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Recent advances in understanding RNA polymerase II structure 
and function
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Abstract

More than 50 years after the identification of RNA polymerase II, the enzyme responsible for the transcription of most eukaryotic 
genes, studies have continued to reveal fresh aspects of its structure and regulation. New technologies, coupled with years of 
development of a vast catalog of RNA polymerase II accessory proteins and activities, have led to new revelations about the 
transcription process. The maturation of cryo-electron microscopy as a tool for unraveling the detailed structure of large molecular 
machines has provided numerous structures of the enzyme and its accessory factors. Advances in biophysical methods have 
enabled the observation of a single polymerase’s behavior, distinct from work on aggregate population averages. Other recent 
work has revealed new properties and activities of the general initiation factors that RNA polymerase II employs to accurately 
initiate transcription, as well as chromatin proteins that control RNA polymerase II’s firing frequency, and elongation factors 
that facilitate the enzyme’s departure from the promoter and which control sequential steps and obstacles that must be navigated 
by elongating RNA polymerase II. There has also been a growing appreciation of the physical properties conferred upon many 
of these proteins by regions of each polypeptide that are of low primary sequence complexity and that are often intrinsically 
disordered. This peculiar feature of a surprisingly large number of proteins enables a disordered region of the protein to morph 
into a stable structure and creates an opportunity for pathway participants to dynamically partition into subcompartments of the 
nucleus. These subcompartments host designated portions of the chemical reactions that lead to mRNA synthesis. This article 
highlights a selection of recent findings that reveal some of the resolved workings of RNA polymerase II and its ensemble of 
supporting factors.
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Introduction
RNA polymerase II (Pol II) is an essential, multi-subunit,  
DNA-dependent, nucleotidyltransferase. In eukaryotes, Pol II is 
the one of three nuclear RNA polymerases. It is responsible for 
unspooling the genetic program in the form of protein-coding  
mRNAs and some small non-coding RNAs. Pol II’s activ-
ity is highly regulated at a number of steps, many of which 
impact the process of getting Pol II to transcription ini-
tiation sites. Pol II’s ability to disengage from the promoter  
and become committed to elongating nascent RNA is another 
complex regulated process, as is Pol II’s ability to complete that 
primary transcript. Finally, transcription termination, which 
involves Pol II choosing where to stop polymerization and 
releasing its RNA product, can be modulated. Understanding 
the regulation and intricacies of all three stages of the transcrip-
tion cycle—initiation, elongation, and termination—has been the 
focus of studies for decades, yet new aspects of these processes 
continue to be revealed. Several of the newest developments  
are described here.

Cryo-electron microscopy of RNA polymerase II 
assemblages: a close look at large objects
A major advance at the turn of the 21st century was the devel-
opment of atomic-level structural maps of the approximately 
0.5 megadalton Pol II enzyme by using x-ray crystallography1–3. 
Cryo-electron microscopy (cryo-EM) refined and expanded 
these initial structural models, as well as those of the compara-
bly large TFIIH and TFIID proteins, which are the most complex  
of the general initiation factors that Pol II uses to locate promoters  
and initiate transcription4,5. Even larger assemblies of Pol II 
in which it is bound to some of its general initiation factors 
have also been studied using cryo-EM6–16. More recently,  
cryo-EM has been exploited to study more elaborate transcrip-
tion complexes, including Pol II associated with its chromatin 
template, its RNA product, and some attendant proteins that  
guide it through the transcription cycle. Reports that provided 
mechanistic insight into these functionally important assemblies 
will be described in this section.

