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This paper presents a novel image segmentation method based on multiple active contours driven by particle swarm optimization
(MACPSO). The proposed method uses particle swarm optimization over a polar coordinate system to increase the energy-
minimizing capability with respect to the traditional active contour model. In the first stage, to evaluate the robustness of
the proposed method, a set of synthetic images containing objects with several concavities and Gaussian noise is presented.
Subsequently, MACPSO is used to segment the human heart and the human left ventricle from datasets of sequential computed
tomography and magnetic resonance images, respectively. Finally, to assess the performance of the medical image segmentations
with respect to regions outlined by experts and by the graph cut method objectively and quantifiably, a set of distance and similarity
metrics has been adopted. The experimental results demonstrate that MACPSO outperforms the traditional active contour model
in terms of segmentation accuracy and stability.

1. Introduction

Computed tomography (CT) scanning and magnetic reso-
nance imaging (MRI) are effective andwidely usedmodalities
in clinical practice for the diagnosis of cardiac disease. The
process carried out by a cardiologist is based on a visual
examination of the images followed by a manual delineation
of the human organ. This process can be subjective, time-
consuming, and susceptible to errors. According to the
above process, the accurate medical image segmentation by
computational techniques plays an essential role.

Image segmentation is an important and challenging
task in computer vision and image processing areas with
different applications includingmedical image analysis, video
surveillance, biology, and militar, systems. In recent years,
numerous approaches have been introduced for this purpose
based only on information available in the image such as
wavelet transform [1], rule optimization with region growing
[2], enhanced suppressed fuzzy c-means [3], improvedwater-
shed transform [4], multithreshold using artificial immune
systems [5], graph cut [6, 7], and active contour models
(ACM) [8, 9]. This latter technique was introduced by [10],

and it is an energy-minimizing spline that consists of control
points known as snaxels. The spline will evolve through
the evaluation of internal and external forces according to
the shape of the object of interest. ACM has been widely
used inmedical applications including segmentation of breast
lesions [11], breast tumors [12], human prostate [13], and
intravascular, ultrasound images [14], to name a few.

There are two main drawbacks in the traditional imple-
mentation of active contour models. Firstly, initialization of
control points must be close to the object of interest; other-
wise, failure of convergence will occur. Secondly, the snake is
prone to stagnate in local minima and results in an inaccurate
convergence to the boundaries of the object. To address
these drawbacks, many researchers have suggested to adapt
different techniques to work together with the active contour
models including waterballoons [15], statistical methods [16,
17], graph cut [18], genetic algorithms [19], differential evolu-
tion [20], and particle swarm optimization (PSO) [21] where
static large searching windows are dynamically generated
depending on the initial position of the interactive control
points. Similarly, in [22], a snake model hybrid was proposed
by adapting the PSO velocity equation to the active contour
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model. The performance of both PSO approaches is very
suitable according to the tests since the active contour model
becomes more robust in local minima problem.

PSO has become very popular to solve optimization
problems in continuous spaces [23, 24]. PSO is similar
to evolutionary computation techniques since it handles a
set of randomly initialized potential solutions known as
swarm instead of population. These potential solutions are
referred to as particles rather than individuals, and they
are evaluated using a fitness function. This computational
intelligence technique provides a mechanism inspired by
the cognitive and social behavior of bird flocking or fish
schooling to exchange information between particles flown
through hyperspace based on two main ways generally.
Firstly, all the particles are guided by the best particle of the
swarm, and, secondly, each particle keeps track of its best
solution found through iterations, which is an advantage with
regard to some evolutionary computation techniques. As PSO
is not computationally expensive and it is highly efficient,
it has been used in medical applications such as branch-cut
phase unwrapping of MRI data [25] and tumor classification
[26].

