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Abstract: Liver fibrosis is characterized by the excessive deposition of extracellular matrix proteins
including collagen that occurs in most types of chronic liver disease. Even though our knowledge of the
cellular and molecular mechanisms of liver fibrosis has deeply improved in the last years, therapeutic
approaches for liver fibrosis remain limited. Profiling and characterization of the post-translational
modifications (PTMs) of proteins, and more specifically NEDDylation and SUMOylation ubiquitin-like
(Ubls) modifications, can provide a better understanding of the liver fibrosis pathology as well as
novel and more effective therapeutic approaches. On this basis, in the last years, several studies
have described how changes in the intermediates of the Ubl cascades are altered during liver fibrosis
and how specific targeting of particular enzymes mediating these ubiquitin-like modifications can
improve liver fibrosis, mainly in in vitro models of hepatic stellate cells, the main fibrogenic cell type,
and in pre-clinical mouse models of liver fibrosis. The development of novel inhibitors of the Ubl
modifications as well as novel strategies to assess the modified proteome can provide new insights
into the overall role of Ubl modifications in liver fibrosis.
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1. Chronic Liver Disease (CLD)

Liver injury induces inflammation, necrosis of hepatocytes, angiogenesis, the wound-healing
response and the accumulation of extracellular matrix (ECM) proteins; followed by a process of
hepatocyte regeneration to replace dead hepatocytes and restore the physiological liver mass [1,2].
Liver fibrosis typically reverts after elimination of the causative injury. However, if the damage persists
and a chronic response is established, liver fibrosis can progress to cirrhosis, which is characterized by
the distortion of the hepatic parenchyma and vascular structures that can eventually lead to hepatic loss
of function and potential loss of reversibility [3]. At this stage, if the injury is not withdrawn, patients
are at risk of end-stage liver disease and complications such as portal hypertension, hepatocellular
carcinoma (HCC), and liver failure [3,4].
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1.1. Etiology and Pathophysiology of Chronic Liver Disease (CLD)

Chronic liver disease (CLD) affects 800 million people worldwide and accounts for approximately
2 million deaths worldwide annually, representing a global major public health issue [4–6]. Alcohol
abuse and associated alcoholic liver disease (ALD), viral hepatitis, and non-alcoholic fatty liver disease
(NAFLD) are the most common causes of CLD. However, inherited disorders (such as alpha antitrypsin
deficiency, hemochromatosis, and cystic fibrosis), drugs, cholestatic disease (such as primary biliary
cholangitis (PBC), and primary sclerosing cholangitis (PSC)), and immune disorders also contribute to
this common pathology [4].

Alcoholic liver disease (ALD) and NAFLD share a similar pathological progression, ranging
from simple steatosis to alcoholic steatohepatitis (ASH) or non-alcoholic steatohepatitis (NASH).
fibrosis, cirrhosis, and HCC [7]. Whereas excessive alcohol consumption is the main cause of ALD,
the pathogenesis of NAFLD is related with obesity, insulin resistance and/or the metabolic syndrome,
gut microbiota dysbiosis, environmental or nutritional factors, and genetic and epigenetic factors
(reviewed by [8]). On the other hand, cholestatic disease [such as primary biliary cholangitis (PBC)
and primary sclerosing cholangitis (PSC)] are associated with chronic damage to the cholangiocytes of
the biliary tree, leading to reductions in the bile flow, persistent injury to the biliary epithelium and
hepatocytes, inflammation, fibrogenesis and potentially carcinogenesis [4,9].

1.2. Liver Fibrosis and Cell Types

Liver damage leads to death of hepatocytes and cholangiocytes, which induces the release of
pro-inflammatory mediators and stimulates phagocytosis of dead cell bodies by liver macrophages,
mainly Kupffer cells and bone marrow-derived recruited monocytes [10]. Macrophages in the liver
can also produce pro-inflammatory factors, such as reactive oxygen species (ROS), CC-chemokine
ligand 2 (CCL2), tumor necrosis factor (TNF), interleukin-6 (IL-6), and 1β (IL-1β), thus triggering
the wound-healing response, and stimulating the production of extracellular matrix components by
myofibroblasts [11].

