gating-based

signal merging for efficient incorporation of their effects on

field evolvement.

We have proposed a multi-input ConvNet, yNet, with stunning

simplicity and usefulness, which are concretely demonstrated

through comprehensive applications and testing. It thusmay sol-

idly push our fundamental regression capability to multi-input

field-to-field/image-to-image regression, which is broadly in
demand in data-driven modeling across

many physical and engineering domains.

yNet merges input signals without flat-

tening the field input into a large vector,

instead directly manipulating high-level-

encoded feature maps. It possesses a

significant computational advantage over

its ConvNet counterpart and extreme

computational efficiency compared with

the physics-based model. Based on its

computational superiority, large-scale

and/or long-term dynamic simulation of

field evolvements can be easily performed

with even limited computational re-

sources. As indicated by the unprece-

dented wide and deep applications pre-

sented in this research, the proposed
yNet may have enormous potential and a profound effect as a

conceptually simple, lightweight, but powerful multi-input field-

to-field regression tool.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, L.C. (leichn@umich.edu).

Materials availability

This study did not generate new unique materials or reagents.

Data and code availability

All datasets reported in this study have been deposited at Mendeley Data:

http://doi.org/10.17632/gg8f2hwkxd.1, as Four Datasets for Multi-input

ConvNet. All datasets reported in this paper will also be readily shared by

the lead contact upon request. All original code has been deposited at Zenodo

(http://doi.org/10.5281/zenodo.6370878) and in GitHub (https://github.com/

zwang586/MICNN). Any additional information required to reanalyze the

data reported in this paper is available from the lead contact upon request.

Fluid dynamics model

A two-dimensional, incompressible, viscousmodel is used to study flow past a

cylinder using the numerical method in OpenFOAM. The full governing equa-

tions in describing the flow are

V , v = 0 (Equation 2)

vv

vt
+ v,Vv = � 1

r
Vp+ nV2v; (Equation 3)
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where v is the velocity field, p is the pressure field, and n and r are the kine-

matic viscosity and density of the fluid, respectively.

The discretized continuity and Navier-Stokes Equations 2 and 3 are solved

using the pressure implicit with splitting of operator (PISO) algorithm on amesh

consisting of 85,720 cells. Specifically, the computational fluid dynamics (CFD)

simulation is realized using icoFoam. The velocity field is computed into the

vorticity field for flow visualization. It is important to transfer the Navier-Stokes

equation into the non-dimensional form so that a dimensionless number is

used to characterize the system. Hereby, the Reynolds number is introduced

using dimensional analysis41 that represents the ratio of inertial forces to the

viscous forces in the flow field, as shown in Equation 1. In this case, variables

in Equations 2 and 3 can be rewritten in scaled units with respect to typical

length L (diameter of the cylinder) and typical fluid velocity V (incoming flow

velocity); namely, x = x0L, v = v0V , t = t0 LV, u = u0V
L. We focus on the mod-

erate Reynolds number range where a wake is developed passing a cylinder

and oscillating with a certain frequency. The flow behavior is identified as a

von Karman vortex and is ideal to characterize the flow pattern with different

Reynold numbers.

SLS model

In this study, we basically customize a phase-field-based sintering model51

for applicability in SLS, with incorporation of a heat transfer model and a

Gaussian heat source model describing the effective heat input from a

moving laser beam.77 The sintering model has properly taken into account

multiple physical processes by first reformulating the effective diffusion coef-

ficient as

Deff = Dvol4ðrÞ+Dvap½1 � 4ðrÞ�+Dsfrð1 � rÞ+Dgb

X

a

X

a0sa

ðhaha0 Þ;

(Equation 4)

where, Dvol, Dvap, Dsf, and Dgb are temperature-dependent diffusion coeffi-

cients in solid volume, vapor, along the surface, and the grain boundary,

respectively, which are thus dependent on fully coupled thermal modeling. ha
is phase variable that describes the ath particle. In addition, the non-conserved

porosity evolution is partially governed by the rigid body motion-induced

advection velocity field, which is a combination of the translation of rotation

from all relevant particles, vrbm =
P
a

½vtðaÞ + vrðaÞ�. The velocity fields of

rigid-body translation, vt and rotation, vr, of the ath particle are calculated by

vtðr;aÞ =
mt

VðaÞFðaÞhaðrÞ (Equation 5)

vrðr;aÞ =
mr

VðaÞTðaÞ½r � rcðaÞ�haðrÞ; (Equation 6)

where mt = 500 and mr = 1. The force, F, and torque, T, acting on the powder

particles are associated with the their real-time structural environment and

materials density. Full mathematical details of our physical SLS model are re-

ported in a separate paper on multi-physical SLS simulation.52

Powder generation model

In addition to the sintering model for simulating porosity evolution, generation

of a powder bed (i.e., the initial porous structure) is simulated using a ‘‘rain’’

model.78 The basic mechanism of a rain model is to add a powder particle

to the lowest position on the surface of the current powder layer, update the

powder layer, and repeat the previous two steps. This iterative process is

terminated when the newly added particle reaches the user-defined layer

height. The mean and standard deviation of the radius of deposited powders

are 25 and 2.5 mm, respectively. It should be pointed out that yNet in this study

will be trained to simulate porosity evolution and thus replace a physics-based

sintering model only. The powder bed generation model is a separate model

that provides an initial structure for physical sintering simulation and yNet-

based sintering simulation.