In this paper, we introduce a new method based on
multiple active contours driven by particle swarm optimiza-
tion (MACPSO) to segment an object of interest by dividing
the search space into polar sections. Each polar section has
a swarm of particles composed of control points, which
performs a strategy searchwith the aim of finding the optimal
control point (snaxel) in its particular constrained space.
MACPSO method is able to overcome in a very suitable way
the inaccurate convergence to the concave boundaries of the
object and the drawback of initialization of the traditional
ACM. In addition, the proposed method also addresses the
problem of segmenting datasets of sequential CT and MR
images which contain the human heart and the human left
ventricle, respectively. Finally, to visualize the sequential CT
segmentations obtained fromMACPSO, a 3D reconstruction
approach of the human heart is presented.

The structure of this work is as follows. In Section 2,
the basics of active contour model and particle swarm opti-
mization are presented. In Section 3, the proposed MACPSO
method is introduced, along with a set of similaritymetrics to
assess its performance.The experimental results are discussed
in Section 4, and from the numerical analysis, conclusions are
presented in Section 5.

2. Background

In this section, the fundamentals of the active contour model
and particle swarm optimization are explained in detail.

2.1. Active Contour Model. Active contour model (ACM),
also called snake, is a parametric curve that can move within
a spatial image domain where it was defined. The snake is
described by 𝑝(𝑠, 𝑡) = (𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)), 𝑠 ∈ [0, 1], where 𝑡 is
the time-related changing aspect. This curve evolves through
time to minimize the total energy function given by the
following:

𝐸snake = ∫

1

0

[𝐸int (𝑝 (𝑠, 𝑡)) + 𝐸ext (𝑝 (𝑠, 𝑡))] d𝑠. (1)

The defined energy function consists of two components,
𝐸int and𝐸ext that represent the internal and external energies,
respectively.The internal energy presented in the following is
used to maintain the search within the spatial image domain
and the shape modification of the parametric curve:
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Internal energy is represented by the first derivative of
𝑝(𝑠) controlled by curve tension parameter 𝛼(𝑠) and the
second derivative of 𝑝(𝑠) guided by rigidity parameter 𝛽(𝑠).

The external energy presented in the following is defined
by the particular features of the image, where ∇𝐼(𝑝(𝑠)) is
the surface gradient calculated at 𝑝(𝑠) and 𝛾 is the weight
parameter of this force:

𝐸ext (𝑝 (𝑠)) = −𝛾
∇𝐼 (𝑝 (𝑠))


2

. (3)

The optimal solution is acquired by solving the following
Euler equation, that is, when external and internal forces
become stable:
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The computational implementation of ACM is con-
formed by a set of 𝑛 discrete points {𝑝

𝑖
| 𝑖 = 1, 2, . . . , 𝑛}.

The discrete formulation of internal energy is computed by
(5), and the external energy is approximated by (6). In both
external and internal energies, (𝑞

𝑖,𝑗
) is the control point (𝑝

𝑖
),

and (𝑗) is the index in the searching window. In addition,
the local energy function given by (7) is iteratively evaluated
in order to minimize the 𝑘

𝑖
index by using (8), where 𝑊

𝑖

represents the predefined searching window for the control
point 𝑝

𝑖
[21]:
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The traditional ACM has two main drawbacks: firstly, sensi-
tivity to the initial position of the control points. Secondly,
the control points are prone to stagnate in local minima due
to the presence of noise in the image deflecting the curve
of the optimum edge. A suitable alternative to overcome
the local minima drawback is to use a robust optimization
technique as particle swarm optimization, which is described
in Section 2.2.

2.2. Particle SwarmOptimization. PSO is a population-based
computational intelligence technique developed by [23, 24]
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to solve optimization problems. As in evolutionary compu-
tation techniques, the population (referred to as swarm in
PSO) consists of a number of potential solutions known as
individuals (called particles in PSO) to the optimization task.
Each particle moves through hyperspace to a new position
according to the following velocity equation:

V
𝑖
(𝑡 + 1) = 𝜑V

𝑖
(𝑡) + 𝜅𝑟

1
(𝑝best − 𝑥

𝑖
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+ 𝜅𝑟
2
(𝑝
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𝑖
(𝑡)) ,

