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Abstract: Logging while drilling (LWD) plays a crucial role in geo-steering, which can determine
the formation boundary and resistivity in real time. In this study, an efficient inversion, which can
accurately invert formation information in real time on the basis of fast-forward modeling, is presented.
In forward modeling, the Gauss–Legendre quadrature combined with the continued fraction method
is used to calculate the response of the LWD instrument in a layered formation. In inversion modeling,
the Levenberg–Marquardt (LM) algorithm, combined with the line search method of the Armijo
criterion, are used to minimize the cost function, and a constraint algorithm is added to ensure the
stability of the inversion. A positive and negative sign is added to the distance parameter to determine
whether the LWD instrument is located above or below the formation boundary. We have carried
out a series of experiments to verify the accuracy of the inversion. The experimental results suggest
that the forward algorithm can make the infinite integral of the Bessel function rapidly converge,
and accurately obtain the response of the LWD instrument in a layered formation. The inversion
can accurately determine the formation resistivity and boundary in real time. This is significant for
geological exploration.

Keywords: Logging while drilling (LWD); geo-steering; continued fraction; boundary detection;
inversion modeling; Levenberg-Marquardt algorithm

1. Introduction

With the development of high angle wells and horizontal wells, logging while drilling (LWD) has
received widespread attention for geological exploration [1]. The data used in pre-drilling research
are uncertain, which will cause the horizontal wells drilled along the design track to not be in the
optimal position in the reservoir, thus affecting the drilling effect of the target formation. LWD data can
determine the location of the LWD tool and adjust the trajectory of the wellbore in real time [2]. In the
process of high angle and horizontal well drilling, real-time adjustment of the well trajectory based on
LWD data can help the oil field to improve the return of the drilling investment [3]. The traditional
electromagnetic LWD tool using the axial launching and receiving antenna, does not have azimuth
detection characteristics. The instrument used in this study is equipped with a transverse antenna
based on traditional instruments. These electromagnetic LWD tools are widely used in geo-steering
because the measurement results have azimuth characteristics and can better determine the orientation
of the formation boundary [4,5]. They provide formation resistivity evaluation and instrument position
information [6]. In the actual measurement while drilling, it is inevitable to encounter the influence of
formation factors such as the wellbore and the electrical influence of the instrument itself; therefore,
symmetry compensation transmitting coils are added.

The inversion needs to repeatedly call forward modeling; efficient forward modeling is critical to
the inversion. Forward modeling can determine the response of the LWD tool in a known formation [7].
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The induction logging tool theory was originally developed by Doll [8]. It only considers a tool in
a vertical borehole. Reference [9] presented the method for calculating the electric and magnetic
fields from dipoles embedded in the formation, and [10] extended the method to calculate the electric
and magnetic fields from arbitrarily oriented dipoles in the formation. Zhong used the coefficient
propagator method to derive the magnetic field formula, assuming that the borehole effect and invasion
zones can be neglected [11]. In forward modeling, it is very important to calculate the magnetic
field formula at each measurement point. However, each of the magnetic field formulas contains
the infinite integral of the Bessel function. Gao used the fast Hankel transform method to complete
the computation of the indefinite integral of the Bessel function [12]. Zhang employed the Gauss
quadrature algorithm to accelerate convergence speed [13]. It is easy to obtain non-convergent or
even divergent results if the Bessel function is incorrectly calculated. Based on our earlier work [14],
we combined the Gauss–Legendre quadrature with the continued fraction summation to solve the
infinite integral of the Bessel function, and simulated the response of the LWD instrument with a
different angle in the three-layer formation model. This method can cause the infinite integral quickly
converge, and is well suited to calculate the infinite integral of the Bessel function in the magnetic
field formulas.