The RNA polymerase II–nucleosome confrontation
An age-old question in the transcription field has been: 
what happens when template-engaged Pol II encounters a  
nucleosome? Nucleosome-wrapped duplex DNA is an impedi-
ment to Pol II, particularly given the enzyme’s need to tran-
siently separate the DNA strands. Certain elongation factors, 
however, can facilitate nucleosomal readthrough. Kujirai et al. 
resolved seven intermediates of Pol II in the act of encounter-
ing, and progressively moving through, a nucleosome with the 
aid of elongation factor TFIIS17. This elongation factor activates 
a nascent transcript nuclease activity in Pol II that aids in its 
passage through obstacles to elongation18,19. Cryo-EM analy-
sis showed that Pol II stalls at the entrance to the nucleosome 
but that the nucleosome remains structurally unchanged. Fur-
ther translocation allows it to penetrate the DNA–histone inter-
action in a fashion that peels DNA off the histone octamer.  
Complete passage through the nucleosome was not monitored,  
but extrapolation from these structures suggests that Pol II 

could proceed into a form in which nucleosomal DNA is 
looped over polymerase or in which the nucleosome has 
lost a subset of histones; both are intermediates previously  
proposed to exist during Pol II transit20. The addition of the gen-
eral elongation factors Elf1 and Spt4/5 (also known as DRB 
sensitivity-inducing factor or DSIF) synergistically lowered 
the barrier of Pol II entry into the nucleosome by interpos-
ing themselves between the enzyme and the nucleosome21. Pol 
II advanced further as the nucleosome disk became tilted while 
the collection of bound elongation factors acted as a chisel to  
displace DNA from the nucleosome. This effectively averts 
Pol II from getting trapped between the DNA and histones. 
As more structures of Pol II–elongation factor complexes are 
solved, it is likely we will learn that different elongation factors  
and different combinations of factors help Pol II surmount  
the nucleosome obstacle by distinct mechanisms.

RNA Polymerase II and a dynamically changing set of 
elongation factors
Pol II assembles into a large pre-initiation complex where it 
engages a region of nucleosome-free DNA abetted by a collec-
tion of general initiation factors. RNA chain polymerization is 
accompanied by Pol II’s disengagement from this tight complex. 
This is quickly followed by Pol II’s association with elongation  
factors that stabilize the just-initiated Pol II, thereby hold-
ing it in a paused condition analogous to an idling automobile. 
The decision to abort elongation, versus complete the primary  
transcript, is a determinant of transcriptional output and a regu-
lated event. This process may be necessary for the nascent 
RNA capping machinery to engage Pol II while awaiting the  
maturation of the complex mediated by a specific set of 
kinases. Two factors key to generating the paused state are 
the multi-subunit proteins, negative elongation factor (NELF) 
and DSIF, whose biochemical activities as Pol II elongation  
modulators were identified many years ago22–24. Cryo-EM analy-
sis now reveals structural details of how these two proteins  
engage elongating Pol II25. Importantly, the positions of the 
docked elongation factors appear to be mutually exclusive with 
the initiation factors that recruit Pol II to DNA, delineating a 
structural variance that differentiates the pre-initiated and ini-
tiated states. Prior work showed that DSIF provides a DNA 
clamp and an RNA clamp that preserve the transcription bub-
ble and guide the RNA through its exit tunnel on Pol II26,27. 
The consequence of NELF addition is to render the complex  
elongation-incompetent, possibly because the complex gains an 
anomalous positioning of the DNA:RNA hybrid substrate that 
is unsuitable for templating or allowing access and retention 
of nucleoside triphosphate substrates in the active site25. These  
proteins may also occlude the binding of other positively acting 
elongation factors. Recent findings enabled by a NELF-deple-
tion technique in cultured human cells indicated that NELF’s 
restriction of RNA extension by Pol II is not the only yoke put 
on polymerase but that an additional unidentified constraint is 
apparent before the fully elongation-competent enzyme is liber-
ated28. Since NELF-associated pol II is an intermediate to produc-
tive elongation, the absence of NELF may also have precluded  
any necessary downstream positive events from taking place.
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The cryo-EM analysis of transcribing Pol II was extended by 
assembling elongation complexes in the presence of a variety  
of well-studied, biochemically characterized proteins involved 
in elongation29. These include positive elongation factor b  
(P-TEFb), a cyclin-kinase22 that phosphorylates and releases 
NELF from the complex30,31, and the RNA polymerase-associated  
factor (Paf1) complex32,33, whose mode of action in stimulating 
elongation is complicated and unresolved. Also, the association 
of Spt6, one of a number of Spt transcription factors that were 
revealed in a landmark productive and penetrating genetic sup-
pressor screen (recall that DISF is composed of Spt4 and Spt5),  
was studied34. An activated elongation complex containing DSIF, 
PAF, and Spt6 was assembled with P-TEFb and ATP29. The  
action of the P-TEFb kinase facilitates the replacement of pause-
stabilizing NELF with the PAF complex, thereby removing 
NELF’s ability to misposition the nascent RNA:DNA hybrid and 
limit substrate NTP accessibility, as described above. Stimula-
tion by PAF and Spt6 could be due to these proteins’ coating of 
the surface of Pol II and an allosteric conformational change that  
may facilitate elongation by assisting template annealing behind 
the enzyme. Spt6 engages with the activated elongation complex 
near the RNA exit site following P-TEFb’s specific phosphor-
ylation of Pol II. PAF and Spt6 appear to remodel the extent of  
DSIF’s clamping of DNA and RNA at their respective exit chan-
nels. This kinase is profligate indeed, as it can phosphorylate 
all the components described in these Pol II–“plus” structures: 
DSIF, NELF, PAF, Spt6, and polymerase itself. This places 
the kinase at the hub of coordinating the elongation complex’s  
gain and loss of proteins at an important regulated step of tran-
scription possessed by many genes, namely, promoter escape. 
A recent cryo-EM study of the activated complex with trapped 
Rtf1, an otherwise dissociable subunit of the PAF complex, sug-
gested that Rtf1 provokes an additional conformational change 
that may enhance Pol II translocation, thereby facilitating  
elongation35.