(9)

where V
𝑖
(𝑡) is the current velocity of the particle 𝑥

𝑖
, (𝑡)

denotes the time step, 𝜑 is the inertia weight, 𝜅 represents
the learning factor, 𝑟

1
, 𝑟
2

∼ 𝑈(0, 1) where 𝑈 is a uniform
distribution, 𝑝best is the current best solution found by the
present particle, and 𝑝

𝑔best is the current best solution found
by the best particle of the whole swarm. Assuming that the
new velocity of the particle has been updated, its new position
is computed by using the following:

𝑥
𝑖
(𝑡 + 1) = 𝑥

𝑖
(𝑡) + V

𝑖
(𝑡 + 1) . (10)

According to the previous description, the PSO algorithm can
be implemented by using the following procedure.

(1) Set the swarm size and initialize each particle by
generating randomcandidate solutions and velocities.

(2) Evaluate each particle in the predefined fitness func-
tion and update its 𝑝best only if the current fitness is
better.

(3) Find the particle that has the best fitness in the whole
swarm and update 𝑝

𝑔best only if the fitness value
found is better.

(4) If the stopping criterion is satisfied (e.g., stability or
number of iterations), then stop.

(5) Update velocity and position of all the particles
according to (9) and (10), then repeat steps (2)–(5).

In Section 3, the proposed image segmentation method is
described in detail.

3. Proposed Image Segmentation Method

The proposed MACPSO method based on particle swarm
optimization and multiple active contours is described in
Section 3.1. Additionally, to evaluate the performance of the
proposedmethod, the set of similarity metrics is explained in
Section 3.2.

3.1. Multiple Active Contours Driven by Particle Swarm Opti-
mization (MACPSO). Due to the two main drawbacks of
the traditional ACM discussed above, PSO is adopted to
drive multiple active contours dividing the object of interest
into a polar optimization problem. Since the methodology of
the proposed MACPSO method makes it possible to apply
the traditional implementation of PSO, some advantages are
inherently acquired such as robustness, low computational
time, and efficiency. The procedure of the proposed segmen-
tation method is illustrated in Figure 1, and it is described
below.

In the preprocessing stage of MACPSO, we first remove
the noise of the image by utilizing a 2D median filter (3 × 3

window size). Subsequently, the Canny edge detector (𝜎 =

1.3, 𝑇
𝑙
= 10.0, and 𝑇

ℎ
= 30.0) is used to detect the edge

between the background and regions of interest. In the final
step of this stage, in order to perform the minimization
process, the Euclidean distance map is produced.The second
stage is the MACPSO initialization on the resulting distance
map, where the origin point of the coordinate system can
be determined by the user in an interactive way or it can
be generated automatically inside the region of interest. The
generated coordinate system divides the region or object of
interest through 𝜃 = 2𝜋/𝑔, where 𝑔 denotes the degrees
of each constrained polar section 𝑆. On the other hand, the
𝑛 initial contours can be created in a circular or elliptical
shape according to the pattern of the region of interest and
assuming that this region is within their spatial domain. After
the 𝑛 contours are produced, 𝑛 control points (snaxels) are
generated and assigned as particles for each constrained polar
section 𝑆

𝑖
, in which one edge sectional solution and one

swarm of particles 𝑂
𝑖
must exist. The segmentation process

is performed by applying the PSO strategy in each section
𝑆
𝑖
separately in order to be placed on its corresponding

edge sectional solution. For each section, the particles are
evaluated according to the fitness function corresponding to
external energy derived from (6), and through iterations the
best particle (𝑔best) of each swarm is updated only if a best
value is found in its search space. When the optimization
process for each swarm is finished, the resulting segmented
object is acquired by connecting the 𝑔best particle of each
swarm to each other.

