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ABSTRACT

Mesenchymal stem cells (MSCs) represent a population of adult stem cells residing 
in many tissues, mainly bone marrow, adipose tissue, and umbilical cord. Due to the 
safety and availability of standard procedures and protocols for isolation, culturing, and 
characterization of these cells, MSCs have emerged as one of the most promising sources 
for cell-based cardiac regenerative therapy. Once transplanted into a damaged heart, MSCs 
release paracrine factors that nurture the injured area, prevent further adverse cardiac 
remodeling, and mediate tissue repair along with vasculature. Numerous preclinical studies 
applying MSCs have provided significant benefits following myocardial infarction. Despite 
promising results from preclinical studies using animal models, MSCs are not up to the mark 
for human clinical trials. As a result, various approaches have been considered to promote 
the therapeutic potency of MSCs, such as genetic engineering, physical treatments, growth 
factor, and pharmacological agents. Each strategy has targeted one or multi-potentials 
of MSCs. In this review, we will describe diverse approaches that have been developed to 
promote the therapeutic potential of MSCs for cardiac regenerative therapy. Particularly, we 
will discuss major characteristics of individual strategy to enhance therapeutic efficacy of 
MSCs including scientific principles, advantages, limitations, and improving factors. This 
article also will briefly introduce recent novel approaches that MSCs enhanced therapeutic 
potentials of other cells for cardiac repair.
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INTRODUCTION

Heart failure is one of major causes of hospitalization worldwide. It has been estimated that 
1–2% of adult population are currently suffering from heart diseases.1)2) Heart failure is the 
condition in which the heart fails to pump sufficient volume of blood to meet the body's 
demand due to substantial reduction in the contractile function of the myocardium.1)2) 
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Despite its clinical importance, current regimens including surgical and pharmacological 
interventions can only delay the progression of this detrimental disease.

Due to extremely low regeneration potential, heart transplantation is one of a few currently 
available treatment options for improving the prognosis of this disease. However, it is 
hampered by the limited supply of donor hearts and transplant-related immunosuppressant 
therapy. An artificial heart device can be used as a bridge to transplantation for patients 
waiting for heart donors. However, artificial heart devices have certain limitations, including 
unknown durability, the use of anticoagulants, and post-surgical complications.3) Due to 
restricted therapeutic options and the least regenerative nature of heart tissue, researchers 
have long been looking for alternative options to compensate damaged heart tissues.4)5) As 
a result, cell-based cardiac regeneration therapy has emerged as one of the most promising 
alternatives for treating damaged hearts.6)

Several distinct cell types are sources for cardiac regeneration therapy, including human 
mesenchymal stem cells (hMSCs),7) adipose tissue-derived stem cells,8) umbilical cord-
derived stem cells,9) skeletal muscle derived stem cells,10) and residential cardiac stem 
cells.11) All these cell-based therapeutic strategies aim to reduce myocardial damage by 
regenerating new functional cardiac tissues.12)13) Among these cells, hMSCs present a valuable 
option for cardiac regenerative therapy because of their ability to engraft and differentiate 
inside a heart with paracrine signaling, homing abilities. In addition, they can confer 
immunosuppression.14)15) hMSCs represent a population of multipotent stem cells present 
in adult tissues such as bone marrow, adipose tissue, umbilical cord, and peripheral blood. 
These cells can be easily isolated from their source tissues and suitably expanded in culture 
for several passages without any change in differentiating abilities. They are characterized 
by their adherence properties, expression of certain cell surface markers, and differentiation 
potential to a variety of cell lineages like osteoblasts, chondroblasts, and adipocytes. 
Additionally, several studies have suggested that hMSCs possess phenotypic characteristics 
of other cell types such as endothelial cells, smooth muscle, neural, skeletal, and cardiac 
myoblasts.14)16) Due to these advantages, hMSCs are promising candidates for allogeneic 
transplantation as they do not express MHC class II molecule or Fas ligand. Moreover, 
hMSCs have a unique capability of reaching the injured site without requiring any homing 
device.17)18) Upon introduction into an infarcted heart, mesenchymal stem cells (MSCs) 
have the potential to prevent further deleterious remodeling and improve cardiac function. 
Mechanisms of transplanted MSCs include differentiation of MSCs into cardiomyocyte-
like cells19) as well as paracrine effects that include modulating antifibrotic environment,20) 
immunomodulating effect,21) improving resistance against apoptosis,22) increasing 
cytoprotective effect,23) and enhancing angiogenesis.24) Compared to direct differentiation 
of MSCs into cardiomyocytes, paracrine signaling is strongly focused and widely accepted.25) 
A plethora of data have suggested that MSCs can release cytokines, chemokines, growth 
factors, and microRNA to harmonize various cells and improve the microenvironment of 
injured hearts.26)27) In line with this, Korf-Klingebiel et al.28) have demonstrated that hMSCs 
can release trophic factors and pro-angiogenic factors such as FGF9, VEGF, BMP2, DKK1, 
CXCL12, JAG1, WISP, and INHBA. Those factors not only can increase cardiomyocyte survival 
after myocardial infarction, but also can enhance angiogenesis. Therefore, MSCs is a distinct 
source of paracrine signaling for cardiovascular repair.

