
Received: 18 March 2022 | Accepted: 7 July 2022

DOI: 10.1002/cai2.22

OR IG INAL ART I C L E

Machine learning‐based prognostic andmetastasismodels
of kidney cancer

Yuxiang Zhang1 | Na Hong2 | Sida Huang3 | Jie Wu1 | Jianwei Gao2 |

Zheng Xu2 | Fubo Zhang1 | Shaohui Ma1 | Ye Liu1,4 | Peiyuan Sun1 |

Yanping Tang1 | Chun Liu2 | Jianzhong Shou1 | Meng Chen1

1National Cancer Center/National Clinical
Research Center for Cancer/Cancer
Hospital, Chinese Academy of Medical
Sciences and Peking Union Medical College,
Beijing, China
2Digital Health China Technologies, Co.,
Ltd., Beijing, China
3Department of public policy, Cornell
University, Ithaca, New York, USA
4The Key Laboratory of Geriatrics, Beijing
Institute of Geriatrics, Institute of Geriatric
Medicine, Chinese Academy of Medical
Sciences, Beijing Hospital/National Center
of Gerontology of National Health
Commission, Beijing, China

Correspondence
Jianzhong Shou and Meng Chen,
National Cancer Center/National Clinical
Research Center for Cancer/Cancer
Hospital, Chinese Academy of Medical
Sciences and Peking Union Medical
College, Beijing 100021, China.
Email: shoujianzhong@cicams.ac.can
and chenmeng@cicams.ac.cn

Funding information

CAMS Innovation Fund for Medical
Sciences (CIFMS), Grant/Award Number:
2021‐I2M‐1‐066; Non‐profit Central
Research Institute Fund of Chinese
Academy of Medical Sciences,

Abstract

Background: Kidney cancer originates from the urinary tubule epithelial system

of the renal parenchyma, accounting for 20% of all urinary system tumors.

Approximately 70% of cases are localized at diagnosis, and 30% are metastatic. Most

localized kidney cancers can be cured by surgery, but most metastatic patients

relapse after surgery and eventually die of kidney cancer. Therefore, accurately

predicting patient survival and identifying high‐risk metastatic patients will

effectively guide interventions and improve prognosis.

Methods: This study used the data of 12,394 kidney cancer patients from the

surveillance, epidemiology, and end results database to construct a research cohort

related to kidney cancer survival and metastasis. Eight machine learning models

(including support vector machines, logistic regression, decision tree, random

forest, XGBoost, AdaBoost, K‐nearest neighbors, and multilayer perceptron) were

developed to predict the survival and metastasis of kidney cancer and six evaluation

indicators (accuracy, precision, sensitivity, specificity, F1 score, and area under the

receiver operating characteristic [AUROC]) were used to verify, evaluate, and

optimize the models.

Results: Among the eight machine learning models, Logistic Regression has the

highest AUROC in both prediction scenarios. For 3‐year survival prediction, the
Logistic Regression model had an accuracy of 0.684, a sensitivity of 0.702, a

specificity of 0.670, a precision of 0.686, an F1 score of 0.683, and an AUROC of

0.741. For tumor metastasis prediction, the Logistic Regression model had an
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accuracy of 0.800, a sensitivity of 0.540, a specificity of 0.830, a precision of 0.769, an

F1 score of 0.772, and an AUROC of 0.804.

Conclusion: In this study, we selected appropriate variables from both

statistical and clinical significance and developed and compared eight

machine learning models for predicting 3‐year survival and metastasis of

kidney cancer. The prediction results and evaluation results demonstrated that

our model could provide decision support for early intervention for kidney

cancer patients.
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1 | BACKGROUND