This proposed method has three main advantages in
the initialization process. Firstly, the initial contours can
be automatically initialized in a circular or elliptical shape.
Secondly, the number of snaxels can be adjusted directly by
modifying the number of sections in which the object of
interest is divided. These two features must be considered
to adapt this method according to the shape of the object
of interest and obtain a more accurate segmentation without
affecting the PSO performance. The third advantage is the
origin point created interactively by the user, which is used to
generate automatically all the snaxels on the spatial domain
of the object of interest. Due to this advantage, the proposed
method is easy to extend in the segmentation of sequential CT
and MR images by just reproducing the origin point through
the set of images.

The procedure of the proposedMACPSO image segmen-
tation method is described as follows.

(1) Initialize coordinates (𝑥, 𝑦) from the origin point,
degrees 𝑔, and number of snakes.

(2) Initialize parameters of PSO algorithm: number of
iterations, inertia weight, and learning factor.

(3) Generate one swarm for each polar section 𝑆
𝑖
assign-

ing the current snaxels as particles.

(4) For each swarm𝑂
𝑖
, initialize velocities and assign the

initials 𝑝best and 𝑔best.
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Medical image Step (1): Preprocessing Resulting distance map
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Figure 1: Process of the proposed MACPSO image segmentation method.

(a) Apply restriction of the search space to ignore
improper particles.

(b) Evaluate each particle in fitness function.
(c) Update 𝑝best and 𝑔best if better particles are

found.
(d) Apply (9) and (10), respectively.
(e) If the stopping criterion is satisfied (e.g., stability

or number of iterations), then stop; otherwise,
go to step (a).

(5) Stop MACPSO.

3.2. ValidationMetrics. To assess the performance of the pro-
posed method in medical image segmentation, the Jaccard
index, the Dice index, the Hausdorff distance, and area and
perimeter metrics have been adopted to be compared with
the traditional ACM and the regions outlined by two experts.

The Jaccard index 𝐽(𝐴, 𝐵) and the Dice index𝐷(𝐴, 𝐵) are
similaritymeasures situated in the range [0, 1] used for binary
variables [4]. These indexes are calculated by using (11) and
(12), respectively. In our tests, 𝐴 represents the segmented
region by computational methods (MACPSO and traditional
active contour model separately) and 𝐵 represents the region
outlined by the experts. In both indexes, if regions 𝐴 and 𝐵
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Figure 2: Symmetrical cross: (a) initialization of the proposed method, (b) result of MACPSO on the Euclidean distance map derived from
cross-object, (c) result of MACPSO implementation, and (d) result of optimization process on the distance potential surface.

are entirely overlapping, the obtained result is 1, and 0 it is
when these two regions are completely different:

𝐽 (𝐴, 𝐵) =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
, (11)

𝐷 (𝐴, 𝐵) =
2 (𝐴 ∩ 𝐵)

𝐴 + 𝐵
. (12)

The Hausdorff distance is a commonly used metric for
shape matching in medical image segmentation. It measures
the degree of similarity between two superimposed sets and
it is calculated by the following, where 𝑎 and 𝑏 are points
defined in sets 𝐴 and 𝐵, respectively, and ‖𝑎 − 𝑏‖ is some
underlying distance (Euclidean distance in our tests):

𝐻(𝐴, 𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

‖𝑎 − 𝑏‖ . (13)

In Section 4, the segmentation results in different syn-
thetic and medical images using the proposed MACPSO
method and being analyzed by the validation metrics are
presented.

4. Experimental Results

In this section, we evaluate the performance of the proposed
MACPSO method for segmenting objects on different med-
ical and synthetic images. The computational implementa-
tions presented in this section are performed using the gcc
compiler version 4.4.5 running on Debian GNU/Linux 6.0,
Intel Core i3 with 2.13 Ghz and 4Gb of memory.

4.1. Application on Synthetic Images. The results of segment-
ing synthetic images are shown in Figures 2, 3, and 4, which
are a symmetrical cross, circle with Gaussian, noise and a
star object, respectively.The three synthetic images have been
used to test the performance of other approaches such as
[21, 22] which are described below.

