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Single molecule localization microscopy has become a prominent technique to
quantitatively study biological processes below the optical diffraction limit. By fitting
the intensity profile of single sparsely activated fluorophores, which are often attached to
a specific biomolecule within a cell, the locations of all imaged fluorophores are obtained
with ∼20 nm resolution in the form of a coordinate table. While rendered super-resolution
images reveal structural features of intracellular structures below the optical diffraction
limit, the ability to further analyze the molecular coordinates presents opportunities to
gain additional quantitative insights into the spatial distribution of a biomolecule of
interest. For instance, pair-correlation or radial distribution functions are employed as a
measure of clustering, and cross-correlation analysis reveals the colocalization of two
biomolecules in two-color SMLM data. Here, we present an efficient filtering method for
SMLM data sets based on pair- or cross-correlation to isolate localizations that are
clustered or appear in proximity to a second set of localizations in two-color SMLM data.
In this way, clustered or colocalized localizations can be separately rendered and
analyzed to compare other molecular properties to the remaining localizations, such
as their oligomeric state or mobility in live cell experiments. Current matrix-based cross-
correlation analyses of large data sets quickly reach the limitations of computer memory
due to the space complexity of constructing the distance matrices. Our approach
leverages k-dimensional trees to efficiently perform range searches, which dramatically
reduces memory needs and the time for the analysis. We demonstrate the versatile
applications of this method with simulated data sets as well as examples of two-color
SMLM data. The provided MATLAB code and its description can be integrated into
existing localization analysis packages and provides a useful resource to analyze SMLM
data with new detail.
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INTRODUCTION

The subcellular localization of proteins and their interaction with
other biomolecules is a critical determinant of their function. For
instance, proteins have been shown to form clusters in nuclear
condensates which affect chromatin organization and gene
regulation (Cisse et al., 2013; Larson et al., 2017; Cho et al.,
2018; Chong et al., 2018; Sabari et al., 2018; Cai et al., 2019;
McSwiggen et al., 2019). Cell surface receptors such as TNFα,
EGFR, and TLR4 have been shown to form functional clusters in
the cell membrane that enhance signaling (Krüger et al., 2017, 4;
van Lengerich et al., 2017; Karathanasis et al., 2020). In the
immunological synapse, various receptors and signaling proteins
are co-clustered or excluded in supramolecular activation clusters
(Hartman et al., 2009; Pageon et al., 2016b). In most contexts, the
fraction of the proteins that cluster or co-cluster with other
proteins have different biophysical and biochemical properties
compared to the non-clustered ones.

Fluorescence microscopy has become a prominent technique
to study the sub-cellular distribution and colocalization of
specifically labeled proteins in cells. However, many
intracellular structures and proteins clusters are too small or
too closely spaced to be resolved below the optical diffraction
limit of conventional fluorescence microscopy. Super-resolution
microscopy techniques such as single molecule localization
microscopy (SMLM) (Betzig et al., 2006; Rust et al., 2006)
overcome these challenges. Instead of imaging all fluorophores
at the same time, SMLM employs fluorophores that are
predominantly in a dark state but switch to a fluorescent state
either intrinsically or induced by irradiation of a certain
wavelength of light (Patterson and Lippincott-Schwartz, 2002;
Betzig et al., 2006; Rust et al., 2006). In this way, only sparse and
spatially well separated single molecules are in a fluorescent state
and are detected in a single imaging frame. By recording many
frames, all individual fluorophores are then imaged over time. A
super-resolution image is then constructed by fitting all sparse
fluorophores in each frame with a point-spread function (PSF) or
Gaussian and by superimposing the center coordinates of all
localizations that typically have a precision of ∼20 nm.

In contrast to pixel-intensity information of conventional
fluorescence microscopy, SMLM data is based on coordinates,
widths, heights etc., of all fitted single fluorophores and therefore
presents unique opportunities for secondary data analysis. For
instance blink-correction algorithms have been developed to
correct repeated localizations of the same fluorophore that
arise from the complicated photophysics (Lee et al., 2012;
Rollins et al., 2015; Hummer et al., 2016; De Zitter et al.,
2020) and to count the number of molecules on an organelle
or cluster (Puchner et al., 2013). Various clustering algorithms
have been developed to quantify the degree or variability of
clustering of a protein of interest under various conditions.
Examples include local clustering algorithms that define
boundaries of dense localizations (Ester et al., 1996; Perry,
2004; Owen et al., 2010; Pageon et al., 2016a; Griffié et al.,
2016; Levet et al., 2019; Khater et al., 2020; Nino et al., 2020;
Simoncelli et al., 2020; Williamson et al., 2020; Marenda et al.,
2021; Nieves et al., 2021) or bulk metrics based on the radial

distribution or pair-correlation function that quantify the density
of localization pairs as a function of their distance to each other
(Ripley, 1979; Kiskowski et al., 2009; Sengupta et al., 2011; Veatch
et al., 2012; Stone and Veatch, 2015). Importantly, these analysis
methods can be expanded to two-color SMLM data to quantify
the colocalization and structural relation of two proteins. For
instance, cross-correlation and pair correlation analysis has been
used to study co-localization among synaptic membrane
receptors (Malkusch et al., 2012; Pageon et al., 2016a, 2016b;
Krüger et al., 2017; Khater et al., 2018, 2019; Lagache et al., 2018;
Kennedy et al., 2019; Karathanasis et al., 2020; Simoncelli et al.,
2020) and quantify the density of accessible DNA domains
colocalized with nuclear condensates and other nuclear
landmarks (Lee, 2019; Xie et al., 2020).

For the analysis of any SMLM data set that exhibits clustering
or colocalization of two different proteins, it would be desirable to
separate the molecule list based on the proximity of proteins to
each other. In this way localizations from clustered or colocalized
proteins can be separately visualized and analyzed to study how
their properties such as molecule number or their structure differs
from the rest of localizations that are not clustered or colocalized.
While pair-or cross-correlation analysis in principle allows to
make this separation based on a distance threshold, the
calculation of the distance matrix is memory intensive and
can’t be use over entire field of view of a typical mammalian
cell due to the large number of N localizations. Both the memory
requirement and calculation time scales as N2. An approach to
generate a cross correlation curve is to use small sections of data
(Kennedy et al., 2019), however, most of the localizations are
discarded. Fourier transformations are also used to calculate the
cross-correlation curve across the full field of view (Kiskowski
et al., 2009; Liu et al., 2014, 2; Xie et al., 2020) but these methods
discard localizations that generate pairwise distances during
analysis. Therefore, localizations that are within specific
distances or are colocalized with a protein of interest cannot
be separated and further analyzed. These existing methods
provide a coarse-grained representation of the cross-
correlation curve and may miss relevant transitions occurring
at smaller differences in distances that could provide insight into
protein oligomerization.

Here, we address these limitations by developing a memory
efficient approach using k-dimensional trees (Bentley, 1975) to
efficiently calculate the distance matrix for the pair- or cross-
correlation of SMLM data across the entire field of view
(Figure 1). Based on the cross-correlation, a distance cutoff
can be defined to separate localizations that cluster or
colocalize with a second protein of interest. These separated
molecule lists can then be separately visualized and further
analyzed with any existing secondary analysis algorithm to e.g.
determine the number of molecules in and the size of a cluster,
their diffusive state in live-cell data, or their degree of cross-
correlation (Owen et al., 2010; Sengupta et al., 2011; Veatch et al.,
2012; Puchner et al., 2013; Stone and Veatch, 2015; Pageon et al.,
2016a, 2016b; Hummer et al., 2016; Lagache et al., 2018; Banerjee
et al., 2020; Heydarian et al., 2021; Marenda et al., 2021). We first
demonstrate the performance and application of this method
with simulated data sets to allow a comparison of the results to a
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known ground truth. We also show the application to two-color
SMLM data of ULK1 and Atg13, two proteins that have been
recently shown to be involved in the initiation of autophagy when
co-clustered. Since our described method can be paired with any
existing downstream SMLM data analysis algorithm, it presents a
useful and modular way to improve SMLM analysis results e.g. by
suppressing randomly localized noise localizations and by
providing a refined comparison between clustered and non-
clustered localization.

