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Abstract

The absolute abundance of bacterial taxa in human host-associated environments plays a critical 

role in reproductive and gastrointestinal health. However, obtaining the absolute abundance of 

many bacterial species is typically prohibitively expensive. In contrast, relative abundance data for 

many species are comparatively cheap and easy to collect (e.g., with universal primers for the 16S 

rRNA gene). In this paper, we propose a method to jointly model relative abundance data for many 

taxa and absolute abundance data for a subset of taxa. Our method provides point and interval 

estimates for the absolute abundance of all taxa. Crucially, our proposal accounts for differences 

in the efficiency of taxon detection in the relative and absolute abundance data. We show 

that modeling taxon-specific efficiencies substantially reduces the estimation error for absolute 

abundance, and controls the coverage of interval estimators. We demonstrate the performance 

of our proposed method via a simulation study, a study of the effect of HIV acquisition on 

microbial abundances, and a sensitivity study where we jackknife the taxa with observed absolute 

abundances.
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1 | INTRODUCTION

The microorganisms that inhabit a host-associated environment can have a substantial 

impact on host health (The Human Microbiome Project Consortium, 2012; Libertucci and 

Young, 2018; Lloyd-Price et al., 2019). Each microbial taxon present in an environment 
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has a bacterial concentration reflecting the absolute abundance of the taxon per unit volume 

and the bacterial load on the host. Measuring the concentration of every microbial taxon 

is resource-intensive: assays must be designed for each taxon and it may not be known 

a priori which taxa are present in an environment. It is therefore common to use assays 

that can detect many taxa; for example, assays based on a hypervariable region of the 

16S rRNA gene or shotgun sequencing of entire microbial communities. While relatively 

straightforward and inexpensive to perform, these broad range assays do not estimate 

bacterial concentration. However, concentration is a key quantity of interest in many 

microbiome studies (Zemanick et al., 2010; Stämmler et al., 2016; Vandeputte et al., 2017; 

Contijoch et al., 2019).

While finding the concentration of every microbe in a highly diverse community is 

challenging, finding the concentration of a small number of microbes may be tractable. 

For example, bacterium-specific 16S quantitative PCR (qPCR) assays can be developed on a 

taxon-by-taxon case (see, e.g., Fredricks et al., 2007; Ryu et al., 2013). When such data are 

available, the concentration of a small number of microbes could theoretically be combined 

with relative abundance data to estimate the concentration of all microbial taxa. A method 

resulting in accurate estimates of all microbial concentrations based on relative abundance 

data and a small number of microbial concentrations would greatly reduce the labor- and 

time-intensity of finding the concentration of all microbes in a community. In this paper, we 

propose and validate a statistical model for this task.

Our approach is to build a hierarchical model that connects the relative abundance data to 

the absolute abundance data. The observed concentrations of each taxon in each sample 

are modeled as Poisson-distributed random variables, with taxon- and subject-specific mean 

parameters that we link to the relative abundances. We observed that 16S sequencing and 

qPCR assays detected taxa with different efficiencies, and so we incorporate taxon-specific 

efficiency parameters into our models.

Our paper is structured as follows: the model is defined in Section 2 and estimation is 

discussed in Section 3. The proposed method is validated on simulated data in Section 

4. In Section 5, the proposed estimators are used to model bacterial concentrations in the 

vaginal microbiome in a HIV acquisition study. We provide concluding remarks in Section 

6. Software implementing our model and estimators is available in the R package paramedic 

(Predicting Absolute and Relative Abundance by Modeling Efficiency to Derive Intervals 

and Concentrations), available at github.com/statdivlab/paramedic.

2 | A MODEL LINKING ABSOLUTE AND RELATIVE ABUNDANCES

Suppose that we have samples from n microbial communities. Let the concentration 

(absolute abundance in, e.g., gene copies per unit volume or colony-forming units per unit 

volume) of taxon j in community i be denoted by μij, for i = 1, …, n and j = 1, …, q. We 

denote by μ ∈ ℝ ≥ 0
n × q the matrix of all taxon abundances in all samples. Not all taxa must be 

present in all communities, and so μ may be a sparse matrix.
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It is not possible to directly observe μ for any taxon because of stochasticity in measuring 

concentrations (Bonk et al., 2018). However, we are able to obtain realizations from a 

distribution with expectation μij. Unfortunately, performing a laboratory experiment to 

sample taxon concentrations from this distribution for all j is not typically possible or is 

prohibitively expensive. We therefore obtain observed concentrations

V ij ∣ μij~Poisson μij (1)

for all i but only j = 1, …, qobs, where qobs < q. It is important to distinguish between the 

true concentration μij and the observed concentration Vij. Even if μ > 0, we may observe 

a zero concentration in any given sample. Stated differently, a zero observed concentration 

does not imply that the taxon has zero abundance in the community from which the sample 

was drawn. Note that if covariate data are available, it is straightforward to model μij as a 

function of these covariates. We illustrate this with an example in Section 5.

While we are not able to observe concentration data for taxa j = qobs + 1, …, q, we are 

able to collect relative abundance data for all taxa j = 1, …, q. Let Wij be the number of 

sequencing reads (counts) observed from taxon j in sample i, and Mi = Σj Wij be the total 

reads observed from sample i. A natural model to connect Wi· ≔ (Wi1, …, Wiq) to μi· ≔ (μi1, 

…, μiq) is

W i . ∣ Mi, μi . ~Multinomial Mi,
μi .