Inversion modeling interprets the data measured by the LWD instrument as formation information
and position information [15–18]. Various research has been carried out to solve the inversion problem.
Yu developed a fast, robust and hands-off inversion method, and the method describes the layered
formation using equal thickness layers [19]. Lu used the singular value decomposition method to perform
an inversion algorithm [20]. Wang used the regularized Gauss–Newton method to acquire the distance
to the formation boundary as well as the formation resistivity [4]. Heriyanto used the singular value
decomposition and the Levenberg–Marquardt (LM) method to achieve a 1D resistivity inversion [21].
Pardo used the Gauss–Newton and many optimization methods to realize the 1D inversion of LWD [22].
In the process of LWD, it is very important not only to obtain the distance to the formation boundary,
but also to judge whether the instrument is above or below the boundary in real time.

In inversion modeling, the LM algorithm combined with the line search method of the Armijo
criterion is used to accurately achieve the inversion of the LWD tool in real time, and a constraint
algorithm is added. In order to preserve the positive and negative sign of the distance parameters, the
traditional logarithmic processing is replaced by the root of the fifth order in the data preprocessing
of the initial parameters. We have done several sets of experiments to verify the convergence of
the forward algorithm and the accuracy of the inversion. First, the convergence of the continued
fraction summation and the direct summation in calculating magnetic field responses are compared.
Then, the response of the LWD instrument in a layered formation is simulated, and its sensitivity to the
formation boundary and the dipping angle is analyzed. Finally, the two-parameter and three-parameter
inversion in two-layer formation is carried out.

2. Forward Modeling

2.1. Theory of Forward Modeling

On the basis of the traditional LWD instrument with axial coils, a transverse coil is added to
the instrument to increase its azimuth detection characteristics. Figure 1 is a schematic diagram of
the structure of the LWD logging tool used in this study. This apparatus consists of two axially
symmetric compensation transmitting coils Tr1 and Tr2, two axial receiving coils Re1 and Re2,
and a transverse receiving coil Re3. The axial coil and the transverse coil are perpendicular to
each other. The axial transmitting coils and the axial receiving coils are symmetrical about the
transverse coil. The symmetrical compensation coils of the instrument greatly reduce the effects of the
formation environment during the measurement process [23]. They can also eliminate the influence
of anisotropic formations and make the results more accurate. In Figure 1, O-XYZ is the formation
coordinate system, O’-X’Y’Z’ is the instrument coordinate system, θ is the dipping angle, β is the
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azimuthal angle between the X-axis and the projection of the instrument on the X-Y plane, and γ is the
rotation angle [24].
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Figure 1. Schematic diagram of the logging while drilling (LWD) instrument used in this study.

Coils can be represented by magnetic dipoles [25]. Therefore, the magnetic field responses emitted
by the transmitting coils on each receiving coil can be obtained [26]. The electric fields and the magnetic
fields from the unit magnetic dipole moment tensor M̂0 satisfy the Maxwell equation in this form [27],
Ĥ is the magnetic field from the unit magnetic dipole in the formation coordinate system.

∇× Ê = iωµ0Ĥ + iωµ0M̂0 (1)

∇× Ĥ = σ̂Ê + jωε̂Ê (2)

It is first necessary to calculate the magnetic field responses H in the formation coordinate
system, and then convert it into the magnetic field responses H

′

in the instrument coordinate system.
The relationship between the magnetic M of the formation coordinate system and the magnetic M

′

of the instrument coordinate system is shown in (3). The relationship between the magnetic field
responses in two coordinate systems is shown in (5).

M = RM
′

(3)

H = ĤM (4)

H
′

= R−1H = R−1ĤRM
′

(5)

R =


cosθ cos β cosγ− sin β sinγ − cosθ cos β cosγ− sin β cosγ sinθ cos β
cosθ sin β cosγ+ cos β sinγ − cosθ sin β sinγ+ cos β cosγ sinθ sin β
− sinθ cosγ sinθ sinγ cosθ

 (6)

Several excellent reviews deriving these magnetic field formulas of the LWD tool in the layered
formation are available and so these topics will not be discussed in detail here [13]. Each of the
magnetic field formulas contains the infinite integral of the Bessel function [11,28]. It is easy to
obtain non-convergent or even divergent results if the infinite integral is incorrectly calculated.
The Gauss–Legendre quadrature combined with the continued fraction summation is used to solve this
problem. Details of the Gauss–Legendre quadrature algorithm are presented in Appendix A [29,30].
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After calculating the magnetic field on each receiving coil, we can obtain the phase difference between
the axial coils Re1 and Re2, and the voltage on the transverse coil Re3.