MATERIALS AND METHODS

Workflow
In our code, available at https://github.com/PuchnerLab/cross-
correlation-filtering, the point of entry is the MATLAB function
“cc_graphic_pipeline”, which accepts as arguments each list of
coordinates (as x-y columns), the maximum distance used for the
pair- and cross-correlation calculations, the area of the field of
view of the localization data (for correct normalization of the
cross-correlation), and the units in which the data is provided.
This function outputs the pair-correlation of each dataset and the
cross-correlation between the two datasets. From the generated

graphs, the user can determine appropriate cutoff distances for
cross-correlation filtering and for the optional clustering. As an
aid, the pair-correlations indicate the distance to the 99% drop in
correlation, and the cross-correlation indicates the distance to
both the 50 and 99% drop in correlation.

The second step is the function “cc_separation_pipeline”,
which accepts as arguments each list of coordinates, a vector
of cutoff distances for clustering for each dataset [(0, 0) if no
clustering is to be performed], the cutoff distance for the cross-
correlation filtering, and a vector of minimum stoichiometries
considered for colocalization for each dataset [(1, 1) for no
minimum]. The primary output is a cell with each element
containing a logical vector of colocalized localizations of each
dataset, which can be used to select the colocalized and non-
colocalized localizations from the original datasets or from the
indices provided by another cluster assignment algorithm, such
as DBSCAN (Ester et al., 1996). Additionally,
“cc_separation_pipeline” outputs a cell of the colocalized
coordinates and a cell of non-colocalized coordinates.

In this second step, localizations from the two coordinate lists
that lie within the cutoff distance are assigned as colocalized. If
the optional clustering is performed prior to colocalization, then
two clusters are assigned as colocalized if any of their constituent

FIGURE 1 | Schematics of cross-correlation. For each localization of one type (red crosses), the distance to each of the other type (blue circles) is computed and
tabulated. Instead of calculating the distance of every pair of red crosses and blue circles, a distance cutoff is applied to only consider interparticle distances within
relevant length scales. When the distance exceeds the cutoff as shown by the dashed line, the distance is not tabulated, resulting in reduced memory requirements. The
list of localization can then be split into localization that do and do not colocalize or appear within the specified distance cutoff for further downstream analysis.
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FIGURE 2 |Cluster separation on simulated data. A data set was simulated consisting of two types of localizations as well as added noise. Population 1 (red) and 2
(cyan) consists of 40 clusters of size 0.1 ± 0.02 µm and stoichiometries of Poisson (90) and Poisson (150) respectively and represents the ground truth. Noise
localizations include non-colocalized clusters of size 0.1 ± 0.02 µm and stoichiometry Poisson (250) (cyan) as well as randomly distributed localizations (red) to measure
the performance of the cluster separation. (A) Super-resolution reconstruction of all localizations, the ground truth clusters of population 1 and 2, and the noise
localizations (upper). After applying the distance-based cutoff, the two molecule lists can be separated into the colocalized clusters and all other remaining noise
localizations (lower). (B) Pair correlation functions of each of the two ground truth populations showing the relevant length scale of cluster sizes used to identify clusters.
(C) Cross-correlation functions of all localizations between the two populations for all localizations. The dashed line indicates the maximum separation two localizations
can have to be classified as colocalized. If two localizations that belong to clusters as identified in B are closer than this maximum separation, all localizations from the
entire clusters are classified as colocalized. (D) Stoichiometry and size of ground truth (circles) and recovered clusters (crosses) for each of the populations.
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localizations are within the cutoff distance and if the number of
localizations in the cluster is at least the specified minimum
number of localizations for each cluster.

A schematic of the organization of the code is shown in
Supplementary Figure S1.

Simulated Data
The simulated localization data used in cross-correlation filtering
(Figure 2A, All localizations) is composed of two parts: the
ground truth clusters (Figure 2A, Ground truth) and noise
clusters and localizations (Figure 2A, Noise). The clusters
were generated by randomly distributing cluster centers
throughout the field of view. Localizations were placed by
generating coordinates from a normal distribution around
each cluster center. Localizations were generated in this way
for both populations of clusters using the same cluster centers so
that colocalized clusters have complete overlap (Figure 2A,
Ground truth). Randomly distributed localizations were mixed
into each population to simulate localizations that are not
clustered or colocalized. Additional clusters of higher
stoichiometry were mixed into the second population to
simulate non-colocalized clusters that should be separated by
the analysis (Figure 2A, Noise). A schematic of the simulated
data construction is show in Supplementary Figure S2. The
recovery of the underlying colocalized ground truth and noise
rejection was quantified by computing the F-score as a function of
the colocalization cutoff distance (Supplementary Figure S3A).
The recovery of the correct radii and stoichiometries was
quantified in Supplementary Figure S3B and Supplementary
Figure S3C, respectively.

Cross-Correlation and Cluster Separation Analysis
In each population of simulated data, localizations appearing
within a distance of 0.4 µm from each other were first assigned to
clusters. Next, a cross-correlation analysis was performed by
using a k-dimensional tree for fast querying and to limit the
memory consumption of the distance tabulation. A range search
was then performed to compute the distances between each
localization of one population and those of the other
population up to a specified maximum separation distance,
which was chosen to be 1 µm. The indices and distances from
the range search are used to determine which clusters from one
population are colocalized with clusters from the other
population. A maximum separation of 150 nm between the
constituent molecules of two clusters was used for determining
their colocalization and at the same time a requirement of a
minimum of two localizations per cluster was imposed to filter
out individual non-colocalized localizations. The resulting lists of
colocalized clusters (and complementary list of excluded clusters
and localizations) were then further analyzed to determine their
stoichiometry and size compared to the ground truth clusters.
The performance of the colocalization analysis was also
quantified on lines and rings (Supplementary Figure S6).

Benchmarks
To test the memory and time efficiency of the k-dimensional tree-
based cross-correlation compared to full distance matrix

approach, we simulated two populations of completely
colocalized clusters of stoichiometries of 200 and 300
localizations normally distributed about the centroid with
standard deviation 100 nm and 10,000 individual noise
localizations in each population within a 40.96 µm field of
view. We varied the total number of clusters within the field
of view to increase the memory requirements of the cross-
correlation.