Kidney cancer is a malignant tumor that originates from the
urinary tubule epithelial system of the renal parenchyma,
accounting for approximately 20% of all urinary system
tumors [1]. As of 2018, the number of new cases of kidney
cancer worldwide exceeded 400,000, and the number of
deaths exceeded 170,000 [2]. In China, the annual incidence
of kidney cancer is increasing. In 2016, the incidence of
kidney cancer exceeded 15,000, and deaths exceeded 5000.
The incidence rate was 4.02 per 100,000, and the mortality
rate was 1.37 per 100,000 [3]. The surveillance, epidemiology,
and end results (SEERs) Program provides information on
cancer statistics to reduce the cancer burden among the US
population. This program was supported by the surveillance
research program (SRP) of the NCI's Division of Cancer
Control and Population Sciences (DCCPS) [4]. The data from
the SEER database is collected from the cancer registry of the
population and currently covers 30% of the population data
in the United States. Globally, about half of kidney cancer
cases are diagnosed at age 65, with peak incidence at age 75
[5]. Early‐stage localized kidney cancer have a good
prognosis through radical nephrectomy, but patients with
stage II or III have a high risk of recurrence after
nephrectomy [5]. Immunotherapy has become the most
promising treatment for patients with metastatic kidney
cancer, as kidney cancer is resistant to chemotherapy [6, 7].
But immunotherapy is only successful in 10%–15% of
patients [7]. Therefore, treatment for metastatic kidney
cancer remains inadequate.

Renal cell carcinoma is the most common malignant
renal tumor. Risk prediction models such as Memorial
Sloan‐Kettering Cancer Center (MSKCC), International
Metastatic Renal‐Cell Carcinoma Database Consortium
(IMDC), Leibovich, University of California, and Los Angeles
Integrated Staging System (UISS) have been applied to
identify patients at high risk of recurrence after surgery [8].
Traditional statistical analysis is a basic description of sample

data based on assumption of sample distribution, and then
make inferences in the form of probability, and it is mainly
inferred through the observation of a random process in a
limited period of time. Although the predictive capabilities
have been improved, it is still far from meeting the clinical
needs for patient classification accurately. In contrast, based
on rich data, machine learning methods predict future
unknown outcomes by generalizing features without making
assumptions about data distribution or understanding the
mechanisms behind sample data. Due to the complexity and
diversity of a large amount of cancer data, traditional
statistical inference models are facing challenges when
processing and analyzing it effectively or efficiently; however,
machine learning methods demonstrated advantages for
analyzing huge volume and high complexity data. For
example, Byun et al. used deep learning method to predict
the prognosis in nonmetastatic clear cell renal cell carcinoma
[9]. Machine learning models also showed good performance
in some survival prediction analyses for other cancer types.
Gu‐Wei Ji et al. used machine learning models to predict the
recurrence of hepatocellular carcinoma after resection [10].

Therefore, we incorporate machine learning models
into this study to explore a more efficient, intelligent, and
accurate prediction model for the prognosis and metas-
tasis risk assessment of kidney cancer patients.

2 | MATERIALS AND METHODS

2.1 | Patient data set

We included patients with histologically diagnosed kidney
cancer who had complete survival time and active follow‐up
data from 2004 to 2015 in the SEER database. The data
selection process was illustrated in Figure 1. Kidney and
renal pelvic cancers were described together in the SEER
database. We chose the disease with ICD‐10‐CM code C64.9:
Malignant neoplasm of the unspecified kidney, except the
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renal pelvis. Patients diagnosed with cancer only through
autopsy or death certificates, patients had missing follow‐up
records and patients with pathological features of “Blank”
“N/A” “Unknown” were excluded. Tumor staging was
coded according to the sixth edition of the TNM staging
system of the American Joint Committee on Cancer of the
United States.