Solid mechanics model

An FE-based solid mechanics model is used to generate stress field datasets.

The modeled object is a perforation structure with dimensions of 0.13 0.1 m2.
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To generate random perforation structures, the elliptical hole at the center is

defined by the length of a-semiaxis and b-semiaxis as well as rotation angle.

The rectangular hole is also located at the center and defined by width, height,

and rotation angle. The triangular hole and polygonal hole are specified by the

coordinates of their respective vertices. Fixed constraint is applied at the bot-

tom of the perforation structure and uniform compressive force at the top. This

model is implemented in COMSOL Multiphysics 5.5.
Grain growth model

A phase-field grain growthmodel is used to perform natural grain growth simu-

lation and generate grain structure datasets. In the phase-field model, each

grain is described by a phase variable, 4q. The grain growth is then described

by the temporal and spatial evolution of the phase variable, which can be simu-

lated by solving the time-dependent Ginzburg-Landau equation

v4qðr; tÞ
vt

= � L
dFðtÞ

d4qðr; tÞ
; (Equation 7)

where L is the kinetic rate coefficient related to the grain boundary mobility and

F is the total free energy of a polycrystalline system that drives the microstruc-

ture evolution.79 All phase-field grain growth simulations start with a random

seeding of 150 grains of size r = 5. A periodic boundary condition is applied

for the top (left) and bottom (right) boundary.
yNet

We use the yNet instantiated in fluid dynamics simulation as an illustrative

example. The detailed architecture is shown in Figure S1A. The first layer

of MLP is the condition input (i.e., Reynolds number), the hidden layer is a

fully connected layer with 256 neurons, and the final layer has 512 neurons.

For the encoder, the input is a vorticity flow field at the current step in a

256 3 64 image. Each green block represents a combination of Conv +

Relu operations, and a light green block means max-pooling. In this manner,

the encoder finally yields 512 8 3 2 feature maps, which are passed to a

dropout layer with a rate of 0.5 before merging with the MLP signal. The

decoder just has a somewhat mirrored topology of the encoder, with each

blue block representing a combination of Conv + Relu operations and dark

blue block up-sampling. At the end of the MLP and encoder, conventional

approaches adopted a flattening-based strategy to merge multi-input sig-

nals. As illustrated in Figure 1E, the signal merging through a sequence of

flattening, concatenating, compressing, and reshaping operations can be ex-

pressed as

Uen / sen; Uen ˛ℝn1 3 n2 3N2 ; sen ˛ℝN3 (Equation 8)

sconcatenate = sMLP1sen; sconcatenate ˛ℝN1 +N3 ; sMLP ˛ℝN1 (Equation 9)

sconcatenate / scompress; scompress ˛ℝN3 (Equation 10)

scompress /Ude; Ude ˛ℝn1 3 n2 3N2 ; (Equation 11)

where n13n2 and N2 are, respectively, the shape and number of encoded

feature maps, Uen at the end of encoder, N3 = n13n23N2 is the dimension of

the vector, sen, by flattening feature maps,1 denotes concatenate operation,

sconcatenate is the concatenation result, N1 is the dimension of the output vector

of MLP, sMLP, scompress represent the resulting vector by compressing

sconcatenate, and Ude is finally obtained feature maps through reshaping

scompress for decoding process.

For yNet, we propose to simply merge the signal using the gating-based

strategy as depicted in Figure 1G,

Ude = sMLP+Uen; (Equation 12)

where + denotes channel-wise multiplication, and Ude is the multiplication re-

sults (gated feature maps) for the decoding process. To successfully perform

channel-wise multiplication, the number of neurons in the last layer of MLP is

always set equal to the number of featuremaps at the end of encoder; i.e.,N1 =

N2 in Figure 1G.
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For the other three applications, we basically use the yNet described above

but with the potentially adjusted depth of encoder-decoder and width of MLP

depending on the complexity of the modeling problem. Specifically, in data-

driven modeling of stress field development, we use the same yNet as imple-

mented in modeling fluid dynamics (Figure S1A). In data-driven modeling of

porosity development in SLS and grain growth, we implement a slightly shal-

lower yNet (Figure S7), considering the relative textural simplicity of the images

to be processed. Correspondingly,MLP is properly adjusted to guarantee chan-

nel-wise multiplication at the end of MLP and ConvNet encoder. In all four ap-

plications, min-max normalization of datasets is performed for ease of training.

Two types of loss functions are used in this study. For an output field with

strong texture (i.e., flow field and stress field), we use mean squared error

(MSE) to evaluate loss,

Loss =
1

N

XN

i = 1

��f
�
ai ;Xi

� � Y
i��2; (Equation 13)

where N is the number of samples processed, a is the condition-parameter

input, X is the field input, fða;XÞ is the evolved field by prediction, and Y is

the evolved field of ground truth. For an output field that clearly displays two

distinct phases (i.e., porosity structure and grain structure), we use binary

cross-entropy loss to better penalize predictive errors:

Loss = � 1

N

XN

i = 1

��f
�
ai ;Xi

�
,logY

i
+
�
1 � f

�
ai ;Xi

��
,
�
1 � logY

i���2:

(Equation 14)

In all four applications, yNet is trained end to end by using the training hyper-

parameters listed in Table S2. Learning curves are summarized in Figure S17.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
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