In ALD, the hepatocyte injury is mainly related to the oxidative metabolism of ethanol, whereas in
NAFLD it depends on the lipotoxicity that induces cell death and lipo-apoptosis. When liver fibrosis
is developed in an onset of ALD or NAFLD, the excessive deposition of ECM proteins is principally
observed around the sinusoids (peri-sinusoidal fibrosis) and around groups of hepatocytes (peri-cellular
fibrosis), and is mainly due to hepatic stellate cells (HSC) [4,12]. When fibrosis is developed in an onset
of cholestasis, in addition to chronic damage to cholangiocytes, bile acids elicit hepatocyte injury and
death [4,13,14]. In chronic diseases of the biliary tract, the excessive deposition of ECM proteins is
principally observed around the injured bile ducts (biliary fibrosis pattern) and is mainly characterized
by the proliferation of reactive ductular cells and myofibroblasts originated from portal fibroblast and
HSC [4,15,16]. However, the contribution of portal fibroblasts to the development of fibrosis after
cholestatic damage, compared to that of the HSC, is controversial [17].

As mentioned before, despite other minor cell sources (reviewed by [4]), HSC are the main sources
of myofibroblasts in response to toxic liver injury [18,19]. In a healthy liver, HSC are in a quiescent state
in which they accumulate retinoids. In response to toxic liver injury, HSC suffer a transdifferentiation
process from a quiescent into an activated phenotype known as myofibroblasts [20]. These activated
HSCs have a higher degree of proliferation and migration, hence repopulating the damaged liver,
acquiring contractility by expressing alpha smooth muscle actin (α-SMA), expressing pro-inflammatory
[(monocyte chemoattractant protein-1 (MCP-1), platelet-derived growth factor (PDGF), mouse stem
cell factor (mSCF), CCL2, and CCL21, as well as IL-1β) and pro-fibrogenic markers (TGF-β)], and as
well as increasing the synthesis of ECM proteins [collagen I (COL1A1) and III (COL1A3), fibronectin
and tissue inhibitor of metalloproteinase (TIMP)], and of pro-angiogenic mediators [like vascular
endothelial growth factor A (VEGFA), angiopoietin-1 or -2, and the homodimer (PDGF-BB)] [21,22].
One of the principal factors involved in HSC-induced proliferation is PDGF, which is upregulated in
the fibrotic liver, whereas transforming growth factor (TGF-β) is the main profibrogenic factor and
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contributes positively to the transdifferentiation process of HSCs into myofibroblasts. Briefly, TGF-β
binds and activates TGF-β receptors (TβR), of which there are three different forms (TβRI, TβRII, and
TβRIII). Smads are the effector proteins of the TGF superfamily ligands. There are 8 Smad proteins
which include: receptor-regulated R-Smads (Smads 1, 2, 3, 5, and 8), common-mediator Co-Smads
(Smad4), and inhibitory I-Smads (Smads 6, 7). When TβRI is activated, Smads are recruited to the
receptor and phosphorylated, resulting in their activation and increased affinity for Smad4. Then the
Smad2/3/4 heteromeric complex translocates to the nucleus, where it has an immediate effect on the
gene expression of several hundred of genes. TGF-β signaling is terminated when the activated Smads
are either dephosphorylated or degraded [23,24].

1.3. Overview of the Current Treatment Options for Chronic Liver Disease and Liver Fibrosis

Current therapeutic interventions targeting CLD are etiology-dependent. Whereas in the last years,
a quantum leap has been made in the therapy of hepatitis-induced CLD thanks to the development
of novel and effective anti-viral drugs [25,26], therapeutic interventions in the case of ALD remain
abstinence, treating the alcohol withdrawal syndrome, nutritional support, glucocorticosteroids or
Pentoxifylline, anti-TNF therapy, antioxidants, or liver transplantation. On the other hand, treatment
options for NAFLD and NASH are mainly directed toward lifestyle changes and weight loss,
in combination with drugs such as insulin sensitizers, lipid lowering agents, hepatoprotective agents,
antioxidants, incretin analogues, and anti-inflammatory agents (reviewed by [7]). First-line treatment
for PBC involves the ursodeoxycholic acid (UDCA), which is able to prevent the progression of the
disease in approximately two thirds of the patients [27–29]. For those PBC patients with insufficient
response or intolerance to UDCA, second-line therapy is obeticholic acid [30,31]. There is currently no
effective pharmacological therapy for PSC being liver transplantation the most definitive treatment [32].