∑j = 1
q μij

. (2)

A first-order delta method approximation gives us that under models (1) and (2),

E
W ij

∑k = 1
qobs

W ik
≈

μij

∑k = 1
qobs

μik
≈ E

V ij

∑k = 1
qobs

V ik
.

If this approximation holds, we would expect that a scatterplot of V ij/∑k = 1
qobs

V ik versus 

W ij/∑k = 1
qobs

W ik for i = 1, …, n and j = 1, … qobs would show random scatter around the x = 

y line for each taxon. We show this scatterplot in Figure 1 using data described in Section 5 

and do not observe the expected pattern. Instead, we see that W ij/∑k = 1
qobs

W ik is proportional 

to V ij/∑k = 1
qobs

V ik, but each taxon has a different slope. This suggests that the model (2) is 

misspecified in expectation, motivating our proposed model

W i . ∣ Mi, μi . , e~Multinomial Mi,
e ∘ μi .

∑j = 1
q ejμij

, (3)

where ◦ denotes the Hadamard product (pointwise multiplication), e ≔ (e1, …, eq), and 

ej is the efficiency of taxon j for being observed by the relative abundance technology 

compared to the absolute abundance technology. Our efficiency vector e plays the role of the 
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“total protocol bias” parameter of McLaren et al. (2019). We now discuss estimation of the 

parameters of this model, including the identifiability of the efficiencies e.

3 | ESTIMATING MODEL PARAMETERS

Our primary goal is to construct point and interval estimators for the μij for all i and 

j. A secondary goal is to construct prediction interval estimators for the unobserved 

concentrations Vij for all i and j = qobs + 1, …, q. In this section, we propose three 

estimation procedures based on the model described in Section 2.

3.1 | A simple, efficiency-naïve estimator

A simple estimator of μij, the concentration of taxon j in sample i, is μij = siW ij, where 

si is a sample-specific scaling factor and we have used the fact that E[Wij] ∝ μij. In 

addition, if ej for j > qobs is not estimable, assuming that ej = ek for all taxa j, k may 

be necessary. An estimate of the scaling factor could then be obtained by considering the 

implied scaling factor based on aggregating all observed taxa: s i = ∑j = 1
qobs

V ij/∑j = 1
qobs

W ij, 

yielding the estimator

μij
naïve : = s iW ij . (4)

While we did not find a reference to estimator (4) in the literature, it is connected to the 

proposal of Jian et al. (2020) (see also Liu et al., 2017; Vandeputte et al., 2017; Gibson 

and Gerber, 2018; Kevorkian et al., 2018; Contijoch et al., 2019; Morton et al., 2019). Jian 

et al. (2020) consider the problem where the total concentration of all bacteria, ∑j = 1
q V ij, 

is observed for all i, and Wij is also observed for all i and j. They wish to estimate μij for 

all i and j. Their proposed estimator is μij = ∑j = 1
q V ij × W ij/Mi. Tettamanti Boshier et al. 

(2020) recently validated this proposal using taxon-specific qPCR primers and found it to be 

“predictive of absolute concentration with certain key exceptions,” such as certain taxa and 

low biomass (low total bacterial concentration: ∑j = 1
q μij) samples. Bonk et al. (2018) give 

an excellent overview of sources of discrepancies between qPCR and 16S sequencing data.

Previous authors have not proposed methods for quantifying the uncertainty of these 

naïve estimators. However, interval estimators for μij and prediction interval estimators 

for V ij j = qobs + 1
q

 may be constructed by using (1) and (2), the maximum likelihood 

estimators of the model parameters for j ∈ {1, …, qobs}, and the delta method. 

We provide a derivation of Var logμij
naïve   in the Supporting Information (Section 

SI 1.1). A 100(1 − α)% confidence interval for μij may then be constructed as 

exp logμij
naïve  ± q1 − α/2 Var logμij

naïve  , where qγ is the γ-quantile of the standard normal 

distribution. We can additionally form a 100(1 − α)% prediction interval for V ij j = qobs + 1
q

as exp logμij
naïve  ± q1 − α/2 1/μij

naïve  + Var logμij
naïve  .
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We refer to estimator (4) as the naïve estimator because its simplicity must be traded off 

with its potential drawbacks. First, if the efficiencies are truly unequal, then assuming equal 

efficiencies will lead to biased estimates of μij. It will also lead to invalid interval estimates, 

because the above intervals were constructed under the assumption of equal efficiencies. 

Furthermore, these intervals can only be constructed if μij
naïve  > 0, or equivalently, Wij > 0. 

However, 16S data are typically very sparse, with Wij = 0 for many i and j, and so the naïve 

interval estimates cannot be constructed for a large fraction of taxa and samples (in our data 

set analyzed in Section 5, Wij = 0 for 77% of the observations). These drawbacks led us to 

consider more sophisticated estimators, which we now describe.

3.2 | A fully Bayesian estimator with variable efficiency

3.2.1 | Point estimation—Bayesian hierarchical modeling is one possible strategy for 

modeling V and W to estimate μij and predict Vij for all i and j. A hierarchical modeling 

procedure has several desirable statistical properties here: (i) the joint data model can be 

customized easily (e.g., to include covariates or to alter the prior distributions); (ii) sampling 

from the posterior distributions can be performed using freely-available and fast general-

purpose software; and (iii) posterior estimates and prediction intervals obtained through this 

procedure are straightforward to interpret in the context of the generative model. Our goal 

is to construct valid point and interval estimators in the presence of potentially unequal 

efficiencies and when Wij = 0.

