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ABSTRACT

Recent advances in single-cell RNA sequencing
technologies have made detection of transcripts in
single cells possible. The level of resolution pro-
vided by these technologies can be used to study
changes in transcript usage across cell populations
and help investigate new biology. Here, we introduce
RNA-Scoop, an interactive cell cluster and transcrip-
tome visualization tool to analyze transcript usage
across cell categories and clusters. The tool allows
users to examine differential transcript expression
across clusters and investigate how usage of specific
transcript expression mechanisms varies across cell
groups.

INTRODUCTION

In eukaryotic genomes, alternative splicing (AS), alterna-
tive transcriptional initiation (ATI) and alternative cleavage
(AC) enable genes to express multiple transcript isoforms.
Resulting isoforms differ in structure and may also have dif-
ferent cell functions. For instance, ATI can act as a regula-
tor of translation (1-3), and some AS events may play im-
portant roles in cell differentiation (3—6), development (3,
7, 8) and disease (3, 9-14). Further, while its precise biolog-
ical roles are still under investigation, differential isoform
expression has been found to occur across cell types (15),
tissue types (15, 16), bodily regions (15) and even individu-
als (17).

In recent years, single-cell RNA sequencing (scRNA-seq)
technologies have advanced greatly, enabling accurate de-
tection of transcript isoforms in single cells (18-20). In par-
allel to these advances, a number of scRNA-seq visualiza-
tion tools have been developed to guide analyses at the gene
level, but most of them do not support transcript-level anal-

ysis (21). Exceptions are VALERIE (22) and Millefy (23) —
two tools that display percent spliced-in (PSI) values and
read coverage across small genomic regions. However, the
effective identification of patterns in transcript usage across
thousands of genes remains an open problem. Unsuper-
vised dimensionality reduction techniques, such as t-SNE
(24) and UMAP (25), are typically used to generate two-
dimensional embeddings for the visualization of scRNA-
seq expression data, allowing researchers to identify clusters
of cells with similar expression profiles. These techniques,
however, do not present information regarding the differ-
entially expressed genes/transcripts between cell clusters.

Here, we introduce RNA-Scoop, an interactive tool that
visualizes transcript usage across single-cell transcriptomes.
RNA-Scoop enables easy identification of differentially ex-
pressed transcripts across cell groups and transcripts with
specific expression patterns, such as isoform switching, co-
expression, and category/cluster specific expression. It also
displays basic transcript structure, allowing users to exam-
ine how usage of specific transcript expression mechanisms,
such as AS, ATI and AC vary across different groups of
cells. RNA-Scoop is designed to work with data produced
from single-cell protocols that support transcript isoform
level analysis. In other words, 3’ end capture protocols (such
as 10x Genomics or Drop-Seq) designed for measuring gene
expression in single cells are not supported.

MATERIALS AND METHODS

We utilized two mouse single-cell transcriptomic datasets to
illustrate RNA-Scoop’s features in visualizing transcripts in
scRNA-seq data.

ScNaUmi-seq dataset

Input files for RNA-Scoop were prepared using the tran-
script expression results from a single-cell Nanopore-UMI
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Figure 1. RNA-Scoop visualization of Clta isoform expression across nine cell category labels from the ScNaUmi-seq dataset. The transcript view on the
left shows the isoform structures of selected genes and its integrated dot plot shows the proportion and magnitude of transcript expression in each cell
category. Transcripts and dots are colored according to their non-zero median expression levels in all cells and cells of their particular category, respectively.
Dots are not drawn for transcripts not expressed in any cells of a given category. The cell cluster plot on the right shows the clustering of cells based on

transcript expression.

sequencing (ScNaUmi-seq) sample from (20) (Gene Ex-
pression Omnibus accession: GSE130708), which consists
of 951 brain cells from an E18 mouse. Cell label informa-
tion was obtained from the study’s authors through per-
sonal communications. Ensembl release 104 mouse annota-
tion GTF was used to match the transcript IDs within the
expression data.