2.2 | Data preprocessing and feature
selection

The observation period for all patients was from the date of
diagnosis to death, recurrence, or the end of data inclusion

period (2018). Age at the first visit, race (black, white, other,
unknown), sex, tumor size, marital status at diagnosis, year
of birth, year of diagnosis, histologic type, Fuhrman nuclear
grade (I, II, III, and IV), tumor stage (T1, T2, T3, T4, and
Unknown), lymph node status (N0, N1, N2, and
Unknown), distant metastasis (M0, M1, and Unknown),
primary site surgery information, bone metastases, brain
metastases, liver metastases, lung metastases, overall
survival time, and survival status were recorded. The
American Joint Committee on Cancer Staging Manual (6th
edition) was used in this study. The primary endpoints of
the study were whether the patient died within 36months
of diagnosis and whether tumor had metastasis within
3 years after diagnosis. Data preprocessing, including data

FIGURE 1 The process of data selection
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cleaning, data integration, and data transformation, was
performed. All variables included in analysis were reviewed
by clinicians, we excluded variables that are irrelevant with
the outcomes. The χ2 test was used to assess the difference
between categorical variables, and the t‐test was used to
assess the difference between continuous variables. Differ-
ences were considered statistically significant at p<0.05.
All analyses were performed using R (version 4.2.0) and R
Studio (version 1.3.1093) software.

2.3 | Development and evaluation of
prognostic models

We used 80% of the data as training set for model
development and the rest 20% of the data as testing set.
Eight machine learning models were applied to predict the
outcomes including support vector machines (SVMs, also
support‐vector networks) [11], logistic regression [12],
decision trees [13], random forests [14], XGBoost [15],
Adaptive Boosting (AdaBoost) [16], K‐nearest neighbors
(KNN) [17], and multilayer perceptions (MLP) [18].

Machine learning models were developed using
Scikit‐learn (version 0.23.2) and we applied 5‐fold
cross‐validation to improve the stability of the model.
We compared and evaluated the model performance
using six indicators as follows: Accuracy is a measure
of how close the observed value (measured value) is to
the true value of the quantity. If error is less, the
measurement is accurate [19]. Precision is the fraction
of relevant instances among the retrieved instances
[20]. Recall (sensitivity) is the fraction of relevant
instances that were retrieved [20]. Specificity refers to
the proportion of those who do not have the condition
(when judged by the “Gold Standard”) that received a
negative result on this test [21]. F1 score is the harmonic
mean of the precision and recall [20]. Area under the
receiver operating characteristic curve (AUC) analysis
provides tools to select possibly optimal models and to
discard suboptimal ones independently from (and before
specifying) the cost context or the class distribution.
Receiver operating characteristic (ROC) analysis is related
in a direct and natural way to cost/benefit analysis of
diagnostic decision‐making [22].

3 | RESULTS

3.1 | Clinical characteristics of patients

Data of 12,394 eligible patients with kidney cancer from
the SEER database from 2004 to 2015 were extracted.
Among them, 6432 (51.90%) patients survived for more

than 3 years, and 2519 (20.32%) patients had metastases.
The distributions between clinicopathological features
and 3‐year overall survival rate were summarized in
Table 1. And the distributions between clinicopathologic
features and metastasis were listed in Table 2. The
median age of the participants was 61 (49–73) years,
accounting for 82.35% of the patients, and 65.84% of the
patients were male. The most common histological
subtype was clear cell renal cell carcinoma (59.20%).
The number of patients in the localized and regional
stages was 41.01% and 37.97%, respectively. The
follow‐up period for this cohort was until 2018.

3.2 | Data preprocessing and feature
selection

After data preprocessing, a total of 12,082 kidney cancer
patients were selected for the analysis of survival, and
12,192 cases were selected for the analysis of metastasis.

Considering the statistical significance and the
clinical relevance from clinicians' review, we finalized
the variables for subsequent machine learning modeling.
The variables for predicting 3‐year survival were race, age
of diagnosis, tumor size, differentiation grade, stage,
histologic type, TNM staging, primary tumor surgery,
and lymph node clearance. The variables for predicting
metastasis were race, gender, age of diagnosis, grade,
histologic type, and T and N stage.