To reflect the differing efficiencies with which taxa are detected by 16S and qPCR data (see, 

e.g., Figure 1) we consider the following model:

V ij ∣ μij~Poisson μij  and W i . ∣ Mi, μi . ,
e~Multinomial Mi, pi ,  where 
pij = μijej

∑ℓ = 1
q μiℓeℓ

(5)

for all i and j. If covariate data are available, the model can be adapted to model μij as a 

function of these covariates (e.g., see Section 5). Furthermore, if the samples were obtained 

in multiple batches, the efficiencies can be modeled as batch-dependent. Examples of how to 

customize the model are available in the paramedic package documentation.

In the absence of covariate or batch information, we propose the following prior 

distributions of the parameters μij and ej. Since there is often substantial right skew 

in the observed Vij (see Section 5), and to ensure positivity of the concentration μij, 

we propose a hierarchical lognormal prior on the μi· with hyperparameters β and Σ (a 

diagonal matrix): log μi· ~ Nq(β, Σ), where β~Nq 0, σβ
2  and Σjj~Lognormal 0, σΣ

2 . We model 

ej~Lognormal 0, σe2 , where σe2~InverseGamma ασ, κσ . This soft-centering approach makes the 

parameters ej and μi· identifiable. We note that samples from the posterior distribution 

of ej need not satisfy the property that ∑j = 1
qobs

logej = 0 nor that ∑j = 1
q logej = 0 exactly, 

though we find that both summations are close to zero in practice. We also investigated 

a hard-centering approach using the model ej~Lognormal 0, σe2 , σe2~InverseGamma ασ, κσ , 
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and ej = ej/exp 1
qobs  ∑j′ = 1

qobs
logej′ . However, we found little difference between the point 

and interval estimates obtained from the hard- and soft-centering approaches, and similarly 

for hard-centering over all taxa ej = ej/exp 1
q ∑j′ = 1

q logej′ . Throughout this manuscript 

we show results for the soft-centering approach. An empirical comparison with the hard-

centering approach can be found in the Supporting Information (Section SI 3.1).

We discuss our default choices of σβ
2, σΣ

2 , ασ, and κσ in Section 4. In practice, these 

hyperparameters may be based on independently observed data, numerical experiments, 

expert opinion, or a combination of these three. See the Supporting Information (Section SI 

3.3) for an investigation of the sensitivity of results to the chosen hyperparameters.

We fit hierarchical model (5) using Stan (Carpenter et al., 2017). Stan is an imperative 

probabilistic programming language that uses assignment and sampling statements to 

specify a log-density function. Fully Bayesian inference is available using Hamiltonian 

Monte Carlo sampling; point estimates may additionally be computed using optimization. 

Since our parameter space (μ, β, Σ11, …, Σqq, σe2) is continuous and the model described 

above may need to be customized based on the data-generating mechanism, Stan is ideal 

for fitting our model. After fitting the model, we obtain samples from the joint posterior 

distribution.

3.2.2 | Interval construction—We now discuss obtaining interval estimates for μij and 

prediction interval estimates for Vij using the fitted model. Let 1 − α denote the desired level 

for intervals.

Credible intervals for μij are constructed via the (α/2, 1 − α/2)-quantiles of the posterior 

sampling distribution of μij based on our proposed hierarchical model.

Prediction intervals can be computed in two ways. We incorporate the hierarchical 

uncertainty of our proposed model into a Wald-type interval estimate based on V ij. Using 

the law of iterated variance conditional on the true μij and our model that Vij ~ Poisson(μij), 

we estimate the variance in the prediction V ij as Var V ij : = μij + Var μij , where Var μij  is 

the variance of the posterior sampling distribution of μij and μij is the posterior mean. Then 

our prediction intervals for Vij are max 0, V ij ± Φ−1 1 − α
2 Var V ij , where Φ−1(γ) is the 

γ-quantile of the standard normal distribution. We truncate the lower limit of the prediction 

interval at zero to reflect that bacterial concentrations are nonnegative. We also investigated 

a quantile-based approach for prediction interval construction, but found its performance to 

be extremely similar to the Wald-type prediction intervals. We outline the quantile-based 

approach in the Supporting Information (Section SI 1.2).

3.2.3 | An efficiency-naïve estimator—A simplified model may easily be obtained by 

assuming that all of the efficiencies are equal:
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V ij ∣ μij~Poisson μij  and W i . ∣ Mi, μi . ,
e~Multinomial Mi, pi ,  where 
pij = μij

∑ℓ = 1
q μiℓ

(6)

for all i and j. We use this model in simulated examples for simplicity in cases with equal 

efficiencies and to highlight the negative consequences of assuming equal efficiencies when 

efficiencies are truly unequal. We suggest that model (5) always be used.

3.2.4 | Advantages of the varying-efficiency model—Before comparing and 

validating each of these models and estimators on simulated and observed data, we briefly 

note some of the advantages of our proposed varying-efficiency model compared to existing 

and naïve approaches. First, we connect the relative abundance and absolute abundance 

via a statistical model. Second, by modeling the efficiencies explicitly, we account for the 

fact that the relative abundances are proportional to the absolute abundances but with a 

taxon-specific slope, as we observed in Figure 1. Our proposal naturally incorporates the 

additional uncertainty associated with the unknown efficiencies into our interval estimators. 