Several preclinical studies using animal models have demonstrated that administration of 
hMSCs into the damaged area is safe. In addition, it can decrease the infarct size and improve 
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contractile function with better survival post-engraftment.29)30) Following positive results in 
animal models, many groups have conducted clinical trials for MSCs.31) Some of these trials 
have demonstrated improvement of left ventricular ejection function (LVEF).32-35) For example, 
the BOOST trial has shown that LVEF in the hMSCs treatment group is enhanced 6.7% while 
LVEF in the control group is increased only 0.7% after 6 months.36) However, a meta-analysis 
study based on individual patient data of 1,252 patients has demonstrated no benefit from 
bone marrow-derived cells for myocardial infarction (MI) treatment in terms of LVEF or 
clinical events.37) Accordingly, a summary of 17 clinical trials applying bone marrow MSCs has 
revealed that only 10/17 studies show positive effects on LVEF change.38) Some other groups 
have also reported positive results. However, results of these studies were inconclusive due to 
the lack of control groups.39-41) In conclusion, most clinical trials did not report any significant 
improvement in left ventricle function after the administration of MSCs. Although outcomes 
from these efforts were minimal and most clinical trials failed to demonstrate an accurate 
and measurable improvement in cardiac function, they enhanced our knowledge regarding 
hMSC therapy and the underlying mechanism that paved a way for further improvements.13)

To improve the therapeutic potency of hMSCs, multi-faceted approaches have been 
developed during the last two decades (Figure 1).38)42) Notably, there is a growing evidence 
that priming of MSCs with diverse strategies under in vitro condition prior to transplantation 
can promote therapeutic potentials of MSCs substantially through enhanced survival, 
retention, and engraftment of MSCs post transplantation into the heart. Priming of MSCs 
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Figure 1. Currently available strategies to promote therapeutic potential of human mesenchymal stem cells. 
MSC = mesenchymal stem cell.



can be achieved by a number of applications, including exposing MSCs to hypoxic or 
anoxic conditions, treating with numerous pharmacological/chemical agents,43) cytokines, 
or growth factors,44) and using physical stimuli including biomaterials.45-48) In addition to 
these mentioned benefits of MSCs, some studies have found that MSCs can enhance the 
therapeutic potential of other cell types, including cardiomyocytes.49) Thus, in this review 
article, we will discuss several strategies previously attempted to enhance the therapeutic 
potency of hMSCs. We will also discuss MSCs-based novel strategies that can significantly 
enhance cardiac function post MI.