3.3 | Performance of prognostic models

Eight machine learning models including SVM, logistic
regression, decision tree, random forest, XGBoost,
AdaBoost, KNN, and multilayer perceptron were devel-
oped to predict the survival and metastasis of kidney
cancer patients. Accuracy, precision, recall (sensitivity),
specificity, F1 score, and area under the ROC curve
(AUC) were applied used to evaluate the model
performance. The results showed that logistic regression
had the best performance in terms of AUC of 0.741 for 3‐
year survival and AUC of 0.804 for metastasis, respec-
tively (Figures 2 and 3). For the 3‐year survival predictive
study, logistic regression model had the accuracy of
0.684, the sensitivity of 0.702, the specificity of 0.670, the
precision of 0.686, and the F1 score of 0.683. For the
tumor metastasis predictive study, the Logistic regression
model had the accuracy of 0.800, the sensitivity of 0.540,
the specificity of 0.830, the precision of 0.769, and the F1
score of 0.772 (Tables 3 and 4). When we stratified the
population by histological type, the patients with clear
cell renal carcinoma demonstrated the similar findings
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TABLE 1 Relationship between clinicopathologic features and 3‐year overall survival rate

Characteristics
Total
n= 12,394

3‐year alive
n= 6432

3‐year death
n= 5962 p‐value

Gender n (%) 0.302

Male 8160 (65.84%) 4207 (65.41%) 3953 (66.3%)

Female 4234 (34.16%) 2225 (34.59%) 2009 (33.7%)

Age(mean± SD) 60.67 ± 12.29 59.77 ± 12.13 61.65 ± 12.39 p < 0.001

Race n (%) 0.016

White 10,207 (82.35%) 5305 (82.48%) 4902 (82.22%)

Black 1304 (10.52%) 669 (10.40%) 635 (10.65%)

Other 814 (6.57%) 423 (6.58%) 391 (6.56%)

Unknown 69 (0.56%) 35 (0.54%) 34 (0.57%)

Tumor size (mm, mean± SD) 92.81 ± 105.99 83.61 ± 93.56 102.67 ± 117.16 p < 0.001

Grade n (%) p < 0.001

Well differentiated; Grade I 674 (5.44%) 506 (7.87%) 168 (2.82%)

Moderately differentiated; Grade II 4142 (33.42%) 2727 (42.40%) 1415 (23.73%)

Poorly differentiated; Grade III 4872 (39.31%) 2467 (38.36%) 2405 (40.34%)

Undifferentiated; anaplastic; Grade IV 2706 (21.83%) 732 (11.38%) 1974 (33.11%)

Histologic. Type. ICD‐O‐3 (n(%)) p < 0.001

Clear cell renal cell carcinoma 7337 (59.20%) 4027 (62.62%) 3310 (55.52%)

Others 5057 (40.80%) 2405 (37.39%) 2652 (44.48%)

Stage n (%) p < 0.001

Localized 5083 (41.01%) 3630 (56.44%) 1453 (24.37%)

Regional 4706 (37.97%) 2257 (35.09%) 2449 (41.08%)

Distant 2605 (21.02%) 545 (8.47%) 2060 (34.55%)

AJCC T 6th n (%) p < 0.001

T0 2 (0.02%) 0 (0.00%) 2 (0.03%)

T1 (T1a, T1b, T1NOS) 3663 (29.56%) 2500 (38.87%) 1163 (19.50%)

T2 2217 (17.89%) 1422 (22.11%) 795 (13.33%)

T3 (T3a, T3b, T3NOS) 5838 (47.11%) 2378 (36.97%) 3460 (58.02%)

T4 617 (4.98%) 112 (1.74%) 505 (8.47%)

Unknown 57 (0.46%) 20 (0.31%) 37 (0.62%)

AJCC N 6th n (%) p < 0.001

N0 9532 (76.91%) 5757 (89.51%) 3775 (63.31%)

N1 1641 (13.24%) 407 (6.33%) 1234 (20.70%)

N2 1127 (9.09%) 211 (3.28%) 916 (15.36%)

Unknown 94 (0.76%) 57 (0.89%) 37 (0.62%)

AJCC M 6th n (%) p < 0.001

M0 9741 (78.59%) 5833 (90.69%) 3908 (65.55%)

M1 2519 (20.33%) 518 (8.05%) 2001 (33.56%)

Unknown 134 (1.08%) 81 (1.26%) 53 (0.89%)
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(Table 5). For the 3‐year survival, logistic regression
model had the AUC of 0.710, the accuracy of 0.658, the
sensitivity of 0.674, the specificity of 0.649, the precision
of 0.661, and the F1 score of 0.653. For the metastasis,
logistic regression model had the AUC of 0.811, the
accuracy of 0.826, the sensitivity of 0.593, the specificity
of 0.851, the precision of 0.802, and the F1 score of 0.803.