In Figure 2, the result of applying MACPSO on a sym-
metrical cross-image of size 256 × 256 pixels is presented.
In Figure 2(a), the initialization of the proposed method
is shown. This simulation is performed by using the next
parameters: 20 iterations, 0.8 of inertia weight, 0.5 of learning
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Figure 3: Noisy circle: (a) result of traditional ACM, (b) result of MACPSO implementation, (c) Euclidean distance map of the image, and
(d) result of optimization process on the distance potential surface.

factor, 25 snakes, and 63 control points per snake obtained
since the value of 𝑔 is 10. Additionally, after the preprocessing
stage, the Euclidean distance map (EDM) is derived from the
image to perform the segmentation process. In Figure 2(b),
the result of applying MACPSO on the EDM is presented,
which, in Figure 2(c), is shown on the original test image.
This segmentation processmust be viewed as an optimization
task since the snaxels (particles) work on the 3D distance
map also called distance potential surface computed from the
EDM in order to minimize the shape of the object of interest.
The resulting particles on the distance potential surface
when the optimization process is finished are shown in
Figure 2(d) where these particles are subsequently connected
to obtain the final segmentation result previously introduced
in Figure 2(c). In this test image, the MACPSO method can
overcome the concavity problem and converge into a correct
way to the cross-edge on the image in 0.277 s.

Figure 3 presents a synthetic image of size 300 × 300

pixels containing a circle with Gaussian noise (mean = 0
and variance = 0.04). As shown in Figure 3(a), the result

of applying the traditional implementation of active con-
tour model cannot overcome the Gaussian noise to fit the
object boundary accurately. The curve tension 𝛼, rigidity 𝛽,
and weight external energy 𝛾 parameters remain constant
according to experiments performed by [21], where similar
segmentation problems have been effectively addressed. The
traditional AC parameters in this simulation are set as 𝛼 =

0.01, 𝛽 = 0.9, 𝛾 = 0.05, and 42 control points giving an
executing time of 0.104 s. Moreover, as shown in Figure 3(b),
the proposed method is robust in the presence of noise and it
is able to locate the circle boundary in an accurate way. The
inertia, learning factor, and iteration parameters ofMACPSO
are statistically adjusted to promote local exploitation, while
the number of snakes has been considered to enclose the
object of interest, and number of snaxels to smooth and fit the
resulting contour. In this simulation, MACPSO parameters
are set as iterations = 20, inertiaweight = 0.8, learning factor =
0.5, number of snakes = 15, and 42 snaxels per snake since 𝑔-
value = 15 with an executing time of 0.159 s. In Figure 3(c),
the Euclidean distance map after the preprocessing stage
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Figure 4: Synthetic star: (a) result of traditional ACM, (b) result of MACPSO implementation, (c) result of MACPSO on the Euclidean
distance map, and (d) result of optimization process on the distance potential surface.

is presented and the distance potential surface with the
resulting optimized control points is shown in Figure 3(d).

In Figure 4, a synthetic image of size 160×160 pixels with
an artificial shape of a star is introduced. Figure 4(a) presents
the resulting segmentation obtained with the traditional
implementation of ACM using the parameters as 𝛼 = 0.01,
𝛽 = 0.9, 𝛾 = 0.05, and 42 control points giving an executing
time of 0.090 s. In this figure the traditional ACM is not able
to fit the concavities of the object boundary accurately. This
drawback is solved with the proposedmethod by overcoming
the concavity problem and fitting the correct boundary
as shown in Figure 4(b). In this simulation, the MACPSO
parameters are set as iterations = 20, inertia weight = 0.8,
learning factor = 0.5, number of snakes = 15 and 42 snaxels per
snake since the value of 𝑔 is equal to 15 with an executing time
of 0.125 s. On the other hand, derived from the star object,
in Figures 4(c) and 4(d), the resulting segmentation on the
Euclidean distancemap and the convergence of the optimized
particles on the distance potential surface are illustrated.