Importantly, current clinical guidelines reinforce that, independently of the etiology of CLD, liver
fibrosis should be the pharmaceutical target stage, once liver fibrosis reversibility is a reality. Taking into
consideration that liver fibrosis is a multi-step disease characterized by pan-cellular and pan-pathway
mechanisms, post-translational modifications (PTMs) of proteins can provide a better understanding
of the liver fibrosis pathology as well as novel and more effective therapeutic approaches.

2. Post-Translational Modifications (PTMs) by Ubiquitin-Like (Ubl) Proteins

Post-translational modifications (PTMs) of proteins play a relevant role in the functional diversity
of the proteome. In most eukaryotes, PTMs refer to the covalent and reversible addition of small
chemical entities into target proteins following protein biosynthesis in order to exert a dynamic control
over protein function in diverse cell biological contexts. The recent advances in the fields of systems
biology and proteomics, have pushed forward the interest in deciphering protein modifications and
their impact on the cellular microenvironment and disease pathophysiology. The most common PTMs
include phosphorylation, acetylation, glycosylation, ubiquitination, acetylation, and hydroxylation,
among others.

Ubiquitination is implicated in the pathogenesis of certain human diseases, including liver fibrosis.
Ubiquitin has shown to be a marker of non-alcoholic liver fibrosis and it is frequently detected
at the border or within the fibrous matrix [33,34]. Under these circumstances, overall changes in
the ubiquitinated proteome may reflect either modifications in the ubiquitination cascade or in the
proteasomal activity. For example, Cai et al. detected, in a rat model of liver fibrosis, a reduced SMAD
specific E3 ubiquitin protein ligase 2 (Smurf-2) mRNA expression, which is a HECT domain E3 Ub
ligase that ubiquitinates nuclear Smads and targets them for proteasomal degradation, resulting in
an increased Smad2 expression [35]. Gp78, an endoplasmic reticulum (ER)-associated E3 Ub ligase,
is also a key player in the ER-associated degradation (ERAD) and responsible for ubiquitination of
lipid metabolism mediators, among others. Loss of Gp78 in aged mice caused NASH with fibrosis as
a result of spontaneous and random ER stress [36]. On the other hand, Wilson and colleagues have
shown that the Ub C-terminal hydrolase L1 (UCHL1) is an absent DUB in quiescent HSCs but its
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expression is increased and positively correlates with HSC transdifferentiation, in pre-clinical mouse
models and in human livers from NASH and ALD patients. Pharmacological inhibition of UCHL1 in
CCl4 and bile-duct ligated (BDL) mice or ablation of UCHL1 in vitro in cultured HSC cells reduces
liver fibrogenesis [37]. Likewise, an increase in mRNA expression and immunoreactivity of synoviolin
which is an E3 Ub ligase has been observed in myofibroblasts. Fibrotic human livers also showed
co-localization of synoviolin and the main fibrotic marker, α-SMA [38]. This compelling evidence
implicating ubiquitination in liver fibrosis led several authors to evaluate the impact of ubiquitin-like
proteins (Ubls)-mediated PTMs in liver fibrosis, the topic of this Review.

Ubiquitin-like proteins (Ubls) are a family of small proteins involved in PTMs, whose name is
derived from ubiquitin, the first discovered member of the family. Besides ubiquitin, the human genome
encodes at least eight families of Ubls, that are considered type I Ubls: (SUMO) small ubiquitin-related
modifier, NEDD8 (neural precursor cell expressed developmentally downregulated protein 8),
ATG8 (autophagy-related protein 8), ATG12 (autophagy-related protein 8), URM1 (ubiquitin-related
modifier 1), UFM1 (ubiquitin-fold modifier 1), FAT10 (human leukocyte antigen-F adjacent transcript
10 or ubiquitin D), and ISG15 (interferon-stimulated gene 15) [39]. Even though, sparse studies have
shown alteration of the levels of some Ubls in liver fibrosis, namely ATG12 related to autophagy [40],
Fat10 and UFM1 [41], and ISG15 specifically in hepatitis C [42], in this Review, we will specially focus
on the relevance of NEDD8 and SUMO proteins in liver fibrosis, whose therapeutic role has been
addressed in liver fibrosis. The main characteristics of these proteins in comparison to ubiquitin can be
found in Table 1.
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Table 1. Characterization of the structure, homology with ubiquitin, size, amino acid, and conservation between species (See Supplementary Materials for species
disclosure) of ubiquitin [43] and the ubiquitin-like (Ubl) proteins, neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) [44] and small
ubiquitin-related modifier (SUMO) [45,46].