GENETIC ENGINEERING APPROACH

One of the first strategies to enhance therapeutic potentials of hMSCs is genetic engineering 
to modulate the expression of genes of interest through non-viral or viral vectors. These 
genetic modifications enable hMSCs to express certain proteins, cytokines, enzymes, and cell 
surface molecules necessary for their survival, migration, adhesion, and angiogenesis.17)38) 
Overexpression of a pro-survival serine-threonine kinase gene Akt confers cytoprotective 
effects of hMSCs. Transplantation of these genetically modified MSCs into ischemic 
hearts can restore myocardium, inhibit adverse cardiac remodeling, significantly improve 
LVEF, and reduce MI site.50)51) Transduced MSCs also show higher resistance to apoptosis 
along with enhanced proliferation and angiogenesis capabilities.52) Additionally, Akt 
modified MSCs show enhanced engraftment and fusion with host cardiomyocytes soon 
after transplantation.30) Further studies have demonstrated that combined effects of MSCs 
expressing Akt and Ang-1 can result in better survival, angiogenesis, and restoration of 
cardiac function on a global scale for a long period of time.52)53) Li et al.42) have also generated 
genetically modified MSCs by overexpressing pro-survival gene Bcl-2. As a result, they 
observed a significant reduction in apoptosis and an increase in expression level of VEGF. 
These effects were visible for a long time compared to normal MSC treatment. MSC-Bcl-2 
transplanted animals also demonstrated reduction in the infarct zone and higher capillary 
density.42) Heme oxygenase-1 (HO-1) is another cytoprotective gene that ensures cell survival 
by inhibiting HMGB1 protein during conditions like inflammation and endotoxemia.54)55) 
Transfection of MSCs with HO-1 has resulted in capillary and arteriolar density increase in 
the peri-infarct zone.56) Another group has reported the survival of HO-1 modified MSCs is 
increased 5 folds as soon as 7 days after transplantation.56)57) To improve MSC migration, 
chemokine receptors such as CXCR or CCR have been employed.58) Huang et al.59) have 
demonstrated that overexpression of CCR1 in MSCs not only promotes cell migration, but 
also inhibits apoptosis and activates angiogenesis. Transplanted CCR1-MSCs in infarcted 
hearts can restore the cardiac function and induce an antifibrosis.59) Synergistically increasing 
cell adhesion of MSCs has also been attempted. For example, to enhance adhesion of 
MSCs in ischemic myocardium, integrin-linked kinase (ILK) has been overexpressed. Such 
ILK-MSCs can reduce infarcted size and fibrosis, increase microvessels, and assist cardiac 
recovery after injury.60) Advantages of this genetic modification approach include efficient 
induction of priming through stable expression of genes of interests and long remaining 
effects following priming application. Apart from enhanced therapeutic effects, safety is the 
most critical limitation for future clinical therapeutic use of genetically engineered MSCs 
since viral integration in host genome may increase tumorigenicity. Further studies that 
closely monitor the fate of transplanted gene-modified MSCs will be necessary to address 
such safety concern.
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HYPOXIA/REOXYGENERATION

Oxygen is one of essential factors for the maintenance/survival of cells. Low or no supply 
of O2 can induce severe pathologies. Low oxygen availability decreases the viability 
and proliferation of MSCs. However, subsequent re-oxygenation can increase the cell 
survivability. This continuous process of hypoxia and re-oxygenation can stimulate the 
expression of various pro-survival genes, hence enabling MSCs to tolerate the harsh 
microenvironment in vivo. MSCs exposed to 1% oxygen condition show enhanced 
survivability and angiogenesis due to decreased apoptosis and enhanced expression of 
VEGF and FGF2 in a low-serum containing medium.44)61) MSCs cultured under a normoxia 
condition prior to hypoxia (0.5% O2) have demonstrated increased survival and better 
engraftment when they are implanted into infarcted heart tissues.62) These hypoxia 
preconditioned cells display increased expression of pro-angiogenesis, pro-survival, and 
pro-differentiation factors.62) Another study has demonstrated similar results, reporting that 
transplantation of preconditioned MSCs through hypoxia can enhance cardiac function via 
increased expression of pro-survival and pro-angiogenic factors like HIF1α, Bcl-xL, VEGF, 
and ANGPT1. On the other hand, expression levels of pro-apoptotic factors such as caspase-3 
are significantly reduced after such transplantation.62-64)