Memory Efficiency
Memory requirements in Figure 3 A were determined by
calculating the total number of bytes of memory needed for

FIGURE 3 | Performance of distance tabulation using a k-d tree and range
search vs. a full distance matrix. (A) Simulated data sets as in Figure 2 with
varying numbers of localizations were analyzed to measure the memory needs
for calculating the full distance matrix (dashed) and k-dimensional tree
(solid) with distance cutoff. For matrices that could not explicitly be allocated into
memory, a linear extrapolation was applied to estimate the allocation time (dot-
dashed). The total number of clusters is increased with an increasing number of
localizations to increase the memory requirements of the distance tabulation.
The distance is expressed as a fraction of the field of view. For relevant length
scales, the tree uses significantly less memory than the matrix. (B) Elapsed time
for calculating the full distance matrix (dashed) vs. the k-dimensional tree (solid).
When a realistic number of localizations is included in the distance tabulation, the
distance tabulation for the tree takes less time than the full matrix.
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FIGURE 4 | Colocalization analysis of ULK1 and ATG13 via cross correlation. (A) Left shows a two-color overlay of PALM images of mEos2-ULK1 (red) and
HaloTag-ATG13 bound to JF646 (cyan) with a corresponding magnified image (bottom left) taken from a representative starved cell (Scale bar top left: 5 µm; bottom left:
1 µm). Middle represents the ATG13 localizations that are within 100 nm of ULK1 molecules and considered colocalized with ULK1 clusters. The corresponding
magnified image (bottom middle) highlights the increased visibility of colocalized ULK1 clusters after filtering out non colocalized molecules using the cross-
correlation analysis framework. Right represents ULK1 and ATG13 localizations that are further than 100 nm away from each other and are not considered colocalized.
Examples of individual clusters that are and are not colocalized with ATG13 localizations are also displayed (scale bar: 150 nm). (B)Cross-correlation plot between ULK1
molecules and ATG13 localizations in fed (blue) and starved (red) cells. The cross correlation plot was calculated by using k dimensional trees to obtain ATG13
localizations within 2 µm of ULK1 molecules across the entire field of view. The inset graph represents the onset of leveling of the cross correlation plot around 100 nm.
The error bar corresponds to SEM from five fed and five starved cells. (C,D) show the quantification of the number of molecules and radii of ULK1 clusters colocalized
with ATG13 (inside, blue) and not colocalized with ATG13 (outside, orange) in fed (C) and starved (D) cells. ULK1 localizations that are and are not colocalized with
ATG13 exhibited similar distributions in fed cells while ULK1 localizations that colocalized with ATG13 in starved cells formed structures that contained more molecules
and were interpreted to be forming autophagosomes. (E) The radial distribution function further quantifies the local density difference between ULK1 colocalized (inside,
blue) vs. non ATG13 colocalized (outside, red) ULK1 molecules in starved cells. The error bar represents SEM from five starved cells. Figure (F) and (G) display a
normalized histogram of the number of ULK1molecules in a cluster colocalized with ATG13 (inside, blue) and not colocalized with ATG13 (outside, orange) in fed (F) and
starved (G) cells. The error bar corresponds to SEM from five fed and five starved cells. While there was no noticeable difference in ATG13 colocalized and non
ATG13 colocalized distributions in fed cells, there was a significant difference in both distributions in starved cells where ATG13 colocalized clusters contained the
highest number of ULK1 molecules.
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storing the distances between the localizations. For the matrix-
based analysis, this isMNB, which corresponds to the number of
elements in the distance matrix, whereM andN are the number
of localizations in each population and B is the number of bytes
corresponding to the floating-point precision used. For the
k-dimensional tree-based analysis, the total amount of
memory is bounded from above by MNB, gradually
approaching it as the range is increased. For structure sizes
much smaller than the field of view, the k-dimensional tree
distance tabulation outperforms the distance matrix when
including only the relevant distances and excluding potentially
less relevant long-range distances. In the cases where the matrix
memory requirements did not exceed the system memory (as in
Supplementary Figure S5A), the memory consumption was
measured directly.

Time Efficiency
Elapsed times in Figure 3 B and Supplementary Figure S5Bwere
determined by measuring the time needed to construct either the
full distance matrix or the range search on the k-dimensional tree
for various distances. For matrices with a memory allocation that
would exceed the available system memory, the allocation time
was extrapolated from the allocation rate determined by fitting
the matrix allocation vs memory for moderate data
(Supplementary Figure S5D).

Mammalian Cell Analysis
Sample preparation, imaging methods, and blink correction
analysis are described in Banerjee et al., 2020 (Banerjee et al.,
2020). After identification of blink corrected ULK1 molecules,
molecules were assigned to clusters. The radial distribution (or
pair correlation) among all blink corrected ULK1 molecules with
respect to each other was calculated. The leveling of the pair
correlation plot approached zero at around 400 nm (Banerjee
et al., 2020). Nearby ULK1 molecules whose distances lie within
the cutoff distance of 400 nm were assigned to the same ULK1
cluster. After this, a spatial cross-correlation between the blink
corrected ULK1 molecules and ATG13 localizations was
calculated to determine the pairwise distance distribution
between the two protein populations. To overcome memory
limitations associated with existing methods, the ATG13
dataset was converted into a k-dimensional tree structure as
described in the results section. Then, a nearest neighbor
search was used to obtain pairwise distances between ULK1
and ATG13 molecules up to a specified distance cutoff of
2 µm. A cross correlation function was then calculated
between the obtained ATG13 and ULK1 pairwise distances
using previously described methods (Veatch et al., 2012;
Banerjee et al., 2020). Since the cross-correlation curve
remained constant at distances larger than 100 nm, which
indicates no clustering beyond this distance, this number was
used as the colocalization distance cutoff (Figure 4B). ATG13
localizations within the 100 nm distance cutoff of ULK1
molecules were therefore considered colocalized with ULK1
molecules. ULK1 and ATG13 molecules were segregated into
colocalized and non-colocalized groups. Cell and matrix array
computations were parallelized to increase computational speed.

Next, ULK1 clusters that contained at least one molecule
colocalized with an ATG13 localization was identified as a
colocalized cluster. These clusters were separated from non-
ATG13 colocalized clusters and further analyzed. Cluster
properties such as radius and the number of molecules for
both ULK1 clusters were then obtained. Radial distribution
functions of various sub ULK1 cluster populations were
calculated (ATG13 colocalized vs non-ATG13 colocalized
molecules) by normalizing the separated pairwise distances by
the bin area and the number of molecules in those individual
datasets. Cluster properties and pairwise distance distributions
from the full cell and isolated sub-populations within the cell were
pooled together to compare how these metric change between fed
and starved cells. The analysis codes were written in MATLAB
2018b and run on a Dell PowerEdge T440 server with 94GB
RAM, an Intel Xeon 2.68 GHz CPU, and 14.5 TB of disk space.

RESULTS

Cluster Separation to Remove Noise From
Simulated Data
The cross-correlation and cluster separation analysis can provide
information about the stoichiometry and size of colocalized
clusters while filtering out localizations that do not belong to
clusters or are not colocalized. To demonstrate the application
and to measure the performance of this analysis, we first
simulated localization data, allowing us to compare the
processed results to the ground truth. Figure 2 shows the
simulated cluster data for two populations of localizations. The
ground truth consists of randomly distributed clusters of
population 1 with a mean number of 90 localizations that
colocalize with clusters of population 2 that have a mean
number of 150 localizations. Superimposed to the ground
truth are randomly distributed localization of population 1 as
well as randomly distributed localizations and clusters of
population 2 with a mean of 250 localizations. In this way,
non-colocalized localizations and clusters are introduced as
noise, which is meant to be filtered by our analysis pipeline.
First, localizations in each population are assigned to a cluster if
they appear within 0.4 µm of each other, which corresponds to
the peak-width of the pair-correlation and reflects the average
cluster size (Figure 2B). Next, colocalized clusters from both
populations were identified based on the cross-correlation if two
localizations were separated by less than 150 nm (Figure 2C,
Supplementary Note S1, Supplementary Figure S4). As can be
seen in Figure 2A, the isolated clusters and remaining
localizations reflect to a large degree the original ground truth
and noise localizations. By determining the number of
localizations in each of the colocalized cluster, the original
distribution that was used for the simulation is recovered to
above 98% for population 1 and above 93% for population 2
(Figure 2D, Supplementary Figure S4). Likewise, further
structural analysis of the isolated clusters such as the
determination of cluster radii recovers the same results from
the ground truth. Overall, 100% of the 40 ground truth clusters in
each population were recovered and most deviations arose from
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noise localizations and clusters that are coincidentally in
proximity to the ground truth. These results demonstrate that
our cross-correlation based approach is effective in separating
noise localizations and clusters from colocalized clusters for
further downstream analysis.