VX = iωµ0SH (7)

∆ϕ1 = ϕ1 −ϕ2 =
180
π

imag
[
ln

(V1

V2

)]
(8)

∆ϕ =
∆ϕ1 + ∆ϕ2

2
(9)

where VX is the voltage on the receiving coil, S is the area of the receiving coils, ∆ϕ1 is the phase
difference between Re1 and Re2 without compensation, and ∆ϕ is the phase difference between Re1
and Re2 after compensation.

2.2. The Continued Fraction Summation

In the process of calculating the infinite integral of the Bessel function, if many single intervals
are simply added up, the results may be non-convergent or even divergent. The continued fraction
summation can very well solve this problem. The form of the continued fraction as follows:

S =
d1

1 + d2
1+ ···

1+
dn−1

dn

(10)

The coefficient di can be calculated by a recursive algorithm [31]. Starting from the first coefficients,

d1 = D1, D1 = p1 (11)

d2 = −
D2

D1
, D1 = p2 (12)

d3 = −
D3

D2
, D1 = p3 + p2d2 (13)

d4 = −
D4

D3
, D1 = p4 + p3(d2 + d3) (14)

When n ≥ 5, the coefficients can be recursively solved:

L = 2 · f loor(
n− 1

2
) (15)

X(1) = d2, X(2) = d2 + d3 (16)

Interchange X(1)↔ X(2) , and set X(L− 1) = 0, and we have

X(k) = X(k− 1) + dn−1X(k− 2), k = L, L− 2, L− 4, . . . , 4 (17)

Then, X(2) = X(1) + dn−1.
In the end, the coefficient di can be obtained:

Dn = pn +
L/2∑
i=1

pn−iX(2i− 1) (18)

dn = −
Dn

Dn−1
(19)
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3. Inversion Modeling

3.1. Theory of Inversion Modeling

In inversion modeling, the data obtained from the LWD tool needs to be interpreted as the
formation information [32]. It is very important to accurately obtain the position of the instrument
and the formation resistivity in real time. In this study, a positive and negative sign is added to the
distance parameter to distinguish whether the instrument is above or below the formation boundary.
Preprocessing the unknown parameters can improve the efficiency of the inversion. In order to retain
the sign of inversion parameters, we replaced the traditional logarithmic processing with the 5th root
in the data preprocessing of the unknown parameters.

M = [m1, m2, · · · , mN]
T (20)

x =
[

5√x1, 5√x2, · · · , 5√xn
]T

(21)

where the vector M represents the measured data, and the vector x represent the unknown
parameters [13]. N represents the amount of data measured at each measurement point, and n
represents the number of unknown parameters that need to be inverted.

The main purpose of the inversion is to minimize the cost function C(x), which has the form

C(x) =
1
2

R(x)TR(x) (22)

where R(x) = F(x) −M, and F(x) is the vector of simulated tool response values generated by forward
modeling.

In order to minimize the cost function C(x), the LM algorithm is used [33]. The Taylor series
expansion is expressed for cost function and approximated by the Jacobian matrix J as follows [34]

C(x) ≈
1
2

RT(xc)R(xc) + RT(xc)J(xc)(x− xc) +
1
2
(x− xc)

T
(
JT(xc)J(xc) + µI

)
(x− xc) (23)

The solution of the equation is

xk+1 = xk −
(
JT(xk)J(xk) + µI

)−1
JT(xk)R(xk) (24)

dk = xk+1 − xk = −
(
JT(xk)J(xk) + µI

)−1
JT(xk)R(xk) (25)

where J is the M ×N Jacobian matrix consisting of the first-order derivative of the data mismatch,
and Ji j = ∂Fi/∂x j is approximated with the finite difference in the inversion.