4 | DISCUSSION

The incidence of kidney cancer has been increasing
annually. Renal cell carcinoma is the most common type
of kidney cancer. Most localized renal cell carcinomas had
a good prognosis after cytoreductive nephrectomy, but
approximately 20%–30% of patients died due to the
recurrence and metastasis after surgery. Precisely predic-
tion the clinical outcome for early diagnosis and treatment
are essential to improve the prognosis of kidney cancer.

Clear cell renal cell carcinoma (ccRCC) accounts for
60%–80% of all renal cell carcinomas [23]. ccRCC has a
better clinical prognosis than other types of kidney
cancer. In our multivariate logistic regression model for
survival and metastasis, the ccRCC patients showed
better outcomes with an odds ratio 0.897 (95% confidence
interval: 0.825–0.975, p= 0.01) for survival and an odds
ratio 1.372 (95% confidence interval: 1.235–1.525,
p< 0.001) for metastasis compared to other histological
types. ccRCC is characterized by loss of chromosome 3p
and biallelic inactivation of the VHL gene due to
mechanisms such as loss of heterozygosity (LOH),
mutation, and methylation [24]. High‐frequency muta-
tions of genes (PBRM, SETD2, BAP1, etc.) involved in
epigenetic regulation were also found in more than 50%

of ccRCC [24]. In this –omics era, biomarkers especially
the genetic biomarkers has been widely applied in
clinical area. The genetic signature has been incorpo-
rated in risk prediction models, such as ClearCode34
and 16‐gene assay [25, 26]. In the future, the genetic
biomarkers should be incorporated in our current model
and be evaluated in an independent population.

Clinical prediction models are commonly used to help
clinicians and patients make better medical decisions, and
to help government departments and health managers
better manage medical quality and rationally allocate
medical resources. In recent years, with the advance of
science and technology, cancer diagnosis and prediction
has entered a multidimension era of big data. The
conventional clinical data measurements include images,
genes, blood, proteins, pathological analysis, etc., which
bring great challenges to the data analysis and disease
diagnosis, and due to various reasons, some data will be
partially missing. At present, the methods of cancer
prediction are mainly divided into traditional statistical
inference and machine learning models. The former is the
basic description of the sample data based on the
assumption of the sample distribution, and then infer-
ences in the form of probabilities. And it is mainly
inferred by observing a random process in a limited
period of time. Machine learning models are very
different from statistical inferences in that they take
advantage of rich data and learn new patterns through
generalized features to predict future outcomes without
the need to make assumptions about the distribution of
the data and understand the mechanisms behind the
sample data. Due to the complexity and diversity of
large amounts of data, traditional statistical inference
models are less accurate than machine learning models,

TABLE 1 (Continued)

Characteristics
Total
n= 12,394

3‐year alive
n= 6432

3‐year death
n= 5962 p‐value

Primary site surgery information n (%) p < 0.001

None 80 (0.65%) 6 (0.09%) 74 (1.24%)

Partial nephrectomy 1035 (8.35%) 650 (10.11%) 385 (6.46%)

Radical nephrectomy 11,138 (89.87%) 5697 (88.57%) 5441 (91.26%)

Surgery 131 (1.05%) 72 (1.12%) 59 (0.99%)

Unknown 10 (0.08%) 7 (0.11%) 3 (0.05%)

Regional nodes examined n (%) p < 0.001

None 381 (3.07%) 189 (2.94%) 192 (3.22%)

lymph node dissection 11,894 (95.97%) 6164 (95.83%) 5730 (96.11%)

No record 119 (0.96%) 79 (1.23%) 40 (0.67%)

Abbreviation: AJCC, American joint committee on cancer.
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and the general applicability is not as strong as the
latter, so modern cancer predictions are gradually
incorporated into machine learning models. Machine
learning also has its inherent problems, such as the
inability to judge the advantages and disadvantages of
the model from the algorithm, and the results are
difficult to interpret, so these problems need to be
evaluated and overcome through external verification
before actual use.