Our relative abundance parameters obey the constraint that ∑j = 1
q pij = 1 for all i. Finally, by 

adopting a Bayesian hierarchical modeling approach, we can obtain the posterior distribution 

of μij, j = qobs + 1, …, q. In other words, we are able to estimate the concentration of taxa 

for which we do not have absolute abundance data, and construct interval estimators for the 

concentration of those taxa even when the observed relative abundance is zero. The posterior 

distribution of the concentration of taxon j for j > qobs will be driven by Wij and Vij for j ≤ 

qobs, and the prior parameters σβ
2, σ∑

2 , ασ, and κσ. We note that the interval estimates for μij 

and Vij can be wide for j > qobs.

4 | RESULTS UNDER SIMULATION

We now present simulation results on the performance of the estimators proposed in Section 

3. In all cases, we use Stan to fit hierarchical models (5) and (6) using four chains per 

simulated data set, each with 10,000 burn-in iterations and 10,500 total iterations (2000 

total iterations for each of B = 50 simulations for each set of parameters to investigate). 

We describe our process for initializing these chains in the Supporting Information (Section 

SI 2). We ran our simulation study on a high-performance computing cluster of Linux 

nodes each with at least four cores and 16 GB of memory (each individual simulation 

replicate may have been allocated less memory at run-time). Each iteration ran for between 

approximately 0.4 and 3 s, with variation due to both memory allocation and data structures. 

It was not feasible to confirm convergence for every individual simulation via trace plots, 

and so we confirmed that the median and interquartile range (IQR) of the Gelman–Rubin R
statistic (Gelman and Rubin, 1992) was close to 1 for all parameters of interest.

We assess performance for each Monte Carlo replicate using root mean squared error 

(RMSE) for μij and empirical coverage of nominal 95% credible intervals for μij, both 

averaged over all n samples and q taxa; and root mean squared prediction error (RMSPE) 
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for Vij and empirical coverage of nominal 95% prediction intervals for Vij, both for j = qobs 

+ 1, …, q and averaged over both n and q. The exact specification of these performance 

measures is provided in the Supporting Information (Section SI 3). While our primary goal 

is estimation of the true concentration μ, we also investigate the performance of predicting 

V for the unobserved taxa, as this may be of interest in some settings (e.g., for assessing 

correct model specification; see Section 5.3 and Figure 6).

We report these four summaries for each estimator under consideration. In each case, we 

display the average of the summary measure over Monte Carlo replicates. In all simulations, 

we exclude taxa whose mean expected abundance μij, averaged over all samples, is below 1 

unit. In practice, taxa observed in low abundance across all samples are typically excluded 

from analysis (Callahan et al., 2016), and so this reflects the typical use case of the proposed 

method. However, in practice μij is unknown, and thus exclusion may be done based on Wij. 

We provide a discussion of filtering rules and the rationale behind the particular rule used 

here in the Supporting Information (Section SI 3.2). Finally, if the naïve estimate for a given 

sample and taxon is zero, then we do not include that sample-taxon pair when computing 

average coverage of naïve interval estimates.

Default parameters:

We strongly recommend that the user investigate the sensitivity of results to prior 

parameters. In addition, the values of prior parameters should be carefully chosen to match 

the measurement scale of the data set. In our data set of Section 5, the sample variances of 

the realized log-qPCR data are near 50. Based on this observation, we chose σβ
2 = 50 and 

σ∑
2 = 50 as default parameters for our simulation study. We additionally chose ασ = 2 and κσ 

= 1 since these choices led to fast convergence of our sampling algorithm in our simulated 

data sets. We provide an investigation of sensitivity to the prior parameters (σβ
2, σ∑

2 ) and (ασ, 

κσ) in the Supporting Information (Section SI 3.3).

Simulation settings:

Throughout this section, we simulate data according to Mi ~ DiscreteUniform(104, 105), 

reflecting the distribution of read depths that we observed in our data. We also simulate data 

according to logμi . ~
iid

Nq(β, Σ) for all subjects i = 1, …, n where βj ~
iid

N 0, σ2 = 50  for all 

j and Σ = Iq. In all cases, we simulate Vij ~ Poisson(μij) and Wi· ~ Multinomial (Mi, pi·), 

where pij =
μijej

∑j = 1
q μijej

. The specific choices for the distribution of ej and the values of q and 

qobs vary in each simulation. We used R version 3.4.3 in all analyses in this paper.

4.1 | Effect of varying the number of taxa

We first investigate the effect of varying q and qobs while holding other parameters fixed. We 

simulated data with no varying efficiency (ej = 1 for all j) and fit the efficiency-naïve model 

(6) for simplicity. We investigate the varying-efficiency model in Section 4.2.
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We observe V ij j = 1
qobs 

 and W ij j = 1
q  for i = 1, …, n, where n = 100. We vary q ∈ {10, 20, 

40, 60}; for each q, we additionally vary qobs ∈ {2, 3, …, 7}. For each unique combination 

of q and qobs, we generate data from this population by: (i) generating β and Σ; and (ii) 

generating independent Monte Carlo replicates of μij, Vij, Mi, and Wij.

qPCR data are typically available for only the taxa that are of most interest to the 

investigator or are expected to be most abundant. For this reason, in our simulations the 

qobs most abundant taxa based on the observed Wij, averaged over the n samples, are used to 

estimate μ for all taxa and predict the unobserved qPCR data, V ij j = qobs  + 1
q

. This means 

that in our simulations, as q increases we add increasingly rare taxa.