Ubls Structure
Identity

with
Ubiquitin

Size
(kDa)

Amino
Acid Highly Conserved between Species

Ubiquitin 100 8.6 76
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2.1. NEDDylation in Liver Fibrosis

NEDDylation is a reversible ubiquitin-like PTM, characterized by the covalent conjugation of
NEDD8. The pathway of the NEDDylation process involves NEDD8 specific enzymes, such as E1
activating enzymes (NAE1 and UBA3); E2 conjugating enzymes (UBE2M/UBC12 and UBE2F); E3 ligase
enzymes, which catalyze NEDD8 transference to the target protein (MDM2, RBX1, FBXO11, RNF7,
CBL, DCUN1D1, and DECUN1D2); and deneddylase enzymes (SENP8/NEDP1, ATXN3, USP21, CPS5,
UCHL1, and UCHL3) [47,48]. Noteworthy, NEDD8 is synthetized as a precursor and must be activated
at the C-terminal Gly76 mainly by NEDP1 [49] in order to be integrated inside the NEDDylation
cycle and conjugated to the lysine residue of target proteins [50]. The conjugation of NEDD8 can
modify its target protein in different ways, such as inducing conformational changes, changing its
subcellular localization, enzymatic activation, or inhibition, competing with other Ubls or inducing its
stability [51,52].

The mechanisms that trigger the deregulation of NEDDylation are not well understood, but it
has been reported that the levels of NEDD8 are increased under stress conditions in vitro [53]. In fact,
alterations in the NEDDylated protein levels have been described in different pathological conditions,
such as neurodegenerative disorders [54] and cancer [48,55,56]. Focusing on the liver context, patients
with HCC and intrahepatic cholangiocarcinoma, as well as mouse models of HCC, showed a significant
increase in the global NEDDylation proteome and NEDDylation intermediates [55–59]. In addition,
under diverse stress conditions, the canonical pathway of NEDDylation via NAE1 changes, being
NEDD8 conjugation predominantly mediated by the Ube1 E1 ubiquitin enzyme [53]. Likewise, in HCC,
where NEDDylation levels are enriched, NEDP1 protein levels disappear promoting the inhibition of
ATPase activity of HSP70 and, thus the apoptosis resistance of cancer cells. Hence, these result shows
how the tight regulation of the NEDD8 cycle can modulate vital cellular functions like apoptosis [60].

Regarding liver fibrosis and NEDDylation, Zubiete-Franco et al. described for the first time an
increase in the global NEDDylated proteome in patients with liver fibrosis as well as in mouse models
of CCl4- and BDL-induced liver fibrosis [61]. Importantly, NAE1-specific inhibition in these mouse
models showed a reduction in the liver damage associated with decreased apoptosis, inflammation,
and fibrosis. These results were explained by the effect of NEDDylation inhibition in the different
hepatic cell subtypes. The decrease in inflammation after NEDDylation inhibition can be explained
in part by the incapacity of Cullin-1 and SCFβTrCP (E3 Ligase) to ubiquitinate and degrade IKBα,
promoting NF-kB stabilization in the cytoplasm [47,48]. Interestingly, in this work the authors describe
how NEDD8 levels increase in activated HSCs, and consequently neddylation inhibition could directly
block its activation. Indeed, after NAE1 inhibition, HSCs show an increase of cell death partly mediated
by c-Jun accumulation, a target of cullin degradation. On the other hand, it has been described
that Casitas B-lineage lymphoma (c-Cbl) acts as a NEDD8 Ligase promoting TGF-β signaling and
stabilization of the type II receptor (TβRII) in blood cells [62]. In agreement with this line of evidence,
other authors have shown very recently that the in vivo inhibition of the transcription factor SRSF3
NEDDylation, associated with its prevention of degradation, protects mice from fibrosis [63].