Benchmarks
For large enough SMLM datasets, constructing a full distance
matrix for a cross-correlation analysis can approach or even
exceed the available system memory. This is because distances
between all localizations across the field of view are tabulated,
including distances that are well beyond relevant length scales of
clusters or structures under investigation. Using the
k-dimensional tree-based approach to compute the cross-
correlation can significantly reduce the memory requirements
by orders of magnitude when an appropriate cutoff distance is
selected for tabulating the distances. Figure 3A shows how the
memory requirements of the k-dimensional tree-based method
increase with the cutoff distance and remain orders of magnitude
below the full matrix for relevant length scales. As the cutoff
distance increases up to the full field of view, the memory
consumption approaches that of the full distance matrix.
Figure 3B shows that the computation time is worse for the
k-dimensional tree-based method when applied to smaller
datasets but eventually shows improved runtime performance
as the size of the dataset increases and reaches more realistic
numbers in the range of thousands of localizations. When
extrapolating the memory consumption to 100 GB, which is at
the order of magnitude where the calculation becomes infeasible,
a number of 112,000 localization is obtained for the full distance
matrix and 44, 200, 000 for k-dimensional trees at a distance
cutoff of 0.5 µm (Supplementary Note S2, Supplementary
Figure S5C). This result demonstrates that typical SMLM data
sets cannot be analyzed with a full cross-correlation and that
significantly larger data sets can be analyzed using
k-dimensional trees.

Isolating Co-clustered ULK1 and Atg13
Structures That Form Phagophores
In the following we demonstrate the isolation of co-clustered
structures in real two-color PALM data that recently led to the
identification of signaling clusters involved in autophagy
(Banerjee et al., 2020). Autophagy is a subcellular process in
eukaryotic cells in which macromolecules and organelles are
engulfed by a double membrane and then degraded by fusion
with lysosomes (Mercer et al., 2009; Jung et al., 2010; Roach,
2011; Park et al., 2018). Autophagy can be induced by amino
acid starvation and the resulting inhibition of mechanistic
target of rapamycin complex 1 (mTORC1) (Kamada et al.,
2000; Chang and Neufeld, 2009, 1), which in turn leads to the
formation of autophagy initiation cluster composed of
activated UNC51-like kinase 1 (ULK1), Atg13, FIP200 (FAK
family kinase interacting protein 200 kDa), and Atg101
(Hosokawa et al., 2009). In a recent study we employed
CRISPR/Cas9 based genome editing to endogenously tag
ULK1 with the photoswitchable fluorescent protein mEos2

in HeLa cells and to perform a quantitative PALM
colocalization analysis with Atg13, a critical interaction
partner of ULK1 in activation cluster (Banerjee et al., 2020).
Our results showed that amino acid starvation induced the
formation of a small fraction of arc shaped and spherical
structures containing more than 30 ULK1 molecules that all
colocalized with Atg13 in proximity to the Endoplasmic
Reticulum. Therefore, a threshold number of ULK1 is
required to initiate the formation of autophagosomes. Here,
we demonstrate the application of our cross-correlation
approach to a modified data sets similar to the ones shown
in (Banerjee et al., 2020).

Two-color PALM data was recorded using endogenously
tagged ULK1-mEos2 and transiently transfected Atg13-
HaloTag in conjunction with the PALM compatible JF646
dye as described in (Banerjee et al., 2020). As can be seen in
Figure 4 A in both fed and starved cells ULK1 and Atg13
formed puncta that did and did not colocalize. However, in
starved cells a few larger structures with a higher number of
ULK1 molecules are visible. Due to the large number of
localizations in the 5 data sets (9,589 ± 904 ULK1
molecules, 1,270,045 ± 420,310 Atg13 localizations), a
traditional cross-correlation across the entire fields of view
is not feasible with commonly used computers or servers (our
server (2.68 GHz CPU, 94 GB RAM)—typical computer
(2.7 GHz CPU and 8–20 GB RAM) since it would require up
to 95 GB of RAM memory. We therefore employed
k-dimensional trees to efficiently calculate the distance
matrix for the cross-correlation across the entire field of
view (Figure 4B). The cross-correlation between ULK1 and
Atg13 was significantly larger in starved cells and exhibited a
pronounced peak up to distances of ∼100 nm, indicating the
formation of more densely colocalized structures. Using the
cross-correlation matrix, it is now possible to separate the
molecule list of ULK1 and Atg13 localizations that are closer
than 100 nm and considered to be colocalized. All remaining
localizations that are separated by more than 100 nm are
accumulated in a separate molecule list (Figure 4C).
Importantly, these separated molecule lists can now be
further processed with any secondary SMLM data analysis
approach. For instance, when plotting the number of ULK1
molecules in clusters against the radius of structures, it
becomes apparent that under starvation a unique but rare
population of structures with a large number of ULK1
molecules emerges (Figure 4D). Importantly, this
population of structures is not present in fed cells and
always colocalizes with Atg13. Based on this result and
further evidence provided in (Banerjee et al., 2020), these
structures are identified to be involved in autophagy and the
formation of autophagosomes.

Another commonly used secondary data analysis approach is
the use of pair-correlation or radial distribution functions to
determine the average density of pairs of localization with respect
to their distance (Puchner et al., 2013; van Lengerich et al., 2017;
Banerjee et al., 2020). We therefore calculated the radial
distribution function of ULK1 localizations that did and did
not colocalize with Atg13. ULK1 localizations that did not
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colocalize with Atg13 exhibited the lowest density and only a
small peak at short distances up to ∼74 molecules/µm2 in starved
and fed cells, indicating a small degree of basal clustering in the
absence of Atg13 (Figure 4E). Since no significant difference is
observed between fed and starved cell, these clusters are
interpreted to be passive and not involved in autophagy
initiation. ULK1 structures that did colocalize with Atg13
exhibited a significantly larger ULK1 density up to ∼234
molecules/µm2 in starved cells (Figure 4E). Since this density
is also significantly larger than in fed cells, these clusters are
interpreted to be dense initiation clusters that form in response to

starvation and aid in the formation of phagophores (Banerjee
et al., 2020) for details. Histograms of the ULK1 stoichiometry
show that ULK1 clusters colocalized and not colocalized with
Atg13 have identical stoichiometries in the fed case (Figure 4F)
but colocalized ULK1 clusters have a higher stoichiometry in the
starved case (Figure 4G). These results demonstrate that our
presented SMLM analysis approach is powerful to isolate protein
clusters and nanoscopic structures that are rare but of biological
significance. Furthermore, any secondary SMLM data analysis
such as quantification of molecule numbers, densities or sizes of
structures can be applied to the isolated molecule lists to gain

TABLE 1 | Performance Comparison of existing methods. This table compares our proposed kd-tree approach to three existing approaches, Clus-DoC, Coloc-Tesseler,
and full matrix approach. Clus-DoC utilizes Ripley’s K analysis and density based clustering using DBSCAN to segment localizations into clusters and separate
colocalized from non-colocalized clusters. Coloc-Tesseler uses Voronoi tessellations to assess whether molecules are co localized and uses the tessellation diagram to draw
boundaries around colocalized clusters. Datasets were simulated in a similar manner to those shown in Figure 2 and described in the methods section. Time was measured
as the entire time required to run program after data files were load. An F-score (described in the methods section) was used to compare colocalization accuracy among
all datasets. Since localization lists cannot be outputted from Coloc-Tesseler, the colocalization accuracy of this method cannot be calculated. Furthermore, due to large
memory requirement, Clus-DoC and the full matrix method cannot analyze datasets above 94 GB. Memory use by Coloc-Tesseler was estimated from task manager
since it is a GUI based executable program with no available source code but all simulated molecule lists could be analyzed in an efficient time window (seconds) while
only requiring between 0.2 and 1.5 GB of memory.