Smart-seq2 dataset

A 6912-cell dataset was compiled using the plate-based
Smart-seq2 raw data for 18 mouse tissues from 7ab-
ula Muris (GEO accession: GSE109774) (26). For each
tissue type, 384 cells with at least 500 000 read pairs
were arbitrarily selected. Raw reads were trimmed
and filtered for adaptor sequences with fastp v0.20.0
(27).

Single-cell transcripts were assembled from the trimmed
reads with RNA-Bloom v1.3.1 (28), where cells from the
same tissue type were in the same pooled assembly. Assem-
blies for all tissues were merged with BBTools v38.86 (29).
The merged assembly was aligned to the mouse reference
genome GRCm38 with minimap2 v2.17 (30), and a GTF
file was generated from the alignment results with our script
‘make_gtf.py’. Gene labels from Ensembl release 99 were
added to the GTF using our script ‘annotate_gtf.py’. This
GTF file was combined with the Ensembl annotation and
then filtered with gffread v0.12.3 (31).

Single-cell transcript expression levels were quantified
and merged with Salmon v1.3.0 (32). An expression level
matrix of TPM values was generated with our script
‘make_matrix.py’. The GTF file was further filtered using
our script ‘filter_gtf.py’ to only contain transcripts in the
generated expression level matrix. Our scripts are included
within the RNA-Scoop package, and the results presented
are generated using release version 1.0.0. See Supplemental
Methods S1 for exact commands and runtime parameters.
After removing transcripts with low expression levels, the
final dataset contained 14 444 genes and 90 195 transcripts.

Software overview

RNA-Scoop is implemented as a Java graphical user in-
terface using the JavaFX package and the following exter-
nal packages: T-SNE-Java, Java UMAP, JFreeChart - Fu-
ture State Edition, JSON-Java and ControlsFX (see version
numbers in Supplemental Methods S4). The graphical user
interface of RNA-Scoop consists of two interactive main
panels: a transcript view, which includes a dot plot repre-
sentation of transcript expression levels per cell category,
and a cell cluster plot (Figure 1). Users can save the current
state of an RNA-Scoop session to a file, for future use or to
share with other users.

The input for RNA-Scoop consists of four files: (1) a Gene
Transfer Format (GTF) file containing the transcript an-
notation, (ii) a cell-by-transcript expression level matrix,
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Figure 2. Dot plot enables the visualization of isoform co-expression, isoform switching, and category-specific expression. (A) Isoform co-expression
refers to cases where two isoforms are both highly or lowly expressed across cell categories. (B) Isoform switching between two isoforms can be recognized
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expressed, and vice versa. (C) Category-specific isoform expression occurs when the isoform expression is observed in only one (or very few) cell category
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(iii) a file containing the transcript labels for the columns
of the matrix and (iv) file(s) containing cell category la-
bels (e.g. tissue type) for the rows of the matrix. These
files can be either selected individually or summarized in
a JavaScript Object Notation (JSON) file, where its format
specification is described in Supplemental Methods S5. All
input files are in popular plain-text file formats that can
accommodate data generated from a wide variety of anal-
ysis pipelines and sequencing platforms. For example, the
GTF file can originate from publicly available transcript
annotations, RNA-seq assemblies, or a combination of the
two.

Transcript visualization

The transcript view (Figure 1) displays all isoforms of se-
lected genes, allowing users to analyze expression at the
transcript level. Since transcripts are visualized as sepa-
rate entities, users can examine co-expression of isoforms
from the same gene, a function that, to the best of our
knowledge, is not available in other tools (21-23). Addi-
tionally, genes can be filtered specifically for isoform switch-
ing events, differential isoform expression across cell cat-
egories, and category-specific isoform expression (Supple-
mental Methods S3). Genes can also be sorted by maxi-
mum fold change across all cell categories, allowing tran-
scripts with the highest magnitude of differential expression

to be easily identified. As new category labels can be as-
signed via cell selection, this enables users to easily identify
key changes in transcript expression across both cell cate-
gories and clusters.