Eight machine learning models were applied in
this study. SVMs, also support‐vector networks are super-
vised learning models with associated learning algorithms
that analyze data for classification and regression analysis
[11]. Logistic regression is a statistical model that in its
basic form uses a logistic function to model a binary
dependent variable, although many more complex exten-
sions exist. In regression analysis, logistic regression is
estimating the parameters of a logistic model (a form of

TABLE 2 Relationship between clinicopathologic features and metastasis

Characteristics
Metastasis
n= 2519

No metastasis
n= 9741 p‐value

Gender n (%) 0.003

Male 1722 (68.36%) 6350 (65.19%)

Female 797 (31.64%) 3391 (34.81%)

Age (mean± SD) 59.69 ± 11.48 60.93 ± 12.48 p < 0.001

Race n (%) 0.007

White 2115 (83.96%) 7984 (81.96%)

Black 221 (8.77%) 1078 (11.07%)

Other 176 (6.99%) 618 (6.34%)

Unknown 7 (0.28%) 61 (0.63%)

Tumor size (mm, mean± SD) 119.10 ± 130.77 85.81 ± 95.89 p < 0.001

Grade n (%) p < 0.001

Well differentiated; Grade I 29 (1.15%) 624 (6.41%)

Moderately differentiated; Grade II 325 (12.90%) 3774 (38.74%)

Poorly differentiated; Grade III 1063 (42.20%) 3765 (38.65%)

Undifferentiated; anaplastic; Grade IV 1102 (43.75%) 1578 (16.20%)

Histologic type ICD‐O‐3 n (%) 0.001

Clear cell renal cell carcinoma 1419 (60.07%) 5851 (56.33%)

Others 1100 (39.93%) 3890 (43.67%)

AJCC T 6th n (%) p < 0.001

T0 1 (0.04%) 1 (0.01%)

T1 (T1a, T1b, T1NOS) 161 (6.39%) 3458 (35.50%)

T2 284 (11.27%) 1922 (19.73%)

T3 (T3a, T3b, T3c, T3NOS) 1709 (67.85%) 4066 (41.74%)

T4 333 (13.22%) 270 (2.77%)

Unknown 31 (1.23%) 24 (0.25%)

AJCC N 6th n (%) p < 0.001

N0 1200 (47.64%) 8272 (84.92%)

N1 688 (27.31%) 930 (9.55%)

N2 606 (24.06%) 506 (5.19%)

Unknown 25 (0.99%) 33 (0.34%)

Abbreviation: AJCC, American joint committee on cancer.
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binary regression) [12]. Decision trees and closely related
influence diagrams are used as visualization and analysis
decision support tools, in which the expected value (or
expected utility) of competing solutions is calculated [13].
Random forests or random decision forests are an ensemble
learning method for classification, regression, and other
tasks that operates by constructing a multitude of decision
trees at training time [14]. XGBoost aims to provide a
“scalable, portable, and distributed gradient boosting
(GBM, GBRT, and GBDT) library.” It runs on a single
machine, along with distributed processing frameworks

Apache Hadoop, Apache Spark, Apache Flink, and Dash
[15]. AdaBoost, is a statistical classification meta‐algorithm
that can be used in conjunction with many other types of
learning algorithms to improve performance, and often
referred to as the best out‐of‐the‐box classifier [16]. K‐
nearest neighbors (KNN) is a nonparametric classification
method used for classification and regression. In both
cases, the input consists of the k training examples closest
to the data set. The output depends on whether k‐NNs are
used for classification or regression [17]. Multilayer
perceptions (MLP) is a class of feed‐forward artificial