In conclusion, the NEDDylation inhibition is a key mechanism to down-regulating the
inflammatory response, further reducing cell damage and subsequent liver fibrosis, in addition
to specifically targeting HSC death.

2.2. SUMOylation in Liver Fibrosis

SUMOylation is another ubiquitin-like PTM that consists in the covalent addition of one or
multiple SUMO subunits to Lys residues usually located on the SUMO consensus motifs of target
proteins. SUMOylation occurs as a hierarchically organized process catalyzed by the E1 activating
enzyme, the E2 conjugating enzyme, and an E3 SUMO ligase [64]. The extension of the SUMO chain is
possible thanks to a specialized type of E3 ligase family of enzymes known as E4 SUMO elongases [65].

To date, five SUMO isoforms have been described in humans, being SUMO 1, 2, and 3 the most
ubiquitous. SUMO modifiers are similar in size and structure to ubiquitin, but show little sequence
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homology compared to ubiquitin. SUMO 2 and 3 share approximately 97% identity, whereas SUMO 1
is only 50% identical in sequence. SUMO isoforms differ in several aspects, such as in the E3 ligase
preference or the ability to form SUMO chains on the substrate proteins. Moreover, different functions
and mechanisms of regulation within the cell would be expected since SUMO2/3 conjugation becomes
more relevant under stress conditions [64]. The SUMO E1 activating enzyme is composed by the
SAE1 and UBA2 heterodimer, while Ubc9 is the only E2 SUMO conjugating enzyme recognized.
Conversely, a huge range of E3 SUMO ligases exist, which are grouped in the canonical PIAS family
and non-canonical E3 ligases such as RanBP2 or Cbx4, thus conferring specificity to the process [64].
SUMO-mediated modification can be reversed by the action of deSUMOylating enzymes, which are
also involved in the maturation of the SUMO precursor protein. SENPs belong to the most common
family of protein deSUMOylases but, unrelated DESI1, DESI2, and USPL1 SUMO proteases exist as
well [66]. Since SUMOylation is mostly restricted to the nucleus, it is not a surprising fact that SUMO
is involved in many nuclear processes such as DNA damage response, genome integrity, transcription
regulation, as well as preservation of protein stability and modulation of subcellular localization of the
substrate proteins [67,68].

SUMOylation is a highly dynamic process enabling fast global changes in the SUMO status of the
proteome in response to internal and external stimuli, often stress such as heat shock, nutrient depletion,
genotoxic or oxidative stress [69–72]. This rapid adaptation is possible thanks to several mechanisms
of regulation that can control SUMOylation levels. In addition to deSUMOylases, the SUMO-targeted
ubiquitin ligase (STUbl) enzymes can modify global SUMOylation levels by binding to SUMO
chains on proteins and poly-ubiquitinating them, eventually leading to their proteasome-mediated
degradation. Moreover, a crosstalk between SUMOylation and other PTMs, such as ubiquitination or
phosphorylation, has also been reported to affect the SUMOylation status [73,74]. The localization
of the SUMO enzymatic machinery constitutes an additional critical factor for the modulation of the
SUMOylation levels [64].

Hence, controlled SUMOylation is required for normal cell behavior. According to proteomics
studies, between 1000 and 3000 human proteins are modified by SUMO. The identified SUMOylated
proteins are implicated in almost all cellular processes [66]. A deregulation in SUMOylation dynamics
has been associated with fibrotic disorders occurring in the heart, lung, and kidney, amongst other
diseases [75–77]. And there is increasing evidence that SUMOylation might play a regulatory role in
liver fibrosis too [78–80].