Transcript representation is similar to that used in UCSC
Genome Browser (33) and Integrative Genomics Viewer
(34), where boxes represent exons and lines represent spliced
introns; however, no distinction is made between translated
and untranslated regions. By default, transcripts are drawn
with respect to their exons’ chromosomal coordinates. For
datasets produced through strand-specific sequencing pro-
tocols, and in cases where gene orientation is known, tran-
scripts on the negative strand can be reverse-complemented
and displayed in their 5'-3'orientation. Transcripts are col-
ored according to their median (default) or average expres-
sion levels across the cells displayed within the cell cluster
plot.

Cell category expression visualization

To compare transcript expression across cell categories, a
dot plot (Figure 1) is used to visualize the median or aver-
age transcript expression levels (as indicated by the color of
the dot) and the proportion of cells which express the tran-
script (as indicated by dot size) within each cell category.
This allows users to easily identify transcript expression pat-
terns, such as co-expression, isoform switching, differential
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Figure 3. Isoform switching between Clta-204 and Clta-206 in the ScNaUmi-seq dataset visualized in RNA-Scoop. Cells in the cell cluster plot are colored
according to the selected (highlighted in magenta) isoform’s expression level in the cell instead of cell category label colors. (A) Clta-204 isoform expression
visualization. (B) Clta-206 isoform expression visualization. The dot plots in A and B are identical, except their coloring.
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Figure 4. Expression of Sell isoforms in 18 mouse tissues. Spleen and mar-
row are columns 11 and 15 in the dot plot.

expression, and category/cluster specific expression, across
all groups of cells. Figure 2 shows examples of how these
events are visualized in the dot plot.

Cell cluster visualization

The cell cluster plot (Figure 1) presents two-dimensional
embeddings of the expression level matrix. UMAP and t-
SNE embeddings can be generated in RNA-Scoop, with
tunable parameters for each algorithm. Alternatively, a
wider variety of embedding or dimensionality reduction
representations can be imported from a user-specified file.
The plot is interactive, allowing users to zoom in and out
of different areas, and pan the plot freely. Cells are colored
based on their category labels, and they can be selected via
free-hand lasso selection or by category. Additionally, users
can load multiple cell category label sets and create cus-
tom label sets in RNA-Scoop via cell selection. This facil-
itates the examination of transcript expression across clus-
ters and different sets of cell categories, such as tissue or cell
type.

When cells are selected, the transcripts are colored ac-
cording to their expression levels in the selected cells only.
As cells can be selected either by free-hand lasso selec-
tion or by category, this allows transcript expression to
be compared across any groups of cells. When transcripts
are selected, the cells in which they are expressed are
highlighted.

Cells can be colored based on their expression of the se-
lected transcript instead of cell category (example shown
in Figure 3). This feature allows users to examine cell het-
erogeneity in transcript expression. The expression for the
selected transcript (highlighted in magenta in the isoform
view) is visualized at three levels: the entire dataset, cell cate-
gories, and individual cells. First, exons of a given transcript
in the transcript view are colored based on the transcript’s
median (default) or average expression level over all cells.
Second, the dot plot displays the median or average tran-
script expression level and the proportion of cells that ex-
press the transcript, for each cell category. Third, each cell
in the cell cluster plot is colored based on their level of ex-
pression of the selected transcript (instead of cell category
label).

NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 4 5

RESULTS AND DISCUSSION
Recapitulating results from a published study

Isoform switching between Clta-204 and Clta-206 was pre-
viously reported in the ScNaUmi-seq dataset. We recapitu-
late this finding in RNA-Scoop and the resulting visualiza-
tions are shown in Figure 3.

Isoform switching was visualized between individual cells
using the cell cluster plot. Cells that were green when Clta-
204 was selected (Figure 3A) have become black when Clza-
206 was selected (Figure 3B). Similarly, cells that were black
when Clta-204 was selected have become green when Clta-
206 was selected. Isoform switching was also visualized be-
tween cell categories using the dot plot. Indicated by larger
and brighter green dots, Clta-204 was expressed higher or
in a larger proportion in cell categories 2, 4, 6 and 8, while
Clta-206 was expressed higher or in a larger proportion in
cell categories 1, 5 and 7.