Number of
localizations in population
1

Number of
localizations in population

2

Full matrix
memory (GB)

Clus-DoC memory
(GB)

Coloc-Tessler
memory
(GB)

k-d tree
memory (GB)

20,000 25,000 4 4 0.21 0.15
30,000 40,000 9.6 9.6 0.22 0.31
50,000 70,000 28 28 0.43 0.61
70,000 100,000 56 56 0.58 0.91
170,000 250,000 340 Not possible to

compute
0.78 2.45

250,000 370,000 740 Not possible to
compute

0.85 3.74

310,000 460,000 1,140 Not possible to
compute

1.42 4.70

Number of localizations in
population 1

Number of localizations in
population 2

Full matrix time (s) Clus-DoC time (s) Coloc-Tessler
time (s)

k-d tree time (s)

20,000 25,000 30.5 48.26 1.35 7.11
30,000 40,000 63.7 103.42 1.53 8.47
50,000 70,000 138.2 340.26 2.57 15.88
70,000 100,000 289.2 739.30 3.54 23.36
170,000 250,000 Not possible to

compute
Not possible to

compute
9.72 70.45

250,000 370,000 Not possible to
compute

Not possible to
compute

25.3 95.39

310,000 460,000 Not possible to
compute

Not possible to
compute

42.54 120.38

Number of localizations in
population 1

Number of localizations in
population 2

Full matrix
accuracy

Clus-DoC
accuracy

Coloc-Tessler
accuracy

K-d tree
accuracy

20,000 25,000 0.99 0.98 Not possible to
compute

0.98

30,000 40,000 0.99 0.99 Not possible to
compute

0.99

50,000 70,000 0.99 0.99 Not possible to
compute

0.99

70,000 100,000 0.99 0.99 Not possible to
compute

0.99

170,000 250,000 Not possible to
compute

Not possible to
compute

Not possible to
compute

0.99

250,000 370,000 Not possible to
compute

Not possible to
compute

Not possible to
compute

0.99

310,000 460,000 Not possible to
compute

Not possible to
compute

Not possible to
compute

0.99
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further insight into the nanoscopic characteristic and differences
between different populations.

Comparison to Existing Colocalization
Methods
To demonstrate the advantages k-d tree-based cross-
correlation, we performed a comparison to existing
methods that employ radial threshold-based colocalization,
density-based cluster detection, and tessellation-based cluster
detection/colocalization. The MATLAB based Clus-DoC
program (Pageon et al., 2016a) combines a radial
threshold-based method to characterize colocalization with
a density-based cluster detection to identify colocalized
molecules. This method first utilizes Ripley’s K analysis to
calculate the radial distance distribution between the
colocalized molecule populations and then assigns each
localization a normalized score based on its proximity to
surrounding localizations of the opposite molecule
population. The algorithm sets a score cutoff that is akin to
a radial distance threshold to determine whether individual
molecules are colocalized. Then, Clus-DoC uses the density-
based clustering algorithm DBSCAN to segment localizations
into individual clusters. Both techniques are commonly used
in a variety of other clustering and colocalization algorithms
(Ester et al., 1996; Owen et al., 2010; Malkusch et al., 2012;
Lagache et al., 2018). The algorithm then combines both
approaches to separate colocalized clusters with a minimum
number of localizations from non-colocalized clusters.
Finally, the algorithm calculates size and density metrics of
colocalized clusters. This algorithm is most similar to our
approach as it employs a radial distance distribution analysis
to characterize the degree of colocalization between two
protein populations and defines a threshold based on the
radial distance to isolate colocalized molecules/cluster for
downstream analysis. When validated against simulated
datasets shown in Figure 2 and described in the methods
section, we find that the accuracy metrics are similar to ours
since cross-correlation analysis is similar to Ripley’s K analysis
(Table 1) and since both methods rely in part on a distance
threshold derived from the distance distribution. The main
advantage our method compared to the Clus-DoC approach is
the efficient analysis of the entire field of view of large datasets.
Though Clus-DoC employs k-d trees to calculate the Ripley’s
K distribution, it requires the calculation of the full distance
matrix to segment molecules into clusters and to isolate
colocalized clusters. Therefore, Clus-DoC cannot analyze
the full field of view for large 340 gigabyte-1.1 terabyte
datasets due to large memory requirement (Table 1). In
contrast, our method is able to efficiently analyze the full
field of view of 340 gigabyte-1.1 terabyte sized datasets while
needing a fraction of the available memory (Table 1). The
memory required for our largest 1.1 TB simulated dataset is
4.7 GB which is similar to the memory available on laptops.
Furthermore, using k-d trees for pair correlation analysis
allows us to efficiently calculate the distance distribution
across the full field of view to make an accurate assessment

of the cutoff distances needed to segment molecules into
clusters. Our k-d tree-based colocalization analysis also has
an improved run time when compared to Clus-DoC (Table 1).

We also compared our method to colocalization analysis
approaches based on Voronoi tessellation. These approaches
have gained popularity since the detection of colocalized
localizations does not require as a radial distance threshold,
Ripley’s K score, or density threshold (Levet et al., 2015, 2019;
Andronov et al., 2016). Instead, these algorithms use Voronoi
tessellations to determine cluster boundaries by using the
relative similarities in the areas of polygons and densities of
localizations. These techniques also allow for the direct
calculation of Spearman’s rank coefficients and Mander’s
coefficients to quantify the degree of clustering in the same
molecule population and the degree of colocalization between
multiple molecule populations. Coloc-Tesseler (Levet et al.,
2019) is a graphical user interface (GUI) based C++ program
that uses Voronoi tessellations to assess colocalization. Molecule
lists from both molecule populations are directly inputted into the
program through the GUI. The program then outputs colocalized
molecules of one population, colocalized molecules of the other
population, and non-colocalized molecules of both populations.
The Voronoi diagram visually highlights the density difference
between the colocalized and non colocalized population. Mander’s
and Spearman’s rank coefficients can be calculated for a defined
region of interest with the plot to quantify the degree of
colocalization in that area. The user is also able to further refine
co localization performance by altering relative density cutoffs used
by the program to define cluster boundaries. This program can
analyze large simulated datasets quickly while having a similar
memory requirement as our k-d tree-based program (Table 1). The
main drawback is that colocalized molecule lists or colocalized
cluster lists cannot be outputted by the program which makes
downstream analysis impossible. In addition, an accuracy analysis
via an F-score, which requires true positives, false positives, false
negatives, and true negatives cannot be calculated. The only other
program outputs besides the color coded Voronoi plot are a
quantification of colocalization via Mander’s and Spearman rank
coefficients. However, these metrics do not contain information
about the distance dependent degree of colocalizations that the
cross-correlation methods directly quantify. This distance
dependent degree of-colocalization is particularly useful when
comparing datasets across different states such as comparing the
degree of colocalization between fed and starved cells at various
distances (Figure 4).

In summary, while Voronoi tessellation efficiently detects
clustering and colocalization of SMLM data, it does not
contain the distance dependent density information of cross-
correlation methods, which is useful for comparing data sets and
for separating colocalized molecule lists for further downstream
analysis. Our implementation of k-d trees for calculating the
auto- or cross-correlation significantly lowers the computational
time and memory needs, which allows for the analysis of large
SMLM data sets that cannot be analyzed with existing cross-
correlation methods. The modular code can be interfaced from
existing SMLM data analysis packages for up- and downstream
analysis and therefore enables the detection of otherwise hidden
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features such as the critical number of ULK1 molecules in rare
clusters that initiate autophagy.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following licenses/
restrictions: Simulated data from Figure 2 is available in the code
repository located at https://github.com/PuchnerLab/cross-
correlation-filtering Due to the large size of the SMLM data
sets, they will not be uploaded but made available upon request.
Requests to access these datasets should be directed to EMP,
epuchner@umn.edu.