Parameter µ is adjusted with a strategy similar to adjusting the radius of the trust region, that is,
the LM algorithm [33,35]. The detailed method of obtaining the search direction dk by updating the
parameter µ is as follows. We define a quadratic function at the iteration point [36].

Q(d) = F(xk) + dT
k∇F(xk) +

1
2

dT
k JT

k Jkdk (26)

We use ξk to represent the ratio of the two increments:

ξk =
∆F(dk)

∆Q(dk)
=

F(xk+1) − F(xk)

dT
k∇F(xk) +

1
2 dT

k JT
k Jkdk

(27)

We give µ an initial value, and then continuously adjust the µ according to the value of ξk to
calculate dk. The update rules are shown in Table 1.
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Table 1. Update rule for parameter µ.

ξk ≥ 0.75 µk+1 = 0.1µk
0.25 < ξk < 0.75 µk+1 = µk

ξk ≤ 0.25 µk+1 = 10µk

Usually, the step dk cannot give the minimum value of the cost function C(x). To overcome this
problem, a line search approach is used to find a step λ along dk. Using the line search method of the
Armijo criterion to update the search step, mk can be reached as an integer value satisfying an equation
as follows:

C(xk + λdk) ≤ C(xk) + σρmk gT
k dk (28)

where λ = ρmk , gk = JT(xk)R(xk), and σ = 10−4.

3.2. The Constraint Algorithm

In order to avoid the abnormal inversion results and improve the stability of the inversion,
a constraint algorithm is added. The intermediate parameter c is added instead of the parameter x.

x = xmax −
xmax−xmin

c2+1 , −∞ < c < +∞ (29)

x→ xmax, as c→ ±∞
x→ xmin, as c→ 0

(30)

where xmax, xmin are the upper and lower bounds of the parameter x, respectively. In the Jacobian
matrix, it can be expressed as follows:

∂F
∂c

=
∂F
∂x

dx
dc

= 2
∂F
∂x

x− xmax

xmin − xmax

√
(x− xmax)(xmin − x) (31)

The two successive iterates xk+1 and xk of x are related by

xk+1 = xmax −
xmax − xmin

c2
k+1 + 1

= xmax −
xmax − xmin

(ck + qk)
2 + 1

(32)

where ck =
√

xk−xmin
xmax−xk

, and qk = ck+1 − ck is the search step in c towards the minimum of the cost

function C(x). The relationship between dk and qk is as follows:

dk = qk
dxk
dck

(33)

In order not to specifically calculated the parameters c and q, the round-off errors caused by the
introduction of the nonlinear function are reduced, the relationship between the two successive iterates
xk+1 and xk of x can be obtained:

xk+1 = xmin +
xmax − xmin

α2
k + (xk − xmin)(xmax − xk)

3α
2
k (34)

where
αk = (xk − xmin)(xmax − xk) +

1
2
(xmax − xmin)λdk (35)

4. Results and Discussions

In this section, the convergence of the continued fraction summation and the direct summation in
calculating magnetic field formulas are compared. Then, the response of the LWD instrument in the
layered formation model is simulated, and the sensitivity of the LWD instrument in the formation
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boundary and different dipping angle is analyzed. Finally, two-parameter and three-parameter
inversions in the two-layer formation model are carried out.