Figure 2 displays the results of this experiment. In the top row, we see that nominal 95% 

intervals for μ based on the naïve estimator have slightly greater average coverage than 

credible intervals based on the proposed efficiency-naïve Bayesian estimator. However, the 

average coverage of the efficiency-naïve credible intervals for μ is close to nominal for all 

(q, qobs) combinations. We note that for both estimators, average coverage for μ decreases as 

q increases for a fixed qobs. This is due to poor marginal coverage for the lowest abundance 

taxa (see Supporting Information, Section SI 3.4). We also see that average coverage of 

prediction intervals for V based on the proposed efficiency-naïve estimator is at the nominal 

level for all (q, qobs) combinations. This is encouraging, especially in view of the fact that 

we often have many more relative abundance measurements than species-specific qPCR 

measurements; indeed, the results we present in Section 5 are based on qobs = 13. In 

contrast, average coverage of prediction intervals based on the naïve estimator is below the 

nominal level for large q; this is due in large part to the fact that a naïve interval does 

not exist when the naïve estimator equals zero. The proportion of cases where the naïve 

estimator is zero, and thus excluded from computing performance, is 0.17%, 1.5%, 26%, 

and 50% of sample-taxon pairs for q = 10, 20, 40, and 60, respectively. In addition, since 

we compute intervals based on the naïve estimator on the log scale, the lower limit of the 

backtransformed interval is almost surely greater than zero, if the interval exists. This leads 

to undercoverage of cases where the true qPCR value is exactly zero, which is increasingly 

the case as q increases. In the bottom row of Figure 2, we see that the efficiency-naïve 

estimator has lower RMSE than the naïve estimator over all (q, qobs) combinations, while 

the RMSPE of the two estimators is comparable. As qobs increases for a fixed q, both 

RMSE and RMSPE tend to decrease. We provide evidence in Section SI 3.5 that the 

efficiency-naïve estimator has low bias, and thus the RMSE of this estimator appears to be 

driven by its variance.

After averaging over Monte Carlo replicates, the median Gelman–Rubin R for μ over all 

samples and taxa for q = 60 and qobs = 7 was 0.99, with an IQR of [0.99, 1.00], showing 

excellent convergence; convergence was similar in other pairings of q and qobs and for β 
and Σ for each pairing. We investigated the trace plots for a small number of Monte Carlo 

samples, which showed well-mixed chains after the burn-in period.

In many experiments, q may be much larger than 60. For example, in our data analysis 

of Section 5, q = 127. We anticipate that the trends observed in this simulated experiment 
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would hold for larger q, but did not investigate them here because the time required to 

compute our estimator increases with q.

4.2 | Varying the distribution of efficiency

In this experiment, we fix q = 40 and qobs = 7. We vary σe ∈ {0, 0.1, …, 0.5, 0.6, 0.8, 

1}. For each σe, we generate data from this population in the same manner as the previous 

experiment, resulting in 50 independent Monte Carlo replicates. We use Stan to fit our 

proposed variable-efficiency model (5) and our efficiency-naïve model (6). As we have 

described before, the naïve estimator does not account for varying efficiency.

Figure 3 displays the results of this experiment. In the top row, we see that as σe increases, 

the prediction interval average coverage and credible interval average coverage decline to 

levels below 95% for the naïve and efficiency-naïve Bayesian models but are maintained 

close to or above 95% for the proposed varying-efficiency Bayesian model. This coincides 

with our expectation that varying efficiency must be modeled if it is truly present. In the 

bottom row, we see that as σe increases, the RMSE and RMSPE of all three estimators 

increases. The varying-efficiency Bayesian estimator tends to have the lowest RMSE. While 

the RMSPE of the varying-efficiency estimator is highest at small values of σe, at moderate 

and high levels of varying efficiency (σe > 0.5) the RMSPE of this estimator is comparable 

to or below that of the efficiency-naïve Bayesian and naïve estimators. Since we observed 

nearly identical patterns for the same experiment with qobs = 3, we do not show those results 

here. In the data we analyze in Section 5, we estimate σe = 1.74. This suggests that interval 

estimates based on the proposed varying-efficiency Bayesian estimator will be more reliable 

with respect to interval coverage on this data set.

After averaging over Monte Carlo replicates, the median Gelman–Rubin R for μ over all 

samples and taxa for σe = 0.5 was 1.00 (IQR [0.99, 1.00]) when varying efficiency was 

modeled and 0.99 (IQR [0.99, 1.00]) when efficiency was not modeled. As we varied σe, 

the median R for all model parameters tended to be near one, with a maximum of 1.2 for β 
when σe = 0 and varying efficiency was not modeled. Inspection of trace plots for a small 

number of samples showed well-mixed chains after the burn-in period.

In the Supporting Information (Section SI 3.3), we investigate the effect of the efficiency 

hyperparameters ασ and κσ on coverage and interval width for V, μ, and e. In brief, we 

found that overconcentrating priors on efficiency reduces interval width at the expense of 

coverage.

4.3 | Additional empirical results

We also investigated the performance of our proposed procedure under model 

misspecification in the Supporting Information (Section SI 3.6). The coverage of our 

method is relatively robust to misspecifying the distribution of e, somewhat robust to mild 

misspecification of the distribution of μ, but not robust to significant departures from the 

distribution of μ.
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5 | RESULTS FROM A STUDY OF THE VAGINAL MICROBIOME

5.1 | Description of the study sample

These data are from a case-control study of 110 study participants from eastern and southern 

Africa, described in McClelland et al. (2018). Cases are defined as women who acquired 

HIV during the study, while controls are defined as women without HIV infection.