AUTHOR CONTRIBUTIONS

AM and DM wrote the manuscript, simulated and analyzed all data
and made figures. CB recorded two-color SMLM data of ULK1 and
Atg13. DHK constructed the endogenously tagged cell line and
provided funding. EMP conceptualized and supervised research,
provided funding and helpedwrite themanuscript andmake figures.

FUNDING

Research reported in this publication was supported by the
National Institute of General Medical Sciences of the National
Institutes of Health under Award number R21GM127965 (EMP)
and R35GM130353 (DHK). DM was also supported by the Mayo
Clinic Graduate School of Biomedical Sciences and the Mayo
Foundation.

ACKNOWLEDGMENTS

We thank Yu Xu for her valuable help and input in the blink
correction code and Ragnar Stefansson for the distance-based
clustering code.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fbinf.2021.739769/
full#supplementary-material

REFERENCES

Andronov, L., Orlov, I., Lutz, Y., Vonesch, J. L., and Klaholz, B. P. (2016).
ClusterViSu, a Method for Clustering of Protein Complexes by Voronoi
Tessellation in Super-Resolution Microscopy. Sci. Rep. 6, 24084.
doi:10.1038/srep24084

Banerjee, C., Song, D., Mehra, D., Mancebo, A., Kim, D.-H., and Puchner, E. M.
(2020). Quantitative Super-Resolution Microscopy Reveals Distinct ULK1
Oligomeric States and Nanoscopic Morphologies during Autophagy
Initiation. bioRxiv. doi:10.1101/2020.07.03.187336

Bentley, J. L. (1975). Multidimensional Binary Search Trees Used for Associative
Searching. Commun. ACM 18, 509–517. doi:10.1145/361002.361007

Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S.,
Bonifacino, J. S., et al. (2006). Imaging Intracellular Fluorescent Proteins
at Nanometer Resolution. Science 313, 1642–1645. doi:10.1126/
science.1127344

Cai, D., Feliciano, D., Dong, P., Flores, E., Gruebele, M., Porat-Shliom, N., et al.
(2019). Phase Separation of YAP Reorganizes Genome Topology for Long-
Term YAP Target Gene Expression. Nat. Cel Biol. 21, 1578–1589. doi:10.1038/
s41556-019-0433-z

Chang, Y. Y., and Neufeld, T. P. (2009). An Atg1/Atg13 Complex with Multiple
Roles in TOR-Mediated Autophagy Regulation. Mol. Biol. Cel 20, 2004–2014.
doi:10.1091/mbc.e08-12-1250

Cho, W. K., Spille, J. H., Hecht, M., Lee, C., Li, C., Grube, V., et al. (2018). Mediator
and RNA Polymerase II Clusters Associate in Transcription-Dependent
Condensates. Science 361, 412–415. doi:10.1126/science.aar4199

Chong, S., Dugast-Darzacq, C., Liu, Z., Dong, P., Dailey, G. M., Cattoglio, C., et al.
(2018). Imaging Dynamic and Selective Low-Complexity Domain Interactions
that Control Gene Transcription. Science 361, eaar2555. doi:10.1126/
science.aar2555

Cisse, I. I., Izeddin, I., Causse, S. Z., Boudarene, L., Senecal, A., Muresan, L., et al.
(2013). Real-Time Dynamics of RNA Polymerase II Clustering in Live Human
Cells. Science 341, 664–667. doi:10.1126/science.1239053

De Zitter, E., Ridard, J., Thédié, D., Adam, V., Lévy, B., Byrdin, M., et al. (2020).
Mechanistic Investigations of Green mEos4b Reveal a Dynamic Long-Lived
Dark State. J. Am. Chem. Soc. 142, 10978–10988. doi:10.1021/jacs.0c01880

Ester, M., Kriegel, H. P., Sander, J., and Xiaowei, X. (1996). A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
Available at: https://www.osti.gov/biblio/421283 (Accessed June 9, 2021).

Griffié, J., Shannon, M., Bromley, C. L., Boelen, L., Burn, G. L., Williamson, D. J.,
et al. (2016). A Bayesian Cluster Analysis Method for Single-Molecule
Localization Microscopy Data. Nat. Protoc. 11, 2499–2514. doi:10.1038/
nprot.2016.149

Hartman, N. C., Nye, J. A., and Groves, J. T. (2009). Cluster Size Regulates Protein
Sorting in the Immunological Synapse. Proc. Natl. Acad. Sci. U S A. 106,
12729–12734. doi:10.1073/pnas.0902621106

Heydarian, H., Joosten, M., Przybylski, A., Schueder, F., Jungmann, R.,Werkhoven,
B. V., et al. (2021). 3D Particle Averaging and Detection of Macromolecular
Symmetry in Localization Microscopy. Nat. Commun. 12, 2847. doi:10.1038/
s41467-021-22006-5

Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., et al.
(2009). Nutrient-Dependent mTORC1 Association with the ULK1-Atg13-
Fip200 Complex Required for Autophagy. Mol. Biol. Cel 20, 1981–1991.
doi:10.1091/mbc.e08-12-1248

Hummer, G., Fricke, F., and Heilemann, M. (2016). Model-Independent Counting
of Molecules in Single-Molecule Localization Microscopy. Mol. Biol. Cel 27,
3637–3644. doi:10.1091/mbc.E16-07-0525

Jung, C. H., Ro, S. H., Cao, J., Otto, N. M., and Kim, D. H. (2010). mTOR
Regulation of Autophagy. FEBS Lett. 584, 1287–1295. doi:10.1016/
j.febslet.2010.01.017

Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M., and Ohsumi, Y.
(2000). Tor-Mediated Induction of Autophagy via an Apg1 Protein Kinase
Complex. J. Cel Biol. 150, 1507–1513. doi:10.1083/jcb.150.6.1507

Karathanasis, C., Medler, J., Fricke, F., Smith, S., Malkusch, S., Widera, D., et al.
(2020). Single-Molecule Imaging Reveals the Oligomeric State of Functional
TNFα-Induced Plasma Membrane TNFR1 Clusters in Cells. Sci. Signal. 13,
eaax5647. doi:10.1126/scisignal.aax5647

Kennedy, P. R., Barthen, C., Williamson, D. J., Pitkeathly, W. T. E., Hazime, K. S.,
Cumming, J., et al. (2019). Genetic Diversity Affects the Nanoscale Membrane
Organization and Signaling of Natural Killer Cell Receptors. Sci. Signal. 12,
eaaw9252. doi:10.1126/scisignal.aaw9252

Khater, I. M., Aroca-Ouellette, S. T., Meng, F., Nabi, I. R., and Hamarneh, G.
(2019). Caveolae and Scaffold Detection from Single Molecule Localization
Microscopy Data Using Deep Learning. PLOS ONE 14, e0211659. doi:10.1371/
journal.pone.0211659

Khater, I. M., Meng, F., Wong, T. H., Nabi, I. R., and Hamarneh, G. (2018).
Super Resolution Network Analysis Defines the Molecular Architecture of
Caveolae and Caveolin-1 Scaffolds. Sci. Rep. 8, 9009. doi:10.1038/s41598-
018-27216-4

Frontiers in Bioinformatics | www.frontiersin.org November 2021 | Volume 1 | Article 73976911