4.1. Convergence Comparison between Continued Fraction Summation and Direct Summation

It is necessary to accumulate its integral intervals when calculating the infinite integral of the
Bessel function in magnetic field formulas. The summation of integral intervals is calculated by
direct summation and continued fraction summation. In order to see the convergence results in the
calculation process, we compared the convergence of the infinite integral of the Bessel function in
magnetic field formulas of the axial receiving coil with that of the transverse receiving coil by the
continued fraction summation and the direct summation, respectively. Four observation points were
selected in the formation to observe the change of the results of the magnetic field responses with the
number of integral intervals. The results on the axial receiving coil and the transverse receiving coil are
shown in Figures 2 and 3, respectively. In Figures 2 and 3, the horizontal axis represents the number of
integral intervals and logging sample points, and the vertical axis represents the magnitude of the
magnetic field. The red lines represent the results of the continued fraction summation, and the blue
dotted lines represent the results of the direct summation.
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It can be seen from Figures 2 and 3 that, for the red lines the magnetic field responses remain
unchanged after three or four integral intervals and are accumulated. For the blue dotted lines,
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the magnetic field responses remain unchanged after about six integral intervals and are accumulated.
It can be concluded that the continued fraction summation converges faster than the direct summation
when calculating the magnetic field formulas.

4.2. The Simulation of Forward Modeling

After that, we simulated the response of the LWD instrument with different dipping angles in the
three-layer formation model. In this formation model, the resistivity of the first layer was 2 Ω·m and
the resistivity of the second layer was 10 Ω·m, while the resistivity of the third layer was 2 Ω·m, and
the thickness of the intermediate layer was 3.6 m. The frequencies used were 400 kHz and 2 MHz.
According to the theory of forward modeling, the magnetic field of the transmitting coil at the receiving
coil in the formation coordinate system can be calculated. The Gauss–Legendre quadrature was used
to calculate the Bessel function in the magnetic field equation. After that, the magnetic field in the
formation coordinate system was transformed into the magnetic field in the instrument coordinate
system according to the angle of the instrument. In this way, the phase difference between the two
axial receiving coils and the voltage on the transverse receiving coil were calculated. The simulation
was performed in MATLAB software. The simulated results after compensation are shown in Figures 4
and 5. In Figures 4 and 5, the horizontal axis represents the distance between the instrument and
the upper boundary; a positive sign indicates that the instrument is below the formation boundary,
and a negative sign indicates that the instrument is above the formation boundary. The vertical axis in
Figure 4 represents the magnitude of the phase difference between the axial receiving coils. The vertical
axis in Figure 5 represents the magnitude of the voltage of the transverse receiving coil.
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Figure 4a,b shows the phase difference between the axial receiving coils at a frequency of 400 KHz
and 2 MHz. It can be seen that there will be mutations at the formation boundary, and as the formation
resistivity changes, the magnitude of the phase difference also changes. Figure 5a,b shows the voltage
of the transverse receiving coil at a frequency of 400 KHz and 2 MHz. It can be seen that the closer
the LWD instrument is to the formation boundary, the larger the voltage of the transverse receiving
coil. The farther the LWD instrument is from the formation boundary, the closer the voltage of the
transverse receiving coil is to zero. The azimuth response characteristics in different directions will be
produced when the instrument enters the low resistivity layer from the high resistivity layer or the
instrument enters the high resistivity layer from the low resistivity layer. Therefore, it can distinguish
whether the LWD instrument is entering the layer or going out of the layer.

In addition, it can be seen from Figures 4 and 5 that with an increase of the dipping angle, whether
with a phase difference response or a voltage response, the peaks on the formation boundary become
more and more obvious. The larger the dipping angle, the more sensitive the LWD instrument is to the
formation boundary.

4.3. Results of Inversion Modeling

Finally, we performed two-parameter and three-parameter inversions in the two-layer formation
model. The two-layer formation model is shown in Figure 6. Here, a positive and negative sign
is added to the unknown parameter d, the distance from the formation boundary. A positive sign
indicates the instrument is below the formation boundary and a negative sign indicates the instrument
is above the boundary.
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First, we performed a two-parameter inversion in the two-layer formation model. The phase
difference between axial receiving coils Re1 and Re2 at a frequency of 400 kHz and 2 MHz, and the
voltage of the transverse coil Re3 at a frequency of 400 kHz, were used as measured data. The parameters
to be inverted were the resistivity of the lower layer R2 and the distance d of the instrument from the
formation boundary. R1 was 2 Ω·m. The dipping angle was 80◦. The measured data vector M and
the unknown parameters x are shown below. We use the 5th root in the data preprocessing of the
unknown parameters x.