Bursting: intermittent RNA polymerase II firing from 
promoters
Over the years, most investigations studying Pol II have exam-
ined readouts from populations of polymerase molecules and 
cells. The advent of high-resolution microscopy and biophysical 
techniques has allowed the behavior of individual molecules 
or templates to be observed. These advances have been par-
ticularly valuable for populations of nucleic acid polymerases  
because individual molecules can asynchronously occupy  
distinct phases of their polymerization cycle. In fact, some  
molecules may be altogether inactive at any point in time. Thus, 
a surprising heterogeneity in performance can be observed in 
otherwise identical molecules; that is, the various polymerases 
or templates in a population can carry out different functions  
and unless each can be resolved, a population average is  
obtained. One such heterogeneity is transcriptional burst-
ing. This is seen when a single promoter releases a volley of 
polymerase initiations which alternates with relatively quiescent 
intervals36,37. The rate of firing during a burst, or the length of  
the interval between bursts, is variable and subject to regulation.

The development of single-molecule techniques has led to 
advances in understanding the molecular basis for bursting and 
its regulation. Recently, Bartman et al. used both single-cell 
and ensemble methods to show that biological stimuli acceler-
ate Pol II pause release and bursting and, somewhat counter-
intuitively, not Pol II recruitment rates38. In other words, Pol II  
is driven to a promoter during bursting in contrast to the idea  
that bursting results from pre-loaded polymerases.

Using computational modeling and single-cell RNA sequenc-
ing, investigators were able to dissect burst size and  
frequency underlying genome-wide transcription39. This analysis  
suggested that enhancers control burst frequency, consist-
ent with early models that enhancers increase the probability 
of Pol II firing40,41. Promoters appeared to govern burst size, and 
TATA-containing sequences directed larger bursts than promot-
ers lacking the TATA consensus, again as suggested some years 
ago42,43. These findings imply that genotypic and cell type differ-
ences can yield alternative burst sizes, and hence gene output, 
as a function of the selection of proteins that engage a locus as a  
consequence of its DNA sequence.