The data contain observed concentrations from qPCR (measured in 16S gene copies per 

swab) on qobs = 13 taxa: Aerococcus christensenii, Atopobium vaginae, BVAB2 spp., 

Dialister micraerophilus, Eggerthella spp. type 1, Gardnerella vaginalis, Lactobacillus 
crispatus, Lactobacillus iners, Lactobacillus jensenii, Mycoplasma hominis, Porphyromonas 
spp. type 1, Porphyromonas bennonis, and Parvimonas micra. The 16S sample processing 

protocols are described in McClelland et al. (2018), and q = 127 after 5% prevalence 

filtering (Callahan et al., 2016). To reflect limits on computation time and computing 

memory (see Section SI 4 for details and Section 6 for a discussion), we uniformly-at-

random selected n = 55 samples to analyze using our proposed method. The goals of this 

analysis were to: (i) estimate the true concentrations μ for all 127 taxa and each of the 55 

samples; (ii) predict the bacterial concentrations for taxa j > qobs in each sample, and (iii) 

estimate the expected change in the log concentration of each taxon for samples from HIV 

cases compared to control cases.

We fit the model log μi· ~ Nq(β0 + β1Xi, Σ), for i = 1, …, n, where β0 ∈ ℝq, β1 ∈ ℝq, 

and Xi = 1 if subject i is HIV-positive and Xi = 0 otherwise. We chose prior distributions 

β0~Nq 0q, σβ0
2 Iq , and β1~Nq 0q, σβ1

2 Iq , where 0q is a q-dimensional column vector containing 

all zeros and Iq is the q × q identity matrix. We use the prior distribution for Σ described 

in Section 3.2.1. The ease of fitting this covariate-adjusted model highlights an advantage 

of using Stan to estimate the model parameters. We fit our model using four chains, each 

with 18,000 burn-in iterations and 20,000 total iterations. We selected hyperparameters 

σβ0 = 1.62, σβ1 = 1, and σΣ = 50 based on the observed data; we additionally selected ασ 

= 4 and κσ = 3. A sensitivity analysis to the chosen hyperparameters can be found in the 

Supporting Information (Section SI 5). In addition to fitting this covariate-adjusted model, 

we also fit the unadjusted model from Section 3.2.1 and found that the estimated μij’s 

are extremely similar across the two methods, with a mean difference of 5.8%. However, 

the widths of the interval estimates for μij from the unadjusted model are on average 

approximately 6.4% wider than those from the covariate-adjusted model. Details on this 

analysis are given in the Supporting Information (Section SI 5). We ran our data analyses on 

a high-performance computing cluster of Linux nodes each with at least six cores and 60 GB 

of memory, and each iteration took approximately 1.3 min to complete.

5.2 | Results of the primary analysis

Figure 4 displays the results of our primary analysis. Panel A (left) shows the posterior 

means of the log concentrations for 20 taxa (the 13 taxa with observed qPCR data plus 

seven randomly-sampled taxa) and all 55 samples. Red denotes large normalized log 

concentration, while blue denotes small normalized log concentration. This figure appears in 
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color in the electronic version of this paper, and any mention of color refers to that version. 

We observe substantial variability in concentrations both between samples and between taxa. 

For example, while L. iners appears to be a high-abundance taxon on average, some samples 

(e.g., samples 2 and 4) have much smaller concentration. This pattern appears more striking 

in the taxa lacking qPCR measurements: for example, some samples have a large estimated 

abundance of Porphyromonas spp. (e.g., samples 3 and 36), while many others have a low 

estimated abundance of this same taxon. Interval estimates for μij and prediction intervals 

for Vij are available as Supplementary Data. Panel B (Figure 4, right) plots V ij/∑k = 1
qobs

V ik

against μij/∑k = 1
qobs

μij. We see that the model produces reasonable estimates of μ on the taxa 

for which we have qPCR data. We estimate that σe = 1.74, with a 95% credible interval of 

(1.00, 2.87). We estimate that the efficiencies of the taxa with observed qPCR data range 

between 0.16 and 39.86. These results together imply that there is substantial variation in 

taxon efficiencies, and that modeling this variation is important.

Finally, Figure 5 shows point estimates and 95% credible intervals for β1 for the 10 taxa 

such that β1, j  is largest. For example, we find that the expected concentration of G. 

vaginalis for a HIV-positive subject from this cohort is between 1.02 and 28.6 times higher 

than the expected concentration of G. vaginalis for a HIV-negative subject from this cohort 

(95% credible interval). This result is consistent with the findings of Gosmann et al. (2017).

In the Supporting Information (Section SI 5), we also present results of a test-set analysis 

using the estimated parameters of both the efficiency-naïve and varying-efficiency Bayesian 

models based on the 55 women with-held from the primary analysis. We find that test-set 

prediction interval coverage varies across taxa, with mean coverage of approximately 73%.

5.3 | Leave-one-out analysis to predict observed qPCR

We performed a jackknife analysis to validate our proposed method on these data. In this 

analysis, we first restricted the data set to only those taxa with observed concentrations, 

leaving us with 13 taxa with both concentration and relative abundance data. Then we 

removed each taxon k ∈ {1, 2, …, 13} in turn from the observed qPCR matrix, computed 

the three estimators of μik (naïve; efficiency-naïve; and varying-efficiency) and predictions 

for Vik, as well as prediction intervals for Vik. We then calculated mean squared prediction 

error and average coverage of prediction intervals (averaging over i = 1, …, 55), comparing 

the estimates of concentration to the observed qPCR concentration.

Figure 6 displays the prediction interval coverage and MSPE for the left-out taxon. 