M = [∆ϕ400kHz, ∆ϕ2MHz, VX]
T (36)

x = [
5
√

R2,
5√

d]
T

(37)

Seven formation samples were randomly selected to test the accuracy of the inversion. We set
the initial values for the inversion and calculate the cost function. Accurate inversion results can
be obtained by continuously reducing cost function. The true values, initial values, iterations and
inversion results in the two-parameter inversion are shown in Table 2. When setting the initial values,
many situations were considered, such as whether the initial value of the boundary distance parameter
is the same or opposite to the positive and negative sign of the real value, and whether the initial
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resistivity parameter is larger or smaller than the real value. The cost function of inversion samples
varying with the number of iterations in the two-parameter inversion are shown in Figure 7.

Table 2. Results of two-parameter inversion in the two-layer formation model.

Sample True Values Initial Values Iterations Inversion Vesults

R2 (Ω·m) d (m) R2 (Ω·m) d (m) R2 (Ω·m) d (m)

1 10.00 −0.40 4.00 −0.30 5 10.00 −0.40
2 10.00 −0.40 4.00 −0.10 7 10.00 −0.40
3 10.00 0.10 5.00 0.40 6 10.00 0.10
4 10.00 −0.10 6.00 0.70 5 10.00 −0.10
5 4.00 0.20 6.00 0.50 5 4.00 0.20
6 8.00 −0.20 10.00 −0.50 4 8.00 −0.20
7 8.00 −0.10 10.00 −0.70 5 8.00 −0.10
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Finally, the three-parameter inversion was performed in the two-layer formation model. The phase
difference between Re1 and Re2 at a frequency of 400 kHz and 2 MHz, and the voltage of the transverse
coil Re3 at a frequency of 400 kHz, were used as measured data. The parameters to be inverted were
the resistivity of the upper layer R1 and lower layer R2 and the distance d of the instrument from
the boundary. The angle of the instrument was 80◦. The measured data vector M and the unknown
parameters x are shown below. We used the 5th root in the data preprocessing of the unknown
parameters x.

M = [∆ϕ400kHz, ∆ϕ2MHz, VX]
T (38)

x =
[ 5√

R1,
5√

R2,
5√

d
]T

(39)

Seven formation samples were randomly selected to test the accuracy of the inversion. We set
the initial values for the inversion and calculate the cost function. Accurate inversion results can
be obtained by continuously reducing cost function. The true values, initial values, iterations and
inversion results in the three-parameter inversion are shown in Table 3. When setting the initial values,
many situations were considered, such as whether the initial value of the boundary distance parameter
is the same or opposite to the positive and negative sign of the real value, and whether the initial
resistivity parameter was larger or smaller than the real value. The cost function of inversion samples
varying with the number of iterations in the three-parameter inversion are shown in Figure 8.
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Table 3. Results of three-parameter inversion in the two-layer formation model.

Sample True Values Initial Values Iterations Inversion Results

R1
(Ω·m)

R2
(Ω·m) d (m) R1

(Ω·m)
R2

(Ω·m) d (m) R1
(Ω·m)

R2
(Ω·m) d (m)