Along with the expression of pro-survival and pro-angiogenic factors, it is also necessary 
for MSCs to precisely reach the site of infarction. Several previous studies have provided 
insight into the role of hypoxia priming in enhancing homing capabilities of transplanted 
MSCs.65)66) MSCs cultured under hypoxic (1–3% O2) conditions can trigger the expression of 
cMet, a primary receptor of hepatocyte growth factor (HGF) signaling pathway, and enhance 
the migration of cells towards the ischemic site.65) Similarly, another study has reported 
that the migration and homing capabilities of MSCs are improved after hypoxic treatment 
before transplantation into MI heart.66) It has been found that a low oxygen treatment can 
increase expression levels of potassium channel and FAK, resulting in better cell motility.66) 
In terms of proliferation, hypoxia priming with 2% oxygen can increase the expression of 
normal cellular prion protein (PrPc), subsequently activating PrPc-dependent JAK2 and STAT3 
pathways and thus increasing the proliferative capacity of MSCs.67) Additionally, increased 
PrPc expression also inactivates the apoptosis pathway through the activation of catalase and 
superoxide dismutase enzymes.67) To be a safe therapeutic agent, MSCs must show genetic 
stability and low tumorigenic potential in vivo. MSCs cultured at low oxygen concentrations 
(3% O2) show prolonged life span.68) On the other hand, they show decreased DNA damage, 
less chromosomal aberration, less telomerase shortening, and less oxidative stress compared 
to cells cultured at normal O2 concentration, proving that hypoxia priming plays an important 
role in the genetic and chromosomal stability of MSCs.69) Several other studies have 
demonstrated that treating MSCs with lower oxygen concentration prior to transplantation 
can down-regulate the expression of specific genes involved in tumorigenesis, thus making 
MSCs a safe option for regenerative therapy.69-71)

There is no doubt that hypoxia-derived priming has many positive effects on MSCs in a 
number of ways, including improving their viability, proliferation, secretion potential for 
many angiogenic cytokines, and homing capability of MSCs. However, in order to make 
hypoxia-derived priming more effective, it is still necessary to optimize protocols such as 
finding the most effective oxygen concentration for reoxygenation and the optimal duration 
for hypoxia and reoxygenation.
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MESENCHYMAL STEM CELL PRIMING WITH CYTOKINES/
GROWTH FACTORS
Priming/preconditioning approaches using growth factors or cytokines can also improve 
angiogenic potential and survival of MSCs. Gorin et al.72) have demonstrated that fibroblast 
growth factor-2 (FGF-2) priming not only increases the secretion of VEGF and HGF, but also 
increases MSC-induced vascularization. Another study has reported that priming with SDF-1 
can increase the survival and proliferation of MSCs in a significant manner.73) Treatment 
with SDF-1 can enhance the secretion of cytokines involved in cell survival by activating Akt 
and ERK signaling pathways.73) In addition, angiogenesis can be enhanced due to increased 
secretion of VEGF.73) Priming of MSCs with transforming growth factor (TGF)-α can increase 
angiogenesis as VEGF is over-expressed through p38 mitogen-activated protein kinase 
(MAPK)-dependent pathway. The recovery of myocardial function can also be enhanced post-
ischemic injury.44)74)

To modify immunomodulatory effects, one of major advantages of MSCs, pro-inflammatory 
factors such as TNF-α, interleukin (IL)-1, interferon gamma (IFN-γ), and lipopolysaccharide 
(LPS) have been employed. These factors can promote MSCs to release anti-inflammatory 
signals, thus enhancing the immunosuppressive function of MSCs.75) Among these factors, 
IFN-γ has been intensively studied.76) Primed MSCs with IFN-γ and TNF-α not only can 
suppress T cell proliferation, but also can differentiate monocytes to IL-10-secreting M2 
macrophages. Indoleamine 2,3-dioxygenase (IDO) upregulation followed by T cell and 
NK cell inhibition has been widely suggested as a mechanism of such effect.77) Primed 
MSCs can also increase the production of anti-immunomodulatory factors such as TGF-β 
and prostaglandin-E2 and promote the expression of co-stimulatory molecules as well as 
histocompatibility leukocyte antigen.78) Chinnadurai et al.79) have demonstrated that hMSCs 
induced by IFN-γ can inhibit T cell effector function. Specifically, Th1 cytokine production 
and T cells degranulation are inhibited.