Exploring the mouse single-cell transcriptomic atlas

We also explore Tabula Muris, a mouse single-cell transcrip-
tomic atlas, where analyses in the original study were only
done based on gene level expression. Filtering within RNA-
Scoop (see Supplemental Methods S2 for details) finds a
total of 251 genes that exhibit differential isoform expres-
sion between spleen and marrow. An interesting example
is the Sell gene, where four isoforms were shown to be co-
expressed in both spleen and marrow (Figure 4). Although
the isoform structure of Sell transcripts differed due to al-
ternative transcription mechanisms, such as AS and ATI,
RNA-Scoop was able to clearly show that all four isoforms
followed similar expression patterns across different tissues.

In the cell cluster plot, each tissue and cell type formed
several distinct clusters based on transcript expression lev-
els. An excellent example is the microglia cells, which
formed three clusters, separate from the other tissues (Fig-
ure 5). Several genes exhibited differential isoform expres-
sion between the clusters, including Tmem119, in which two
isoforms were shown to undergo isoform switching. Iso-
forms 2284771 and 2628717 underwent switching between
microglia clusters 1 and 3. Isoforms 2184694 and 28292321
appear to be co-expressed in all three microglia clusters and
lowly expressed in the non-microglia cluster. These results
cannot be examined through use of other transcriptome vi-
sualization tools, as they do not support the identification
of cell subpopulations, nor identification of the transcripts
differentially expressed across them.

While other scRNA-seq visualization tools, such as VA-
LERIE and Millefy, require users to identify genes of in-
terest through other methods, RNA-Scoop can help users
identify subsets of genes exhibiting differential isoform ex-
pression across tissue and cell types. With RNA-Scoop,
users can identify and examine transcripts undergoing spe-
cific expression patterns, such as co-expression, isoform
switching, differential expression, and category-specific ex-
pression. Additionally, RNA-Scoop visualizes basic tran-
script structures, allowing examination of AS, ATI, and
AC usage across cell groups. Through these easy-to-use fea-
tures, RNA-Scoop is an effective tool for interactive anal-
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Figure 5. RNA-Scoop visualization of Tmemli19 isoform expression across three microglia cell clusters. Isoforms are colored according to their average
expression levels across all cells, and dots are colored according to their average non-zero expression levels in the cells of their category.

ysis of transcript expression across and within cell popula-
tions.

DATA AVAILABILITY

The release version 1.0.1 of RNA-Scoop can run on any
operating system that has Java Runtime Environment 8.
The source and compiled Java archive of RNA-Scoop
are available at https://github.com/bcgsc/RNA-Scoop
under open source license GPL-3.0. The input data
files for the ScNaUmi-seq and Smart-Seq2 datasets
used in this manuscript are publicly available at: https:
/[github.com/bcgsc/RNA-Scoop/blob/master/test_data/
GSM3748089.zip and https://www.bcgsc.ca/downloads/
supplementary/rnascoop/rnascoop_test_data.tar.gz, re-
spectively.

SUPPLEMENTARY DATA
Supplementary Data are available at NARGAB Online.

ACKNOWLEDGEMENTS

Author contributions: K.M.N., 1.B. and M.S. designed the
method. M.S. implemented the software under the guidance
of K.M.N. S.H., C.Y. and K.K.G. tested the software proto-
type and provided feedback for improvements. All authors
analyzed the results and wrote the manuscript. The content
of this work is solely the responsibility of the authors, and

does not necessarily represent the official views of the Na-
tional Institutes of Health or other funding organizations.

The authors would like to thank Dr. Veronique LeBlanc and
Dr. Elizabeth Chun at Canada’s Michael Smith Genome
Sciences Centre for their insightful discussions on our
method. The authors would like to thank Dr. Kevin Le-
brigand for providing the cell label information of the
ScNaUmi-seq dataset.

FUNDING

Genome Canada/Genome British Columbia [281ANV];
National Human Genome Research Institute of the Na-
tional Institutes of Health [ROIHGO007182].
Conflict of interest statement. None declared

REFERENCES

1. Wang,X., Hou,J., Quedenau,C. and Chen,W. (2016) Pervasive
isoform-specific translational regulation via alternative transcription
start sites in mammals. Mol. Syst. Biol., 12, 875.