FIGURE 2 ROC curve of the optimal model logistic regression on 3‐year survival prediction

FIGURE 3 ROC curve of the optimal model logistic regression on tumor metastasis prediction
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neural networks (ANNs) that consist of at least three
layers of nodes: the input layer, the hidden layer, and the
output layer. Except for the input nodes, each node is a
neuron that uses a nonlinear activation function. MLP is
trained using a supervised learning technique called back

propagation [18]. Its multilayer and nonlinear activation
distinguish MLP from linear perceptions. It can distin-
guish nonlinearly separable data [18]. We compared the
performance of these eight models, there were no
significant difference in performance. It is hard to
compare the models based on its algorithm, external
validation should be conducted for model evaluation.

In addition, we used a single source of public data to
ensure data completeness, which had limited general-
izability. Although the variable selection was based on
statistics and clinical experience, the overfitting was a
common problem in machine learning models. We will
subsequently optimize and balance the number of
variables and the prediction results. In the future, this
prediction models could be externally validated using
hospital patient data. Furthermore, in real clinical
scenarios, these clinical prediction models need to be
transformed into useful tools after strong clinical valida-
tion, and they will be integrated into the hospital
information system to provide timely decision support
for future cancer care.

TABLE 3 Model performance on 3‐year survival prediction

Model Accuracy Sensitivity Specificity Precision F1‐score AUROC

Logistic regression 0.684 0.702 0.670 0.686 0.683 0.741

Random forest 0.645 0.654 0.638 0.643 0.642 0.690

XGBoost 0.676 0.665 0.692 0.678 0.674 0.729

Decision tree 0.690 0.733 0.662 0.697 0.687 0.710

K‐nearest neighbors 0.607 0.609 0.605 0.607 0.606 0.609

AdaBoost 0.675 0.675 0.675 0.675 0.675 0.736

Support vector machines 0.685 0.713 0.665 0.689 0.683 0.684

Multilayer perceptron 0.684 0.732 0.654 0.693 0.679 0.735

Abbreviation: AUROC, Area under the receiver operating characteristic.

TABLE 4 Model performance on tumor metastasis prediction

Model Accuracy Sensitivity Specificity Precision F1‐score AUROC

Logistic regression 0.800 0.540 0.830 0.769 0.772 0.804

Random forest 0.765 0.417 0.831 0.744 0.753 0.731

XGBoost 0.806 0.548 0.842 0.781 0.786 0.747

Decision tree 0.791 0.498 0.828 0.759 0.765 0.666

K‐nearest neighbor 0.763 0.403 0.826 0.738 0.747 0.682

AdaBoost 0.797 0.518 0.846 0.777 0.784 0.799

Support vector machines 0.793 0.510 0.818 0.754 0.755 0.573

Multilayer perceptron 0.800 0.542 0.828 0.768 0.770 0.802

Abbreviation: AUROC, Area under the receiver operating characteristic.

TABLE 5 The Logistic Regression performance on 3‐year
survival and tumor metastasis prediction for clear cell renal cell
carcinoma

Performance on 3‐year
survival prediction

Performance on tumor
metastasis prediction

AUROC 0.710 AUROC 0.811

Accuracy 0.658 Accuracy 0.826

Sensitivity 0.674 Sensitivity 0.593

Specificity 0.649 Specificity 0.851

Precision 0.661 Precision 0.802

F1‐score 0.653 F1‐score 0.803

Abbreviation: AUROC, Area under the receiver operating characteristic.
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5 | CONCLUSION

The present study developed and compared eight
machine learning models for predicting 3‐year survival
and metastasis of kidney cancer. The variable selection
was based on bother statistical significance and clinical
experiences. In conclusion, Logistic Regression had the
highest area under the receiver operating characteristic
(AUROC) in both 3‐year survival and metastasis predic-
tion scenarios, and the prediction results potentially
provide decision‐making references to clinicians for early
intervention and treatment.
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