In addition to IFN-γ, TNF-α and IL-1 have also been used to amplify immunomodulatory 
effects of MSCs. TNF-α is a pro-inflammatory cytokine that is usually combined with IFN-γ 
to stimulate MSCs.78) It can strengthen effects of IFN-γ on MSCs, improve the IDO activity, 
cytokine production, and T cell suppression of MSCs. Moreover, such combination could 
restore IDO1 mRNA level of MSCs after freeze-thawing.80) Primed MSC with IFN-γ and TNF-α 
can also affect innate immunity through H factor to inhibit complement activation.81) Unlike 
TNF-α, IL-1 can be applied alone to induce MSCs to treat stroke patients. Redondo-Castro et 
al.82) have reported that MSCs primed by IL-1α or IL-1β can release higher levels of granulocyte 
colony stimulating factor, IL-10, and other trophic factors than MSCs primed by IFN-γ or 
TNF-α. When tested with activated microglial cells, conditioned medium of MSC induced 
by IL-1 exhibits strong immunomodulatory effects, suggesting a promising therapy for 
stroke treatment.82) Other pro-inflammatory cytokines such as IL-17, IL-6, IL-23, TGF-β1, and 
their combinations have been intensively studied to improve therapeutic effects of MSCs.78) 
Priming MSCs with cytokines has generally been considered relatively easy and safe because 
cytokines do not alter genes in MSCs. However, in order to induce more efficient priming, it 
is necessary to find the optimal cytokine as a prerequisite. In addition, priming MSCs with 
cytokines is not cost-effective because it usually requires significant amounts of cytokines.
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PHARMACOLOGICAL AGENTS

Several previous studies have reported that priming MSCs with distinct pharmacological 
agents can protect MSCs from ischemic damage by activating endogenous cellular machinery, 
thus further enhancing the therapeutic potential of MSCs.44) Pre-treatment of MSCs with an 
anti-ischemic drug trimetazidine (TMZ) can protect MSCs against oxidative stress-induced 
cell death.83) Pre-treatment of MSCs with TMZ increased expression levels of pro-survival 
factors such as HIF-1α, Akt, survivin, and Bcl-2.83) Overall improvement in cardiac function 
has been observed after transplantation of TMZ pre-treated MSCs.83) Another study has 
reported that vitamin E primed MSCs can survive hydrogen peroxide induced oxidative stress, 
thus increasing cell viability.84) In addition, priming MSCs with Atorvastatin (Statin) can 
improve their survival post-transplantation by activating endothelial nitric oxide synthase 
(eNOS).85) After transplantation of Atorvastatin treated MSCs, significant improvements in 
tissue repair and cardiac function have been observed.85) Priming MSCs with hormones can 
also enhance their survivability. MSCs treated by oxytocin (OT) have demonstrated higher 
survival from stresses induced by hypoxia and serum deprivation.86) Cell proliferation and 
migration are also improved as OT treatment up-regulates the expression of Akt and ERK1/2 
proteins.86) Survival, proliferation, and migration of MSCs are improved in a hypoxia/serum 
deprivation in vitro model following treatment with an anesthetic drug sevoflurane.87) This 
treatment can reduce the apoptosis rate and mitochondrial membrane potential loss caused 
by hypoxia and serum deprivation by up-regulating HIF-1α, Akt, and VEGF.86) Another group 
has also found that LPS treatment can protect MSCs from apoptosis by inhibiting Cyc-c 
released due to hypoxia and serum deprivation.86)