2. Kurihara,Y., Makita,Y., Kawashima,M., Fujita,T., Iwasaki,S. and
Matsui,M. (2018) Transcripts from downstream alternative
transcription start sites evade uORF-mediated inhibition of gene
expression in arabidopsis. Proc. Natl. Acad. Sci. U.S. A., 115,
7831-7836. ’

3. de la Fuente,L., Arzalluz-Luque,A., Tardaguila,M., Del Risco,H.,
Marti,C., Tarazona,S., Salguero,P.,, Scott,R., Lerma,A.,
Alastrue-Agudo,A. et al. (2020) tappAS: a comprehensive
computational framework for the analysis of the functional impact of
differential splicing. Genome Biol., 21, 119.


https://github.com/bcgsc/RNA-Scoop
https://github.com/bcgsc/RNA-Scoop/blob/master/test_data/GSM3748089.zip
https://www.bcgsc.ca/downloads/supplementary/rnascoop/rnascoop_test_data.tar.gz
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqab105#supplementary-data

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Furlanis,E. and Scheiffele,P. (2018) Regulation of neuronal

differentiation, function, and plasticity by alternative splicing. Annu.
Rev. Cell Dev. Biol., 34, 451-469.

. Li,H., Cheng,Y., Wu,W,, Liu,Y., Wei,N., Feng,X., Xie,Z. and Feng,Y.

(2014) SRSF10 regulates alternative splicing and is required for
adipocyte differentiation. Mol. Cell. Biol., 34, 2198-2207.

. Sen,S., Jumaa,H. and Webster,N.J.G. (2013) Splicing factor SRSF3 is

crucial for hepatocyte differentiation and metabolic function. Nat.
Commun., 4, 1336.

. Baralle,F.E. and Giudice,J. (2017) Alternative splicing as a regulator

of development and tissue identity. Nat. Rev. Mol. Cell Biol., 18,
437-451.

. Weyn-Vanhentenryck,S.M., Feng,H., Ustianenko,D., Duffi¢,R.,

Yan,Q., Jacko,M., Martinez,J.C., Goodwin,M., Zhang,X., Hengst,U.
et al. (2018) Precise temporal regulation of alternative splicing during
neural development. Nat. Commun., 9, 2189.

. Paronetto,M.P.,, Passacantilli,I. and Sette,C. (2016) Alternative

splicing and cell survival: from tissue homeostasis to disease. Cell
Death Differ., 23, 1919-1929.

Scotti,M.M. and Swanson,M.S. (2016) RNA mis-splicing in disease.
Nat. Rev. Genet., 17, 19-32.

Daguenet,E., Dujardin,G. and Valcarcel,J. (2015) The pathogenicity
of splicing defects: mechanistic insights into pre-mRNA processing
inform novel therapeutic approaches. EMBO Rep., 16, 1640-1655.
Fu,R.-H., Liu,S.-P, Huang,S.-J., Chen,H.-J., Chen,P-R., Lin,Y.-H.,
Ho,Y.-C., Chang,W.-L., Tsai,C.-H., Shyu,W.-C. et al. (2013) Aberrant
alternative splicing events in parkinson’s disease. Cell Transplant., 22,
653-661.

Anthony,K. and Gallo,J.-M. (2010) Aberrant RNA processing events
in neurological disorders. Brain Res., 1338, 67-77.

Cieply,B. and Carstens,R.P. (2015) Functional roles of alternative
splicing factors in human disease. Wiley Interdiscipl. Rev.: RNA, 6,
311-326.

Joglekar,A., Prjibelski,A., Mahfouz,A., Collier,P., Lin,S.,
Schlusche,A K., Marrocco,J., Williams,S.R., Haase,B., Hayes,A.

et al. (2021) A spatially resolved brain region- and cell type-specific
isoform atlas of the postnatal mouse brain. Nat. Commun., 12, 463.
Noh,S.-J., Lee,K., Paik,H. and Hur,C.-G. (2006) TISA: tissue-specific
alternative splicing in human and mouse genes. DNA Res., 13,
229-243.