Bursting has also been explored by using sophisticated com-
putational and optical nanoscopy techniques aided by  
target-locking and background suppression methods44. This 
approach enabled the study of transcription of single genes in 
individual living cells with the ability to follow Pol II and its 
transcription factors in compartments of extremely small vol-
umes. For the Nanog gene, bursting was accompanied by  
clustering of Pol II with the Sox2 and Brd4 proteins at the locus 
in a manner consistent with looping of the enhancer and pro-
moter thereby forming a bridge between enhancer-bound pro-
teins in contact with promoter-bound Pol II. The size of the Brd4 
cluster correlated with burst frequency similar to the relationship 
described above for enhancer-powered bursting. Further develop-
ment of this technology promises the possibility of watching in 
real time a single Pol II molecule, and its support factors, advance  
through the entire transcription cycle.

Condensates: compartmentalization of the 
transcription machinery
An active area of research has been the examination of how 
subcellular compartments form from self-assembling pro-
teins that contain low-complexity domains (LCDs) (that is, 
stretches of amino acid sequence of biased composition)45. A  
well-studied paradigm is the case of cytoplasmic stress gran-
ules, a non-membrane-delimited compartment that is a site of 
RNA sequestration and metabolism. The LCDs of RNA-binding 
proteins support liquid–liquid phase separation and contribute  
to the assembly of these compartments.

This concept has been extended to the machinery that acti-
vates and carries out transcription, including Pol II and the 
Mediator complex, as well as proteins that co-transcriptionally  
modify and terminate the primary transcript (reviewed in 46–48).  
A model has emerged in which the low-complexity heptapeptide 
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repeat domain of Pol II found on the C-terminus of its larg-
est subunit, enables the enzyme to enter and exit condensates  
as a function of its phosphorylation state. The condensates  
represent a chromatin-associated, changing set of transcript-
modifying and -processing enzymes that handle the nascent 
RNA and often possess their own LCDs. This improved descrip-
tion of foci in which the steps of mRNA biogenesis take  
place in a concerted manner has been aided by technical 
advances, including live cell imaging, and refines earlier ideas of  
transcription “factories” (reviewed in 49).

Two notable extensions of the concept were reported in the 
last year in findings that emphasized how condensate forma-
tion operates across the transcription cycle. Gallego et al.50 
showed that ubiquitination of histone H2B lysine 123, a modifi-
cation associated with active chromatin, is stimulated through 
biomolecular condensation mediated by the LCD of a specific  
ubiquitination complex-associated protein. Through the  
organizing principle of phase separation, the ubiquitination 
apparatus becomes co-localized with nucleosomal H2B in what 
the authors refer to as a “reaction chamber”50. This process  
operates broadly across the nucleosomes of the body of genes  
in a process that is poorly understood.

Meanwhile, Guo et al.51 provided evidence from mammalian 
cells that Pol II with a hypo-phosphorylated CTD joins Mediator  
condensates established through enhancer sequences. Once 
the CTD becomes phosphorylated, Pol II is dislodged from 
that condensate and elongating Pol II forms a condensate  
with splicing factors in a spatially separate locale. The overall  
importance of these condensation reactions requires further  
study. Future work will be needed to validate what seems to 
be a recurring theme of a handoff of Pol II between a chain 
of condensates. By linking condensates, various parts of the 
mRNA biogenesis pathway could be connected by what is  
effectively a substrate channeling mechanism.