Pretreatment with pharmacological agents can increase cell viability, as well as promote 
the differentiation and proliferation potential of MSCs. Pre-treatment of MSCs with 
angiotensin receptor blockers can improve the cardiomyogenic transdifferentiation efficiency 
(CTE) in a significant manner.88) Astragaloside IV (AS-IV) is a common Chinese drug for 
treating cardiovascular diseases. Priming with AS-IV has resulted in the differentiation 
and proliferation of MSCs by neutralizing TLR4 expression induced by high glucose 
conditions.89) Natural products such as apple extract can also be used for priming MSCs. 
Apple extract can promote the proliferation of MSCs via phosphorylation of ERK protein 
and enhanced expression of VEGF and IL-6.90) LL-37 is an anti-microbial agent found in 
wounds with a role in wound healing. Pre-treatment with LL-37 can enhance the proliferation 
and migration of MSCs by inducing over-expression of EGR1 and MAPK proteins.91) RU486 
is another molecule that can promote the proliferation and differentiation of MSCs in a 
gender-dependent manner.92) The proliferation of MSCs from male donors is higher than 
that from female donors following treatment with RU486. The underlying mechanism of 
such proliferation and differentiation is the over-expression of FGF-2 and Sox-11 induced by 
RU486 pre-treatment. 92) Genistein is an active compound found in soy isoflavone. It is mostly 
involved in anti-oxidative and anti-inflammatory activities. Pre-treatment of MSCs with this 
compound can increase their proliferative capabilities in a dose and time-dependent manner 
by overexpressing peroxisome proliferator-activated receptor γ (PPARγ).93) Pre-treatment of 
MCSs with dimethyloxalylglycine can also facilitate the migration of MSCs into peripheral 
blood circulation, resulting in reduction of infarct size and the induction of myocardial repair 
following transplantation.94) Migration and homing abilities of MSCs are also increased 
after MSCs are treated with deferoxamine.95) The underlying mechanism that causes this 
improvement is the overexpression of specific chemokines and proteases such as CXCR4, 
CCR2, HIF1-α, and MMP-2/9.43)96)
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PHYSICAL STIMULATION TO ENHANCE THERAPEUTIC 
POTENTIAL OF MESENCHYMAL STEM CELLS
Recent advances in biomechanical and tissue engineering have contributed to the 
development of systems that can effectively prime MSCs. Priming with silica nanoparticles 
can improve the proliferation of MSCs as these particles can induced phosphorylation of 
proteins in the ERK1/2 pathway.48) Priming with GFc7, a nano-chelator complex, can enhance 
proliferation and homing capabilities of MSCs.97) It also provides resistance against stress 
conditions and repression of spontaneous differentiation.97) Migration capabilities of MSCs 
are substantially improved after pre-treatment with topographic microstructures created on 
polystyrene culture vessel surfaces via activation of FAK and MAPK proteins.98) Priming MSCs 
with a composite hydrogel produced by combining silk fibroin and poly(ethylene glycol) 
diacrylate can improve their viability and differentiation.99) Neovascularization of MSCs has 
been found to be enhanced after priming with deferoxamine followed by their seeding on a 
collagen-glycosaminoglycan dermal substrate.100) Culturing of MSCs on a 3D culture which 
includes encapsulating cells in biomaterials like hydrogel, porous scaffolds, and scaffold-free 
spheroids can significantly enhance the adhesion pattern, migration, ECM expression, and 
secretion of paracrine factors of MSCs.101-104)

Photo-biomodulation is also one of methods used for priming MSCs. This method involves 
exposure of MSCs to low-intensity lasers. As a result, the proliferation of MSCs is increased 
due to increased mitochondrial biogenesis and up-regulation of growth factors such as HGF 
and PDGF.45) Pulsed electromagnetic fields (PEMF) can also bring key biological changes 
when MSCs are exposed to them, resulting in reduced apoptosis and enhanced survival in a 
time and dose-dependent manner. PEMF treatment can induce Akt/Ras signaling pathway, 
thus up-regulating the expression of pro-survival proteins such as Bcl-xL and Bad.46)

Priming with mechanical stretch can help MSCs survive better in a hostile environment, 
including nutrient deprivation via nuclear factor-κB pathway activation. An increase 
of angiogenesis is also evident from increased expression of VEGFA.71) Exposing MSCs 
to a high temperature for a certain period can also enhance the survival of MSCs post 
transplantation.105) Heat shock can result in the overexpression of heat shock proteins having 
an anti-apoptotic role.106)

Overall, priming MSCs with physical factors have several advantages, including a fast speed 
and a low cost. However, these physical factors have certain adverse effects on cells such 
as cell death and DNA damage. Moreover, they are limited to a small scale. Future studies 
are needed to optimize the protocol in terms of selecting optimal types of biomaterials and 
determining their cytotoxicity and biodegradability. Future studies should also focus on the 
underlying mechanism through which these materials can influence properties of MSCs.