Kwan,T., Benovoy,D., Dias,C., Gurd,S., Serre,D., Zuzan,H.,
Clark,T.A., Schweitzer,A., Staples,M.K., Wang,H. et al. (2007)
Heritability of alternative splicing in the human genome. Genome
Res., 17, 1210-1218.

Hagemann-Jensen,M., Ziegenhain,C., Chen,P., Ramskold,D.,
Hendriks,G.-J., Larsson,A.J.M., Faridani,O.R. and Sandberg,R.
(2020) Single-cell RNA counting at allele and isoform resolution
using Smart-seq3. Nat. Biotechnol., 38, 708-714.

19

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 4 7

. Gupta,l., Collier,P.G., Haase,B., Mahfouz,A., Joglekar,A., Floyd,T.,
Koopmans,F., Barres,B., Smit,A.B., Sloan,S.A. et al. (2018)
Single-cell isoform RNA sequencing characterizes isoforms in
thousands of cerebellar cells. Nat. Biotechnol., 36, 1197-1202.
Lebrigand,K., Magnone,V., Barbry,P. and Waldmann,R. (2020) High
throughput error corrected nanopore single cell transcriptome
sequencing. Nat. Commun., 11, 4025.

Cakir,B., Prete, M., Huang,N., van Dongen,S., Pir,P. and Kiselev,V.Y.
(2020) Comparison of visualization tools for single-cell RNAseq
data. NAR Genom Bioinform, 2, 1qaa052.

Wen,W.X., Mead,A.J. and Thongjuea,S. (2020) VALERIE:
visual-based inspection of alternative splicing events at single-cell
resolution. PLoS Comput. Biol., 16, ¢1008195.

Ozaki,H., Hayashi,T., Umeda,M. and Nikaido,l. (2020) Millefy:
visualizing cell-to-cell heterogeneity in read coverage of single-cell
RNA sequencing datasets. BMC Genomics, 21, 177.

van der Maaten,L. (2014) Accelerating t-SNE using tree-based
algorithms. J. Mach. Learn. Res., 15, 3221-3245.

Mclnnes,L., Healy,J. and Melville,J. (2018) UMAP: uniform
manifold approximation and projection for dimension reduction.
JOSS , 3, 861.

Tabula Muris Consortium, Overall coordination, Logistical
coordination, Organ collection and processing, Library preparation
and sequencing, Computational data analysis, Cell type annotation,
Writing group, Supplemental text writing group and Principal
investigators (2018) Single-cell transcriptomics of 20 mouse organs
creates a tabula muris. Nature, 562, 367-372.

Chen.S., Zhou,Y., Chen,Y. and Gu,J. (2018) fastp: an ultra-fast
all-in-one FASTQ preprocessor. Bioinformatics, 34, 1884-1890.
Nip,K.M., Chiu,R., Yang,C., Chu,J., Mohamadi,H., Warren,R.L.
and Birol,I. (2020) RNA-Bloom enables reference-free and
reference-guided sequence assembly for single-cell transcriptomes.
Genome Res., 30, 1191-1200.

Bushnell,B. (2021) BBTools.
https://jgi.doe.gov/data-and-tools/bbtools, Last accessed: 14 Oct
2021.

Li,H. (2018) Minimap?2: pairwise alignment for nucleotide sequences.
Bioinformatics, 34, 3094-3100.

Pertea,G. and Pertea,M. (2020) GFF utilities: gffread and
gffcompare. FI000Res., 9, 304.

Patro,R., Duggal,G., Love,M.I., Irizarry,R.A. and Kingsford,C.
(2017) Salmon provides fast and bias-aware quantification of
transcript expression. Nat. Methods, 14, 417-419.

Kent,W.J., Sugnet,C.W., Furey, T.S., Roskin,K.M., Pringle, T.H.,
Zahler,A.M. and Haussler,a. D. (2002) The human genome browser
at UCSC. Genome Res., 12, 996-1006.

Robinson,].T., Thorvaldsdottir, H., Winckler,W., Guttman,M.,
Lander,E.S., Getz,G. and Mesirov,J.P. (2011) Integrative genomics
viewer. Nat. Biotechnol., 29, 24-26.


https://jgi.doe.gov/data-and-tools/bbtools