RNA Polymerase II brakes into the termination zone
There has been continued progress in dissecting the  
polyadenylation-coupled termination process carried out by  
Pol II. A prevailing idea for how Pol II terminates transcription 
at the end of protein-encoding genes is the so-called “torpedo”  
model52,53. In this durable, three-decade-old proposal, the  
precursor transcript is endonucleolytically cut just after Pol 
II transcribes the polyadenylation signal into nascent RNA54. 
The 3′ terminus of the upstream piece is polyadenylated and 
becomes the mature mRNA. Importantly, Pol II continues 
extending the downstream fragment until an exoribonuclease 
engages the still-emerging transcript and begins hydrolyzing it 
in the 5′-to-3′ direction while advancing toward Pol II, effec-
tively using the RNA as a “trail of breadcrumbs” to home in on 
and chase down the still-translocating polymerase. The nuclease 
acts as a torpedo by contacting, and ultimately displacing, Pol II  
from the template, thereby terminating transcription. A key 
feature of the model is the kinetic competition in which the  
digesting nuclease “catches” elongating polymerase.

We now learn55 that phospho-Spt5, which piggybacks on Pol II 
starting at DSIF’s engagement with the paused polymerase56, is 
de-phosphorylated just after Pol II transcribes the polyadenyla-
tion site55,57,58. This switches Pol II, which accelerated out of 
the promoter region because of Spt5’s  phosphorylation56,59,60,  
into a slower elongating form which facilitates the nuclease’s 
ability to overtake Pol II and trigger termination55. The exact 
mechanism by which de-phosphorylation of Spt5 slows Pol II 
remains to be elucidated. An interesting related finding is that the 
initial loading of Spt5 onto Pol II at the promoter was found to  
employ the c-Myc proto-oncoprotein60, which has been long 
studied as a DNA-binding transcription factor but is also known 
to play a general role in elongation61–64. c-Myc’s effect on nor-
mal and pathological changes in gene expression could be 
operating at least in part through a widespread boosting of the 
output of active genes through Spt5’s elongation-stimulating  
activity.

Elongation and termination by RNA polymerase II 
help set chromatin organization
Aided by powerful molecular techniques, we have learned 
much about the physical basis for the functional arrangement 
of chromatin during the last decade. Distant portions of the 
chromosome that contact each other segregate chromatin into  
functionally distinct topologically associating domains65–68. The  
resulting loops use specific proteins to section chromatin into 
transcriptionally active and inactive segments69. In 2018, Heinz 
et al. showed how transcription can remodel the boundaries of 
these looped domains70. By exploiting a viral protein that broadly 
disrupts host transcription termination, the authors found that 
readthrough by Pol II of the end of the transcription unit resets 
loop boundaries, seemingly plowing the proteins off chromatin  
and making active regions out of formerly inactive ones. In  
contrast, inhibition of elongation led to re-association of distant  
sequences and compaction, thereby switching a formerly active 
region to an inactive one. Thus, while chromatin is generally 
remodeled to become permissive for transcription, transcription  
can also remodel the three-dimensional organization of chromatin.

Summary and outlook
A half century after RNA Pol II was first extracted and purified 
from eukaryotic cells71, we are still learning about the enzyme, 
its auxiliary factors, and the environment in which it operates. 
A large international research effort armed with a sophisti-
cated toolbox of experimental methods has revealed many of the  
detailed mechanistic steps that Pol II employs to find, transcribe, 
and disengage from eukaryotic genes. Many of the participat-
ing protein and nucleic acid components have been identified, 
and important regulatory post-translational modifications have 
been characterized. Biophysical techniques enabling the study of 
single Pol II molecules, and cryo-EM which has provided rela-
tively high-resolution structures of very large complexes, have 
propelled this decade’s progress. These approaches and their 
future refinement should continue to be fruitful in placing tran-
scribing Pol II in its three-dimensional nuclear location and in  
characterizing the dynamics of what proteins and nucleic acids 
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enter and exit the transcription domain and how the act of tran-
scription remodels the chromatin/nuclear environment. A goal 
will be to describe the numerous dynamic steps of the transcrip-
tion cycle, including the co-transcriptional events that engage the 
elongation complex, with the objective of filling out our picture  
of this fundamental pathway in its cellular context.
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