Mancebo et al. Efficient Cross-Correlation Filtering

https://github.com/PuchnerLab/cross-correlation-filtering
https://github.com/PuchnerLab/cross-correlation-filtering
mailto:epuchner@umn.edu
https://www.frontiersin.org/articles/10.3389/fbinf.2021.739769/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2021.739769/full#supplementary-material
https://doi.org/10.1038/srep24084
https://doi.org/10.1101/2020.07.03.187336
https://doi.org/10.1145/361002.361007
https://doi.org/10.1126/science.1127344
https://doi.org/10.1126/science.1127344
https://doi.org/10.1038/s41556-019-0433-z
https://doi.org/10.1038/s41556-019-0433-z
https://doi.org/10.1091/mbc.e08-12-1250
https://doi.org/10.1126/science.aar4199
https://doi.org/10.1126/science.aar2555
https://doi.org/10.1126/science.aar2555
https://doi.org/10.1126/science.1239053
https://doi.org/10.1021/jacs.0c01880
https://www.osti.gov/biblio/421283
https://doi.org/10.1038/nprot.2016.149
https://doi.org/10.1038/nprot.2016.149
https://doi.org/10.1073/pnas.0902621106
https://doi.org/10.1038/s41467-021-22006-5
https://doi.org/10.1038/s41467-021-22006-5
https://doi.org/10.1091/mbc.e08-12-1248
https://doi.org/10.1091/mbc.E16-07-0525
https://doi.org/10.1016/j.febslet.2010.01.017
https://doi.org/10.1016/j.febslet.2010.01.017
https://doi.org/10.1083/jcb.150.6.1507
https://doi.org/10.1126/scisignal.aax5647
https://doi.org/10.1126/scisignal.aaw9252
https://doi.org/10.1371/journal.pone.0211659
https://doi.org/10.1371/journal.pone.0211659
https://doi.org/10.1038/s41598-018-27216-4
https://doi.org/10.1038/s41598-018-27216-4
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Khater, I. M., Nabi, I. R., and Hamarneh, G. (2020). A Review of Super-Resolution
Single-Molecule Localization Microscopy Cluster Analysis and Quantification
Methods. Patterns (N Y) 1, 100038. doi:10.1016/j.patter.2020.100038

Kiskowski, M. A., Hancock, J. F., and Kenworthy, A. K. (2009). On the Use of
Ripley’s K-Function and its Derivatives to Analyze Domain Size. Biophys. J. 97,
1095–1103. doi:10.1016/j.bpj.2009.05.039

Krüger, C. L., Zeuner, M. T., Cottrell, G. S., Widera, D., and Heilemann, M.
(2017). Quantitative Single-Molecule Imaging of TLR4 Reveals Ligand-
Specific Receptor Dimerization. Sci. Signal. 10, eaan1308. doi:10.1126/
scisignal.aan1308

Lagache, T., Grassart, A., Dallongeville, S., Faklaris, O., Sauvonnet, N., Dufour, A., et al.
(2018). MappingMolecular Assemblies with FluorescenceMicroscopy and Object-
Based Spatial Statistics. Nat. Commun. 9, 698. doi:10.1038/s41467-018-03053-x

Larson, A. G., Elnatan, D., Keenen, M.M., Trnka, M. J., Johnston, J. B., Burlingame,
A. L., et al. (2017). Liquid Droplet Formation by HP1α Suggests a Role for Phase
Separation in Heterochromatin.Nature 547, 236–240. doi:10.1038/nature22822

Lee,M.Y. (2019). Single-Molecule LocalizationMicroscopy andApplications toVisualize
the Accessible Genome with ATAC-See. Available at: https://www.proquest.com/
docview/2508881084/abstract/3148C56746F645DFPQ/1 (Accessed June 9, 2021).

Lee, S. H., Shin, J. Y., Lee, A., and Bustamante, C. (2012). Counting Single
Photoactivatable Fluorescent Molecules by Photoactivated Localization
Microscopy (PALM). Proc. Natl. Acad. Sci. U. S. A. 109, 17436–17441.
doi:10.1073/pnas.1215175109

Levet, F., Hosy, E., Kechkar, A., Butler, C., Beghin, A., Choquet, D., et al. (2015). SR-
Tesseler: AMethod to Segment andQuantify Localization-Based Super-resolution
Microscopy Data. Nat. Methods 12, 1065–1071. doi:10.1038/nmeth.3579

Levet, F., Julien, G., Galland, R., Butler, C., Beghin, A., Chazeau, A., et al. (2019). A
Tessellation-Based Colocalization Analysis Approach for Single-Molecule
Localization Microscopy. Nat. Commun. 10, 2379. doi:10.1038/s41467-019-10007-4

Liu, Z., Legant, W. R., Chen, B. C., Li, L., Grimm, J. B., Lavis, L. D., et al. (2014). 3D
Imaging of Sox2 Enhancer Clusters in Embryonic Stem Cells. eLife 3, e04236.
doi:10.7554/eLife.04236

Malkusch, S., Endesfelder, U., Mondry, J., Gelléri, M., Verveer, P. J., and
Heilemann, M. (2012). Coordinate-Based Colocalization Analysis of Single-
Molecule Localization Microscopy Data. Histochem. Cel Biol. 137, 1–10.
doi:10.1007/s00418-011-0880-5

Marenda, M., Lazarova, E., van de Linde, S., Gilbert, N., and Michieletto, D. (2021).
Parameter-Free Molecular Super-Structures Quantification in Single-Molecule
Localization Microscopy. J. Cel Biol. 220, e202010003. doi:10.1083/jcb.202010003

McSwiggen, D. T., Mir, M., Darzacq, X., and Tjian, R. (2019). Evaluating Phase
Separation in Live Cells: Diagnosis, Caveats, and Functional Consequences.
Genes Dev. 33, 1619–1634. doi:10.1101/gad.331520.119

Mercer, C. A., Kaliappan, A., and Dennis, P. B. (2009). A Novel, Human Atg13
Binding Protein, Atg101, Interacts with ULK1 and Is Essential for
Macroautophagy. Autophagy 5, 649–662. doi:10.4161/auto.5.5.8249

Nieves, D. J., Pike, J. A., Levet, F., Griffié, J., Sage, D., Cohen, E. A. K., et al. (2021). A
Framework for Evaluating the Performance of SMLM Cluster Analysis
Algorithms. bioRxiv. doi:10.1101/2021.06.19.449098

Nino,D. F., Djayakarsana, D., andMilstein, J. N. (2020). FOCAL3D: A 3-Dimensional
Clustering Package for Single-Molecule Localization Microscopy. PLOS Comput.
Biol. 16, e1008479. doi:10.1371/journal.pcbi.1008479

Owen, D. M., Rentero, C., Rossy, J., Magenau, A., Williamson, D., Rodriguez, M.,
et al. (2010). PALM Imaging and Cluster Analysis of Protein Heterogeneity at
the Cell Surface. J. Biophotonics 3, 446–454. doi:10.1002/jbio.200900089

Pageon, S. V., Nicovich, P. R., Mollazade, M., Tabarin, T., and Gaus, K. (2016a).
Clus-DoC: A Combined Cluster Detection and Colocalization Analysis for
Single-Molecule Localization Microscopy Data. Mol. Biol. Cel 27, 3627–3636.
doi:10.1091/mbc.E16-07-0478

Pageon, S. V., Tabarin, T., Yamamoto, Y., Ma, Y., Nicovich, P. R., Bridgeman, J. S.,
et al. (2016b). Functional Role of T-Cell Receptor Nanoclusters in Signal
Initiation and Antigen Discrimination. Proc. Natl. Acad. Sci. U S A. 113,
E5454–E5463. doi:10.1073/pnas.1607436113