IN VIVO PRIMING STRATEGY

Recently, Park et al.107) have reported an interesting strategy for priming MSCs in 
a 3-dimensional patch implanted in the heart in vivo. They claim that effects of the 
conventional priming strategy performed in vitro before cells are transplanted into the heart 
do not last long, typically only 2 or 3 days. To extend the duration of the priming effect, they 
have come up with an idea of ‘in vivo priming’, meaning that hMSCs are primed directly 
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in the heart in situ. To achieve in vivo priming, they loaded bone marrow-derived hMSCs 
(BM-MSCs) with genetically engineered hepatocyte growth factor expressing MSCs (HGF-
eMSCs) designed to continuously secret human HGF protein into a tailor-made 3D-printed 
patch. The rationale behind this was to prime BM-MSCs through HGF constantly released 
from HGF-eMSCs within the 3D cardiac patch implanted in the epicardium of the heart in 
vivo. HGF is known to be involved in multiple biological activities such as cell survival, blood 
vessel formation, and anti-fibrotic activities. It is essential for adult organ regeneration and 
wound healing.108) In terms of patch generation, the patch is bio-ink produced using pig 
heart-derived extracellular matrix to mimic the cardiac tissue-specific microenvironment. A 
rat MI model was used to examine therapeutic effects of in vivo priming. Echocardiography 
demonstrated that the therapeutic efficacy of the HGF-eMSCs/BM-MSCs combination group 
was higher than that of BM-MSCs only or the control group. Adverse cardiac remodeling 
was also reduced in the HGF-eMSCs/BM-MSCs group as compared to others. Such in vivo 
priming of BM-MSCs enhanced their survival. They remained viable for up to 8 weeks 
after implantation. In addition to survival, these primed BM-MSCs also enhanced vascular 
regeneration and protected the myocardium from ischemic insults. It was found that these 
primed hMSCs had a higher survival rate than unprimed ones in patches attached to failing 
hearts. These empowered hMSCs released greater amounts of paracrine factors beneficial 
for repairing damaged cardiac muscle tissues and regenerating vasculatures. These findings 
demonstrated the importance of hMSC based stem cell therapy in heart repair, emphasizing 
the inevitability of complex, systematic, and strategic application designs along with 
biomedical engineering technologies such as 3D printing rather than a single approach to 
achieve the goal of full recovery.

MESENCHYMAL STEM CELLS CAN PRIME OTHER TYPES 
OF CELLS
hMSC has been considered as one of the best cell types for cell-based cardiac regeneration 
therapy. A variety of previously mentioned strategies have been devised to improve the 
therapeutic potential of MSCs. However, MSCs can also increase the therapeutic potential of 
other cell types. For example, co-culture of MSCs with cardiomyocytes confers cytoprotective 
effects to these cardiomyocytes (CMs).109) Co-cultured CMs with MSCs have demonstrated 
enhanced phosphorylation of survival kinases including PKB/Akt and p-cAMP and reduce 
apoptosis against I/R injury.110) In addition to cardiomyocytes, bone marrow-derived 
endothelial progenitor cells co-cultured with hMSCs also show improved cell proliferation 
and enhanced angiogenic capacity through PDGF and Notch signaling pathways.111) Bone 
marrow-derived MSCs can also trigger the formation of cartilage from chondrocytes when 
they are co-cultured with chondrocytes. The formation of cartilage matrix is due to trophic 
factors secreted by BM-MSCs rather than the differentiation of MSCs into chondrocytes, 
independent of culture condition and origin.112) The viability and proliferation of erythroid 
progenitor cells are also significantly increased by co-culturing with MSCs.113) MSCs co-
culture with neural stem cells (NSCs) can influence the proliferation of NSCs as confirmed 
by the up regulation of neuronal marker NSC.114) MSCs also play an important role in 
determining the cell fate of NSCs via the Notch signaling pathway.114)