Prediction interval coverage of the proposed varying-efficiency estimator is at or higher than 

nominal for 12 of 13 left-out taxa. Furthermore, for 11 of 13 left-out taxa, the RMSPE is 

comparable across the three estimators. When either L. crispatus or L. iners is left out, both 

hierarchical models have higher RMSPE than the naïve method, even though the coverage of 

the variable-efficiency method is controlled when these taxa are omitted. In contrast, neither 

efficiency-naïve approach controls coverage when these taxa are omitted. L. crispatus or 

L.iners have the highest conditional mean relative abundance in the subcomposition of 

taxa for which qPCR data are available (these taxa correspond to the two j that maximize 
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∑i = 1
n W ijI W ij > 0 /Mi

∑i = 1
n I W ij > 0

 among taxa j = 1, …, qobs), suggesting that having qPCR data 

for taxa that, when present, are present in high abundance may particularly improve the 

accuracy of Vij predictions.

We conclude by investigating the robustness of the estimators of efficiency to the inclusion 

of additional qPCR data. In Figure 7, we contrast the distribution of the estimated 

efficiencies in an analysis with all 13 taxa (the full-data analysis) against an analysis with 

a taxon left out. In the left-hand panel, we leave out G. vaginalis; in the right-hand panel, 

we leave out BVAB2 spp. We see in the left-hand panel that the distributions of efficiency 

for all taxa are nearly identical between the leave-one-out analysis and the full-data analysis, 

except that the distribution of G. vaginalis regresses to the mean and increases in variance 

when that taxon is left out. This indicates that G. vaginalis is a low-efficiency taxon. Note 

that the median estimated efficiency is close to the prior mean value in the leave-one-out 

analysis. We see the same pattern of regression to the mean and increase in uncertainty when 

BVAB2 spp is left out. The inclusion of BVAB2 spp., which is a high-efficiency taxon, alters 

the estimated efficiencies of the remaining taxa, resulting in increased estimated variance in 

many cases. These results indicate that the algorithm learns differently based on which taxa 

are observed: if a taxon with an extreme efficiency (e.g., in these data BVAB2spp. has a 

very high efficiency) is observed in both the absolute and relative abundance data, then the 

algorithm detects this larger variance in the efficiencies. This reinforces that even a model 

designed to account for the distribution of varying efficiencies cannot accurately predict the 

efficiency of an individual taxon when only relative abundance data are available. Note that 

these findings corroborate existing literature: Tettamanti Boshier et al. (2020) found that 

BVAB2 spp. is a high-efficiency taxon, and McLaren et al. (2019) found that G. vaginalis is 

a low-efficiency taxon.

6 | DISCUSSION

In this paper, we developed a statistical procedure for jointly modeling absolute and 

relative abundance data, with a specific application to qPCR and 16S data collected on 

microbial communities. We proposed a hierarchical model with the following appealing 

characteristics: (i) point and interval estimators for the true and realized absolute abundances 

can be constructed for all taxa and all samples; (ii) average coverage of credible and 

prediction intervals is controlled at or above the nominal level; (iii) the efficiency of taxon 

detection of the different technologies is explicitly modeled and allowed to vary; and (iv) 

the method is implemented as an open-source R package. To our knowledge, our proposed 

hierarchical model is the first statistical model for this microbial multiview data structure.

We found strong evidence for differing efficiency of taxon detection between qPCR and 16S 

technologies. Given that the collection of qPCR data involves calibration (via a “standard 

curve”) and 16S relative abundance data does not usually involve any calibration, we 

modeled the efficiency of the 16S data compared to the qPCR data, rather than the opposite 

approach. This is consistent with recent literature (McLaren et al., 2019). Our method can 

also be used with other technologies for obtaining absolute and relative abundance data. 
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For example, data from plate counting or flow cytometry could replace qPCR data, and a 

different taxonomically informative marker could replace 16S sequencing. Regardless of the 

technologies used, the default parameters in our software should be adjusted to reflect the 

units and scale of the data under study.

Empirically, we found that modeling the efficiency of the different technologies is critical 

for obtaining accurate estimates of microbial abundance. Tettamanti Boshier et al. (2020) 

found that a naïve approach consistently overestimates the concentration of certain taxa 

by an order of magnitude (e.g., BVAB2). In a leave-one-out approach, we observed 

that modeling varying efficiency achieves near-nominal coverage of prediction intervals, 

while failing to model varying efficiency does not control coverage (Figure 6). Variation 

in efficiency between taxa implies that while our method controls coverage on average 

across all taxa, these properties are not guaranteed for each individual taxon. Incorporating 

uncertainty in efficiencies results in wider intervals for the true microbial concentration, but 

because coverage is controlled, it accurately reflects the level of uncertainty in estimating 

absolute abundance. We believe that modeling efficiency is a significant advantage of our 

method over other proposals in the literature for combining relative and absolute abundance 

data.

One advantage of both the proposed method and choice of the Stan modeling software is 

that the hierarchical model can be easily customized to accommodate different experimental 

designs, prior distributions, and models for the data. For example, if the analyst prefers a 

Negative Binomial distribution for Vij over the default choice of a Poisson distribution, this 

can be easily substituted; it is also easy to substitute a different model choice for Wi· (e.g., 

Dirichlet-multinomial or log-multivariate normal). Similarly, if the analyst is considering 

an analysis of 16S samples obtained from multiple batches, then efficiency parameters 

could depend on the batch and the taxon. That is, if i indexes the sample, j indexes the 

taxon, and k indexes the batch, the efficiencies could be modeled as ejk~Lognormal ξj, σξ
2

and ξj~Lognormal 0, σe2  in order that each taxon’s efficiency in each batch can vary around 

an overall efficiency for that taxon. We have provided examples at statdivlab.github.io/

paramedic illustrating how to implement these customizations.