Park, J. M., Seo, M., Jung, C. H., Grunwald, D., Stone, M., Otto, N. M., et al. (2018).
ULK1 Phosphorylates Ser30 of BECN1 in Association with ATG14 to Stimulate
Autophagy Induction. Autophagy 14, 584–597. doi:10.1080/
15548627.2017.1422851

Patterson, G. H., and Lippincott-Schwartz, J. (2002). A Photoactivatable GFP for
Selective Photolabeling of Proteins and Cells. Science 297, 1873–1877.
doi:10.1126/science.1074952

Perry, G. L.W. (2004). SpPack: Spatial point Pattern Analysis in Excel Using Visual
Basic for Applications (VBA). Environ. Model. Softw. 19, 559–569. doi:10.1016/
j.envsoft.2003.07.004

Puchner, E. M., Walter, J. M., Kasper, R., Huang, B., and Lim, W. A. (2013).
Counting Molecules in Single Organelles with Superresolution Microscopy
Allows Tracking of the Endosome Maturation Trajectory. Proc. Natl. Acad. Sci.
U. S. A. 110, 16015–16020. doi:10.1073/pnas.1309676110

Ripley, B. D. (1979). Tests of ’Randomness’ for Spatial Point Patterns. J. R. Stat. Soc.
Ser. B (Methodological) 41, 368–374. doi:10.1111/j.2517-6161.1979.tb01091.x

Roach, P. J. (2011). AMPK -> ULK1 -> Autophagy. Mol. Cel. Biol. 31, 3082–3084.
doi:10.1128/MCB.05565-11

Rollins, G. C., Shin, J. Y., Bustamante, C., and Pressé, S. (2015). Stochastic Approach to
theMolecularCounting Problem in SuperresolutionMicroscopy.Proc. Natl. Acad.
Sci. U S A. 112, E110–E118. doi:10.1073/pnas.1408071112

Rust, M. J., Bates, M., and Zhuang, X. (2006). Sub-Diffraction-Limit Imaging by
Stochastic Optical Reconstruction Microscopy (STORM). Nat. Methods 3,
793–795. doi:10.1038/nmeth929

Sabari, B. R., Dall’Agnese, A., Boija, A., Klein, I. A., Coffey, E. L., Shrinivas, K., et al.
(2018). Coactivator Condensation at Super-Enhancers Links Phase Separation
and Gene Control. Science 361, eaar3958. doi:10.1126/science.aar3958

Sengupta, P., Jovanovic-Talisman, T., Skoko, D., Renz, M., Veatch, S. L., and
Lippincott-Schwartz, J. (2011). Probing Protein Heterogeneity in the Plasma
Membrane Using PALM and Pair Correlation Analysis. Nat. Methods 8,
969–975. doi:10.1038/nmeth.1704

Simoncelli, S., Griffié, J., Williamson, D. J., Bibby, J., Bray, C., Zamoyska, R., et al.
(2020). Multi-Color Molecular Visualization of Signaling Proteins Reveals How
C-Terminal Src Kinase Nanoclusters Regulate T Cell Receptor Activation. Cell
Rep 33, 108523. doi:10.1016/j.celrep.2020.108523

Stone, M. B., and Veatch, S. L. (2015). Steady-State Cross-Correlations for Live
Two-Colour Super-Resolution Localization Data Sets. Nat. Commun. 6, 7347.
doi:10.1038/ncomms8347

van Lengerich, B., Agnew, C., Puchner, E. M., Huang, B., and Jura, N. (2017). EGF
and NRG Induce Phosphorylation of HER3/ERBB3 by EGFR Using Distinct
Oligomeric Mechanisms. Proc. Natl. Acad. Sci. U S A. 114, E2836–E2845.
doi:10.1073/pnas.1617994114

Veatch, S. L., Machta, B. B., Shelby, S. A., Chiang, E. N., Holowka, D. A., and Baird,
B. A. (2012). Correlation Functions Quantify Super-Resolution Images and
Estimate Apparent Clustering Due to Over-Counting. PLOS ONE 7, e31457.
doi:10.1371/journal.pone.0031457

Williamson, D. J., Burn, G. L., Simoncelli, S., Griffié, J., Peters, R., Davis, D. M., et al.
(2020). Machine Learning for Cluster Analysis of Localization Microscopy
Data. Nat. Commun. 11, 1493. doi:10.1038/s41467-020-15293-x

Xie, L., Dong, P., Chen, X., Hsieh, T. S., Banala, S., De Marzio, M., et al. (2020). 3D
ATAC-PALM: Super-Resolution Imaging of the Accessible Genome. Nat.
Methods 17, 430–436. doi:10.1038/s41592-020-0775-2

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Mancebo, Mehra, Banerjee, Kim and Puchner. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Bioinformatics | www.frontiersin.org November 2021 | Volume 1 | Article 73976912

Mancebo et al. Efficient Cross-Correlation Filtering

https://doi.org/10.1016/j.patter.2020.100038
https://doi.org/10.1016/j.bpj.2009.05.039
https://doi.org/10.1126/scisignal.aan1308
https://doi.org/10.1126/scisignal.aan1308
https://doi.org/10.1038/s41467-018-03053-x
https://doi.org/10.1038/nature22822
https://www.proquest.com/docview/2508881084/abstract/3148C56746F645DFPQ/1
https://www.proquest.com/docview/2508881084/abstract/3148C56746F645DFPQ/1
https://doi.org/10.1073/pnas.1215175109
https://doi.org/10.1038/nmeth.3579
https://doi.org/10.1038/s41467-019-10007-4
https://doi.org/10.7554/eLife.04236
https://doi.org/10.1007/s00418-011-0880-5
https://doi.org/10.1083/jcb.202010003
https://doi.org/10.1101/gad.331520.119
https://doi.org/10.4161/auto.5.5.8249
https://doi.org/10.1101/2021.06.19.449098
https://doi.org/10.1371/journal.pcbi.1008479
https://doi.org/10.1002/jbio.200900089
https://doi.org/10.1091/mbc.E16-07-0478
https://doi.org/10.1073/pnas.1607436113
https://doi.org/10.1080/15548627.2017.1422851
https://doi.org/10.1080/15548627.2017.1422851
https://doi.org/10.1126/science.1074952
https://doi.org/10.1016/j.envsoft.2003.07.004
https://doi.org/10.1016/j.envsoft.2003.07.004
https://doi.org/10.1073/pnas.1309676110
https://doi.org/10.1111/j.2517-6161.1979.tb01091.x
https://doi.org/10.1128/MCB.05565-11
https://doi.org/10.1073/pnas.1408071112
https://doi.org/10.1038/nmeth929
https://doi.org/10.1126/science.aar3958
https://doi.org/10.1038/nmeth.1704
https://doi.org/10.1016/j.celrep.2020.108523
https://doi.org/10.1038/ncomms8347
https://doi.org/10.1073/pnas.1617994114
https://doi.org/10.1371/journal.pone.0031457
https://doi.org/10.1038/s41467-020-15293-x
https://doi.org/10.1038/s41592-020-0775-2
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles

	Efficient Cross-Correlation Filtering of One- and Two-Color Single Molecule Localization Microscopy Data
	Introduction
	Materials and Methods
	Workflow
	Simulated Data
	Cross-Correlation and Cluster Separation Analysis

	Benchmarks
	Memory Efficiency
	Time Efficiency

	Mammalian Cell Analysis

	Results
	Cluster Separation to Remove Noise From Simulated Data
	Benchmarks
	Isolating Co-clustered ULK1 and Atg13 Structures That Form Phagophores
	Comparison to Existing Colocalization Methods

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