The quality of the segmented objects through MACPSO
in the three different synthetic test images has demonstrated

that the proposed method is more stable and accurate than
the traditional implementation of ACM. The robustness of
MACPSO is due to the process of convergence carried out
by particle swarm optimization instead of the traditional
ACM. Even though the computational time of the proposed
method is comparable to the traditional ACM, MACPSO
capabilities, such as avoiding local minima and fitting to the
boundary of the objects, improve the quality of the obtained
segmentations.

In Section 4.2, based on the performance of MACPSO on
synthetic images, a set of cardiac medical images has been
introduced to prove the accuracy of the proposed method
through different distance and similarity measures.

4.2. Application on Medical Images. The proposed method
has been applied in the segmentation of datasets from
sequential CT and MR images which contain the human
heart and the human left ventricle, respectively. These med-
ical images have been provided by the Mexican Social
Security Institute and by the AucklandMRI Research Group,
University of Auckland.
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Figure 5: CT image: (a) test image, (b) the human heart outlined by experts, (c) result of traditional ACM and (d) result of MACPSO
implementation.
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Figure 6: Convergence of the human heart segmentation through
PSO iterations in CT image.

Figure 5(a) shows amedical image of size 512 × 512 pixels
acquired from a CT scanning with the aim of segmenting
the present human heart. In Figure 5(b), the human heart
outlined by cardiologists is presented. In addition, Figure 5(c)
illustrates the segmented region through the traditional
implementation of ACMwith the next parameters: 42 control
points, 𝛼 = 0.01, 𝛽 = 0.9, and 𝛾 = 0.05 in 0.087 s.
As shown in Figure 5(d), the human heart segmentation by
using the proposedMACPSOmethod fits the heart boundary
accurately. The parameters in this simulation are set as
iterations = 20, inertia weight = 0.8, learning factor = 0.5,

number of snakes = 15, and 𝑔-value = 15 (obtaining 42 snaxels
per snake) with an executing time of 0.127 s.

Figure 6 shows the process of convergence of the
MACPSO on CT test image. The convergence measure is
given by the fitness value which is computed from the average
of the control points on the distance potential surface and it
is iteratively minimized through the 20 predefined iterations
to improve the human heart segmentation.

Figure 7(a) shows a low-contrast, 512 × 512 pixels
medical image acquired from the MR procedure with the
aim of segmenting the present human left ventricle. In
Figure 7(b), the Euclidean distance map derived from the
test image is presented to increase the perception of the
segmentation task. On the other hand, in Figures 7(c) and
7(d), the human left ventricle outlined by expert 1 and expert
2 is presented. Figure 7(e) shows the resulting segmented
region through the traditional implementation of ACM with
the next parameters: 42 control points, 𝛼 = 0.01, 𝛽 = 0.9,
and 𝛾 = 0.05 in 0.085s. Figure 7(f) illustrates the resulting
segmentation by using the proposed MACPSO method
locating the boundary human left ventricle accurately. The
parameters in this simulation are set as iterations = 20, inertia
weight = 0.8, learning factor = 0.5, number of snakes = 9,
and 𝑔-value = 15 (obtaining 42 snaxels per snake) with an
executing time of 0.108 s.

Figure 8 illustrates the process of convergence of the
MACPSO on an MR test image by using the average of the
control points as a fitness value evaluated on the distance
potential surface on each iteration. This convergence is
performed with the same parameters used in Figure 7.



Computational and Mathematical Methods in Medicine 9
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Figure 7: MR image: (a) test image, (b) Euclidean distance map of test image, (c) the human left ventricle outlined by expert 1, (d) the human
left ventricle outlined by expert 2, (e) result of traditional ACM, and (f) result of MACPSO implementation.
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Figure 8: Convergence of the human left ventricle segmentation
through PSO iterations in MR image.

Due to the initialization methodology of MACPSO, this
method can be easily extended to work with datasets of
sequential images just reproducing the coordinates (𝑥, 𝑦)

of the origin point and the initial parameters in the whole
set of images. This initialization process is an advantage
over the traditional implementation of ACM, since only one
user interaction is needed to generate automatically all of

snaxels to the segmentation process, while in traditional
ACM each snaxel has to be provided interactively, which is
time consuming.