Park et al.115) have recently reported another novel approach by loading MSCs into a 3D cardiac 
patch (hMSCs-PA) implanted epicardially in an MI induced rat heart and successfully primed 
intramyocardially injected CMs derived from human induced pluripotent stem cell (hiPSC-
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CMs). The rationale behind this dual stem cell approach is to repair both the myocardium 
and the vasculature as 2 major components in the heart that are severely damaged during 
MI condition. Authors sought to regenerate the myocardium using intramyocardially 
injected hiPSC-CMs. MSCs encapsulated in the implanted 3D patch are expected to 
regenerate vasculature attributed to paracrine factors released from MSCs. Of note, this 
dual stem cell approach has resulted in enhanced retention and engraftment of hiPSC-CMs. 
Previous studies involving the injection of cardiomyocytes have reported very low retention, 
engraftment, and survival of injected cells.116) The improved retention of hiPSC-CMs probably 
due to the fact that MSCs in the patch can secrete certain factors that enhance survival and 
maintenance, leading to engraftment of the injected CM. Interestingly, this dual approach 
also enhanced the maturity of injected hiPSC-CMs. Cytokines released from hMSCs-PA have 
emerged to be critical factors in the maturation of hiPSC-CMs. Indeed, practical application 
of hiPSC-CMs is limited by their immature phenotype. Many groups have come up with 
different mechanical, electrical, biochemical, and physical methods for the maturation of 
hiPSC-CMs. However, these methods were limited by factors such as scalability, damage to 
CMs, and clinical compatibility.2) Interestingly, with the dual stem cell approach, hiPSC-CMs 
injected along with hMSCs-PA (CM+PA) exhibited a rod-shaped morphology of mature CMs 
as compared to a globular morphology of immature hiPSCs-CMs injected alone. This fact was 
further confirmed that conditioned media taken from hMSC cultures improved the maturity 
of neonatal rat CM in vitro.115) The maturity of the CM+PA group was also evident from gap 
junction formation between injected CMs and the host myocardium. In addition to structural 
maturation, functional maturation was also visible from synchronized action potential, 
indicating great consensus between these 2 CMs.

In addition to priming of hiPSC-CMs, hMSCs-PA played a vital role in vascular regeneration 
in MI hearts as evident from overexpression of many angiogenesis-related genes. Based 
on histological evidence, functional capillary density in the infarct and border zone was 
significantly higher in the CM+PA group than in the hiPSC-CMs only group.115) TUNEL assay 
verified the fact that the mentioned improvement in angiogenesis was only attributed to 
hMSCs-PA, as most MSCs were viable and well within the patch.115) Along with survival and 
retention of injected CMs, the CM+PA approach also conferred cytoprotective effects on host 
cardiomyocytes due to the release of pro-survival factors from hMSCs-PA. In vitro experiments 
demonstrated that treatment of CMs with 10% hMSC-CM conditioned medium protected 
CMs against H2O2 induced ischemic injury.115) Furthermore, this approach also enhanced 
the migration of CMs. Collectively, authors confirmed that paracrine factors released from 
hMSC-PA comprised major contributors to multiple effects necessary for damaged heart 
recoveries, such as anti-inflammatory, pro-angiogenesis, anti-fibrosis, and CM maturity.

CONCLUSION

hMSCs have shown great promises in cell-based cardiac regeneration therapy due to 
their many advantages over other cell types. However, contrary to animal models, hMSCs 
demonstrated a modest degree of success in human clinical trials. The knowledge and 
lessons gained from clinical trials have paved the way for many innovations to enhance 
the potential of hMSCs as sources for cell-based therapy. Concerted efforts have been 
made in recent years to develop more sophisticated and efficient strategies to promote the 
therapeutic potential of hMSCs. Current approaches to enhance the therapeutic efficacy 
of hMSCs include genetic modifications, biological, pharmacological, chemical, physical 
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strategies. Recent trends that combine several existing strategies have achieved incremental 
improvements for generating more therapeutically potent hMSCs. All these methods can 
enhance proliferation, differentiation, survival, engraftment, and therapeutic potential of 
MSCs. Promising results from pioneering in vivo priming approach have suggested a new 
direction for MSC-based cell therapy. Additionally, MSCs in a co-culture system can prime 
other cell types, demonstrating their versatile nature.

In summary, technological advances on hMSCs have opened a new chapter for realistic 
application of hMSCs for cardiac regeneration therapy. Although initial success has been 
achieved, several limitations such as scalability, and clinical compatibility remain to be 
answered. Extensive future studies are needed to develop more innovative approaches that 
could efficiently generate therapeutically effective hMSCs.
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