A recent study referred to Ubc9, the only existing SUMO E2 conjugating enzyme, as a potential
therapeutic target for the prevention and treatment of liver fibrosis. Protein and mRNA expression
levels of Ubc9 were described to be significantly upregulated in the LX-2 liver fibrosis in vitro model,
and in the HepG2 and SMMC-7721 HCC cell lines. Interestingly, shRNA-mediated silencing of Ubc9
expression in activated LX-2 cells resulted in a decreased expression of α-SMA and type I collagen
fibrosis markers, as well as a diminished secretion of IL-6 and TNF profibrotic cytokines. Additionally,
downregulation of Ubc9 blocked cell cycle progression and promoted activated LX-2 cell cycle arrest
in G2 phase. Importantly, an induction of apoptosis in activated LX-2 cells was detected after Ubc9
expression knockdown, mainly attributed to the abrogation of the canonical NF-κB signaling pathway,
which is also a known target of SUMOylation [78].

Another piece of work placed the deSUMOylating enzyme SENP2 as a critical protein to
attenuate CCl4-induced liver fibrosis in mice by inducing activated HSC apoptosis via suppression
of Wnt/β-catenin signaling program. SENP2 protein and mRNA expression levels were found to be
decreased both in vitro and in vivo in activated hepatic stellate cells (HSCs) during the CCl4-induced
liver fibrosis mouse model, being those levels restored after removal of the damage stimulus. On the one
hand, in vitro SENP2 overexpression resulted in a decreased α-SMA and COL1A1 protein expression
in a TGF-β-activated hepatic stellate cell line. Moreover, increased expression of SENP2 reduced cell
viability, favored cell cycle arrest in G0/G1 phase and induced apoptosis of the in vitro TGF-β-activated
HSCs. On the other hand, siRNA-mediated silencing of SENP2 in TGF-β-activated HSCs induced
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α-SMA and COL1A1 protein expression, stimulated cell proliferation, and reduced apoptosis. Finally,
the expression of the Wnt/β-catenin pathway members was downregulated upon SENP2 overexpression
in TGF-β-activated HSCs, thus suggesting a therapeutic role of SENP2 in liver fibrosis [79].

Although it has not been specifically studied in the context of liver, various members of the
TGF-β/Smad canonical pathway, which is common to fibrotic processes, have been found to be
SUMOylated [66]. TGF-β type I receptor (TRβI/ALK5), whose phosphorylation and activation
are mediated by TGF-β, is SUMOylated further enhancing the activation and modulation of the
downstream Smad signaling cascade [73]. Furthermore, TGF-β signal transducers Smad proteins
are also postranslationally modified by SUMOylation. For example, Smad4 SUMOylation protects it
from its ubiquitination and subsequent proteasomal degradation [81]. Interestingly, Smad nuclear
interacting protein 1 (SNIP1), a transcription repressor for both TGF-β and NF-κB signaling pathways,
is a SUMO substrate. SNIP1 inhibits the TGF-β signaling by hampering the recruitment of p300
coactivator to the Smad complex, whereas SNIP1 SUMOylation attenuates its inhibitory effect on the
TGF-β response further facilitating the expression of PAI-1 and MMP2 [82]. In summary, it is suggested
that interfering in the SUMOylation of these proteins could be a potential strategy for the treatment of
diseases induced by aberrant TGF-β signaling, which not only includes liver fibrosis but also HCC.
Nevertheless, more focused research is needed regarding the impact of the TGF-β/Smad pathway
SUMOylation in the particular context of liver fibrosis.

Conversely, a study highlights the importance of SUMOylation for liver fibrosis regression.
Reduced glutathione (GSH) is implicated in many cellular processes including fibrogenesis. GSH
protects against oxidative stress, which activates HSCs. Thus, high levels of GSH would maintain HSC in
a quiescent state, and this requires SUMOylation of Nrf2 and MafG, which facilitate heterodimerization
and activation of the antioxidant response element (ARE) located in the promoter region of many
genes involved in the antioxidant defense, such as the GSH synthetic enzymes [80].

Finally, it has also been demonstrated that SUMO 1 and SUMO2/3 could play a role as autoantigens
during PBC, since autoantibodies to these proteins have been detected in the sera of patients suffering
from this autoimmune disease. Nonetheless, further research is needed in order to understand how
the development of SUMO autoantibodies can lead to autoimmunity in PBC [83].