1 5.00 18.00 0.20 10.00 13.00 0.40 5 5.00 18.00 0.20
2 5.00 18.00 0.20 8.00 13.00 −0.40 11 5.00 18.00 0.20
3 10.00 18.00 −0.20 8.00 13.00 −0.40 5 10.00 18.00 −0.20
4 10.00 15.00 −0.10 13.00 19.00 −0.30 4 10.00 15.00 −0.09
5 10.00 15.00 0.10 15.00 17.00 0.20 5 10.00 15.00 0.10
6 10.00 5.00 −0.10 15.00 17.00 0.03 15 10.00 5.00 −0.10
7 11.00 3.00 −0.50 13.00 19.00 0.00 11 10.99 3.00 −0.50
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From Tables 2 and 3, it can be seen that when the initial values are set close to the real values,
the accurate results can be quickly obtained. When the initial values are far from the real value,
accurate results can be obtained through multiple iterations. In each sample, accurate inversion results
can be obtained without abnormal value. As can be seen from Figures 7 and 8, the cost function
of all samples rapidly decreased with the number of iterations. This showed that the inversion can
continuously optimize the results and finally obtain accurate inversion results. When predicting the
boundary distance, it can not only accurately predict its value, but also judge whether it is above or
below the boundary. It can accurately achieve geological guidance.

5. Conclusions

In this study, based on fast-forward modeling, an efficient inversion, which can accurately and
stably invert the information of the layered formation in real time, was described. In forward modeling,
the magnetic field responses were quickly and accurately calculated by the Gauss–Legendre quadrature
method and continued fraction summation. The summation of continued fraction summation can
converge faster than that of direct summation in calculating the infinite integral of the Bessel function
in magnetic field formulas. In the inversion, the LM algorithm combined with the line search method
of the Armijo criterion was used, and a convergence algorithm was added to it. The two-parameter and
three-parameter inversion of the LWD instrument in the two-layer model was performed. The inversion
not only obtained the distance from the formation boundary and the formation resistivity in real
time, but it also accurately judged whether the LWD instrument was above or below the boundary.
The results of the experiment indicate the inversion can accurately and stably obtain the formation
information. It has great significance for LWD in geo-steering.
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Appendix A

The Gauss–Quadrature method is the most accurate interpolation numerical integration. The
Gauss–Legendre quadrature formula is one of the best ways to construct a high-precision interpolation
integral [29]. The infinite integral of the Bessel function has infinite intersections with the integral axis.
The adjacent intersections were used as the integral intervals. We calculated the integral value of a
single interval and accumulated it [30]. The form of the Bessel function is simplified as follows:

S =
∞∫
0

g(x)Jv(xρ)dk v = 0, 1, 2 · · · (A1)

The Legendre polynomial Pn(x) is defined as

Pn(x) =
1

2nn!
dn(x2

− 1)n

dxn , n = 1, 2, · · · (A2)

The recursion is as follows:
P0(x) = 1 (A3)

P1(x) = x (A4)

Pn+1(x) =
2n + 1
n + 1

xPn(x) −
n

n + 1
Pn−1(x) (A5)

Construction of a Gauss–Quadrature formula was required. The infinite integral of the Bessel
function can be cracked into a summation equation:

S =
N∑
1

pn n = 1, 2, 3, · · · , N (A6)

pn =

zn+1∫
zn

g(x)Jv(xρ)dk =

zn+1∫
zn

f (x)dk n = 1, 2 (A7)

where zn is the normalized nth X-axis of the zero-point. The Gauss–Legendre quadrature formula is∫ 1

−1
f (x)dx ≈

n∑
k=1

Ak f (xk) (A8)

where xk is the zero point of the Legendre polynomial over [−1, 1].

Ak =
2

(1− xk)
2[Pn′(xk)]

2 =
2(1− xk)

2

n2[Pn(xk)]
2 (A9)

We consider the xk as Gauss point and Ak as the Gauss coefficient. The integral interval [zn, zn+1]

is changed to [−1, 1]:

x =
Zn + Zn+1

2
+

Zn+1 −Zn

2
xk (A10)
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∫ Zn+1

Zn

f (x)dx =
Zn+1 −Zn

2

N∑
k=1

Ak f (
Zn + Zn+1

2
+

Zn+1 −Zn

2
xk) (A11)
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