It is possible to integrate the results of our method into a downstream analysis (e.g., 

an analysis incorporating V and/or μ along with additional data sources) via multiple 

imputation by sampling from the posterior distribution of V. Alternatively, an inverse-

variance weighted analysis of μ could be performed. That is, while our illustration of the 

method in Section 5 reflected the data and focus of McClelland et al. (2018), the posterior 

distributions of the parameters of our model could be used in a variety of settings.

In the absence of covariate data, our method involves estimating n × q concentration 

parameters μij and q efficiency parameters ej. The inclusion of additional samples therefore 

increases the number of parameters to estimate [a Neyman-Scott problem (Neyman and 

Scott, 1948)]. In addition, for small qobs the prior distribution on the efficiencies will play a 

large role in determining the width of interval estimates for the concentrations μij. For these 

two reasons, instead of increasing n or q, qobs should be increased where possible to reduce 

interval width (see Figure 2). Varying the prior parameters ασ and κσ also alters the width 
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of intervals (see SI Figure 3.3). Future modeling work could model the correlation structure 

between taxa (see Gibson and Gerber, 2018); remove the restriction that qPCR data must be 

available for all qobs taxa for all samples; and use additional data on the total bacterial load, 

∑j = 1
q V ij, to improve estimates of μ and V using our proposed varying efficiency model.

The major limitation of our method is its computational burden. While our method is less 

time-intensive than developing new qPCR primers (which can take months and thousands 

of dollars of laboratory equipment and supplies), our method may run for a week or 

more, depending on n, q, and qobs. As a result, the gains in coverage of credible and 

prediction intervals come at the expense of computation time. We also noticed diminished 

interval coverage on a test data set. While we may obtain good posterior estimates of some 

taxon-level parameters (e.g., β0 and β1) using our procedure, the taxon-specific efficiency 

is difficult to transfer to new data; additionally, the true concentrations μij are inherently 

difficult to predict due to the individual-level variation present in these data. For these 

reasons, we advocate running the analysis on all participants in a study in practice.

The proposed method provides a general approach for jointly modeling absolute and relative 

abundance data where each taxon’s detection efficiency differs across the two data sources. 

Note that our approach to modeling efficiency can model any multiplicative scaling factor 

between the data sources, including gene copy number. However, our motivating data 

sources were 16S community profiling and taxon-specific qPCR targeting the 16S gene. 

Because both methods targeted the same gene, our efficiency estimators are not estimating 

16S copy number. In the case that different amplicons are targeted and copy numbers are 

known, copy number differences could be explicitly included with a minor modification to 

our proposed procedure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
The relative abundance of taxa observed with qPCR versus the relative abundance of 

the taxa observed by sequencing a hypervariable region of the 16S gene. Note that 

the subcompositional relative abundance is shown, where the subcomposition is to taxa 

observed by qPCR. Specifically, V ij/∑k = 1
qobs

V ik is plotted against W ij/∑k = 1
qobs

V ik. In this data 

set, qobs = 13 and n = 55.
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FIGURE 2. 
Performance of the naïve estimator (circles) and proposed efficiency-naïve Bayesian 

estimator (triangles) versus qobs for q ∈ {10, 20, 40, 60}. Top row: coverage of nominal 

95% intervals based on both estimators. Bottom row: root mean squared error and root 

mean squared prediction error for both estimators. In each plot, color denotes q, while shape 

denotes the estimator.
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FIGURE 3. 
Performance of the naïve estimator (circles), efficiency-naïve Bayesian estimator (triangles), 

and varying-efficiency Bayesian estimator (squares) versus σe for q = 40 and qobs = 7. Top 

row: coverage of nominal 95% intervals based on each estimator. Bottom row: root mean 

squared error and root mean squared prediction error for all estimators
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FIGURE 4. 
(A) A heatmap showing posterior mean log concentrations for 20 taxa (the 13 taxa 

with observed qPCR and seven randomly sampled taxa) and all 55 samples. Red 

indicates large concentration relative to the maximum in this subsample, while blue 

indicates small concentration relative to the maximum in this subsample. (B) The relative 

abundance of taxa observed with qPCR versus the estimated relative abundance of the taxa 

based on the variable-efficiency estimator. Specifically, V ij/∑k = 1
qobs

V ik is plotted against 

μij/∑k = 1
qobs

μik ⋅ qobs = 13 and n = 55 in this data set.
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FIGURE 5. 
Posterior mean estimates from the proposed varying-efficiency Bayesian model of the 

coefficient on HIV-positive samples in the model for log concentration. The taxa with 

β1, j  ranked in the top 10 among all taxa are shown. A total of 95% credible intervals are 

displayed in the horizontal bars
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FIGURE 6. 
Left: Average coverage of nominal 95% prediction intervals (Wald-type intervals) for the 

left-out taxon averaged over study participants. Right: MSPE on the left-out taxon. Circles 

denote the naïve estimator, triangles denote the efficiency-naïve Bayesian estimator, and 

squares denote the proposed varying-efficiency Bayesian estimator
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FIGURE 7. 
Boxplots showing the posterior distribution of estimated efficiencies. Left: estimated 

efficiencies from the full data analysis and from an analysis where G. vaginalis was left 

out. Right: estimated efficiencies from the full data analysis and from an analysis where 

BVAB2 spp. was left out
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