In Figure 9 the results of segmenting a subset of CT
images containing the human heart are presented. These
images have been extracted from a segmented dataset con-
sisting of 144 sequential CT images from different patients
where each image is of size 512 × 512 pixels. In Figure 9(a),
the resulting segmentations of applying the traditional ACM
are presented, in which the fitting problem is shown. The
parameters of ACM are set as 42 control points, 𝛼 = 0.01, 𝛽 =

0.9, and 𝛾 = 0.05with an executing time of 9.168 s. Figure 9(b)
presents the segmentation results obtained through the
interactive graph cut method, which were computed in
10.065 s. In this method, the experts defined areas (human
heart and background seeds) that should be separated by
the segmentation. Moreover, in Figure 9(c), the segmented
images by using MACPSO show in a very suitable way
the boundary of the human heart. In this simulation, the
parameters of the proposed method are set as iterations = 20,
inertia weight = 0.8, learning factor = 0.5, number of snakes =
15, and 𝑔-value = 15 (obtaining 42 snaxels per snake) with an
executing time of 11.152 s.

From the previously dataset of CT images described
above, in Table 1 the average of the resulting segmentations
performed by two experts, traditional ACM, graph cut, and
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Figure 9: CT images (human heart segmentation): (a) results of traditional ACM, (b) results of graph cutmethod, and (c) results ofMACPSO
implementation.

the MACPSO method is listed. The comparative results
suggest that the MACPSO method is promising in human
heart segmentation.

In Figure 10, the results of segmenting a subset of MR
images containing the human left ventricle are presented.
These images have been extracted from a segmented dataset
with 23 sequential MR images of a patient where each
image is of size 512 × 512 pixels. Figure 10(a) shows the
resulting segmentations of applying the traditional ACM,
where the resulting snake cannot adjust to the correct left

ventricle boundary. The parameters of ACM are set as 42
control points, 𝛼 = 0.01, 𝛽 = 0.9, and 𝛾 = 0.05

with an executing time of 4.183 s. To perform the graph cut
method, the experts defined the human left ventricle and
background seeds. In Figure 10(b), the segmentation results
acquired by the interactive graph cut method, which were
obtained in 3.726 s, are illustrated. On the other hand, in
Figure 10(c), the segmented images via MACPSO show in an
appropriate way the boundary of the human left ventricle. In
this simulation, the parameters of the proposed method are
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Figure 10: MR images (human left ventricle segmentation): (a) results of traditional ACM, (b) results of graph cut method, and (c) results of
MACPSO implementation.

Table 1: Average similaritymeasure with the Jaccard index, the Dice
index, and the Hausdorff distance among the regions segmented
by the traditional ACM, graph cut method, our proposed method
(MACPSO), and the regions outlined by two experts of the set of
CT images.

Comparative studies Distance/similarity measure
Hausdorff

(H)
Jaccard’s
index (J)

Dice’s
index (D)

ACM versus Expert 1 7.071 0.5272 0.6904
ACM versus Expert 2 5.0 0.5 0.6666
Graph cut versus Expert 1 4.2426 0.7142 0.8333
Graph cut versus Expert 2 3.1622 0.6153 0.7619
MACPSO versus Expert 1 2.0 0.8260 0.9047
MACPSO versus Expert 2 1.4142 0.9090 0.9523

set as iterations = 20, inertia weight = 0.8, learning factor =
0.5, number of snakes = 9, and 𝑔-value = 15 (obtaining 42
snaxels per snake) with an executing time of 5.179 s.

Moreover, to quantify the resulting segmentations from
the dataset of sequential MR images described above, Table 2
presents comparative results through the Hausdorff distance,
the Jaccard index, and the Dice index.This similarity analysis
shows that the proposed method is very suitable in left
ventricle segmentation. Additionally, area and perimeter
measures have been adopted to compare in a quantitative way

Table 2: Average similaritymeasurewith the Jaccard index, theDice
index, and the Hausdorff distance among the regions segmented
by the traditional ACM, graph cut method, our proposed method
(MACPSO), and the regions outlined by two experts of the set of
MR images.

Comparative studies Distance/similarity measure
Hausdorff

(H)
Jaccard’s
index (J)

Dice’s
index (D)

ACM versus Expert 1 7.615 0.377 0.5476
ACM versus Expert 2 15.231 0.4 0.5714
Graph cut versus Expert 1 6.236 0.5555 0.7142
Graph cut versus Expert 2 6.782 0.5272 0.6904
MACPSO versus Expert 1 6.708 0.7142 0.8333
MACPSO versus Expert 2 7.071 0.6153 0.7619

the segmented regions performed by two experts, traditional
ACM, graph cut, and MACPSOmethod, which are shown in
Table 3.

As shown in Table 1, compared to segmentations made
by experts, the distance and similarity measures indicate
that MACPSO is promising in human heart segmentation
on CT images since the Jaccard and Dice indexes show
a high accuracy (90% and 95% with expert 2) and the
Hausdorff distance is low with respect to the traditional
ACM and graph cut method. Besides, Table 2 shows that
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Figure 11: 3D reconstruction of human heart from the segmented cardiac CT images.

Table 3: Average of the area and perimeter in pixels obtained from
the traditional ACM, graph cut method, our proposed method
(MACPSO), and the regions outlined by two experts from the sets
of CT and MR images.

Method Set of CT images Set of MR images
Area Perimeter Area Perimeter

Expert 1 9904.5 pix. 355.209 pix. 5796.0 pix. 291.645 pix.
Expert 2 10369.5 pix. 370.137 pix. 6250.5 pix. 310.13 pix.
ACM 9529.5 pix. 367.634 pix. 7283.5 pix. 350.734 pix.
Graph cut 10036.5 pix. 410.673 pix. 7405.0 pix. 383.992 pix.
MACPSO 10439.5 pix. 376.902 pix. 6385.5 pix. 308.009 pix.

the performance of MACPSO in human left ventricle is more
sensitive due to the low contrast and the presence of noise
in MR images achieving an acceptable accuracy of 83%. The
area and perimeter measures have also shown that MACPSO
is more stable than ACM and graph cut, since the values of
the proposed method are located in the range of the values
acquired by the experts.

Since MACPSO has proved a suitable efficiency in the
segmentation of sequential cardiac images, a potential appli-
cation of the proposed method is the 3D reconstruction of
human organs. The quality of the reconstruction depends on
the number of sequential images considered. In Figure 11, a
3D reconstruction approach of the human heart is presented,
which is achieved by superimposing the resulting contours
according to the image acquisition order, and triangulation
is performed through the snaxels of each contour to obtain a
complete mapping. This 3D reconstruction consists of 18 CT
images previously selected by the experts and segmented via
the proposed MACPSO method.

5. Conclusions

In this research, a new image segmentation method based on
multiple active contours driven by particle swarm optimiza-
tion (MACPSO) has been presented. MACPSO divides the
search space in polar sections to overcome the sensitivity to
initial contour position and the local minima drawbacks of
the traditional active contour model (ACM). In a first stage
of this paper, to evaluate the performance of the proposed
method and to compare it to the traditional ACM, some
experiments with synthetic images have been introduced.
Subsequently, in the second stage, experiments with cardiac
medical images acquired from the computed tomography

and magnetic resonance procedures have been used. The
experimental results revealed that the proposed method can
lead to more efficiency and stability in the presence of noise
and concavities than the traditional ACM. This advantage
made it possible to obtain a high accuracy and effectiveness
in the human heart and human left ventricle segmentations
compared to those outlined by the experts and by the graph
cut method according to the evidence of similarity metrics.
Additionally, the experimental results have also shown that
the local exploitation of polar sections through the constant
parameters of MACPSO is highly suitable for medical image
applications, including segmenting datasets of sequential
medical images within an appropriate computational time.
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