Overall, SUMOylation is a highly dynamic process which can have both beneficial and pathological
consequences in the cellular physiology depending on the protein substrate, cell type, or context.
Therefore, inhibition of global SUMOylation might not always be an ideal therapeutic strategy due
to potential unforeseeable secondary effects. Alternatively, a more realistic rationale would involve
the discovery and development of small molecules or peptidomimetics that block the protein–protein
interactions between specific E3 SUMO ligases or SENPs and their substrates that are known to be
altered in a diseased state.

2.3. Therapeutic Strategies Targeting Ubls Modifications in Liver Fibrosis

As a result of several studies in the last decades about the role of PTMs, specifically Ubl-mediated
protein modifications, and their implication in disease, many therapeutic agents targeting these
modifications have been developed lately (see Reviews [84–87]). Nevertheless, only a small fraction of
these agents was tested in liver fibrosis.

Regarding ubiquitination, the role of the pharmacological inhibitor LDN 57444, an inhibitor
of the deubiquitinase ubiquitin C-terminal hydrolase1 (UCHL1), was also evaluated and shown
to block the progression of established fibrosis in the carbon tetrachloride (CCl4) injured mice [37].
In addition, Indole-3-carbinol (I3C), a naturally occurring compound generated from the hydrolysis of
glucobrassicin and found in high concentrations in Brassica vegetables, was shown to induce apoptosis
of HSC through RIP1 K63 de-ubiquitination by upregulating deubiquitinase CYLD [88].

Therapeutic strategies targeting NEDDylation in liver fibrosis have also been evaluated. As it was
previously mentioned, pre-clinical studies in mouse models have shown that the small pharmacological
inhibitor of NEDDylation, Pevonedistat, or MLN4924 [89], is able to revert liver fibrosis [61].
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Pevonedistat (MLN4924) is a potent and selective NAE1 inhibitor that is currently undergoing
several clinical trials to treat some leukemias and some types of solid organ cancer pathologies. Taking
this into account, translation of Pevonedistat from pre-clinical mouse models to clinical trials for liver
fibrosis treatment should be a fast process. Finally, to our knowledge, the role of the inhibition of the
SUMOylation pathway or specific enzymes of this pathway in liver fibrosis has not been assessed
to date.

3. Concluding Remarks

In the last years, a big effort has been made on the study of the role of PTMs mediated by Ubl
in liver fibrosis (Figure 1). In spite of the improved knowledge obtained on this highly dynamic
and pan-cellular process of liver fibrosis and its regulation by Ubl PTMs, it is clear that novel tools
need to be developed. As an example, in the last years, both tandem ubiquitin-binding entities
(TUBEs) and SUMO-binding entities (SUBEs), were developed [90,91]. Briefly, TUBEs and SUBEs are
recombinant proteins that comprise tandem repeats of either ubiquitin-associated (UBA) domains or
SUMO-interacting motifs (SIMs) thereby recognizing with high affinity ubiquitin and SUMO molecules
on modified proteins, respectively. In the liver context, the use of SUBEs has been used very recently
to demonstrate the relevance of Liver Kinase B1 (LKB1) SUMOylation during the progression to
Hepatocellular Carcinoma (HCC) highlighting its potential for the assessment of ubiquitinated and
SUMOylated proteins in liver fibrosis [92]. Other option is to combine the use of transgenic mice
with tagged Ubl PTMs where fibrosis is experimentally induced followed by isolation of the different
hepatic populations playing a role on the progression of liver fibrosis. For instance, transgenic mouse
models, specially dedicated to the study of the ubiquitin-proteasome system have been developed.
This is the case of the mouse strains transgenic for a green fluorescent protein (GFP) reporter carrying
a constitutively active degradation signal [93]. Moreover, Mayor and colleagues have developed
a transgenic mouse expressing biotinylated ubiquitin and demonstrated its use for the isolation
of ubiquitinated proteins from the liver by taking advantage of the specificity and strength of the
biotin-avidin interaction [94]. Even though similar approaches for other Ubl modifications, such
as NEDD8 and SUMO, have been used in cultured cells [95], novel in vivo approaches should be
investigated. Importantly, studies to analyze the intermediates on the multiple types of hepatic cells
participating in liver fibrosis and not only on HSC, as occurs in the majority of the studies found in
literature, should be performed. And the reason for that is that to cure fibrosis is important not only
to promote the apoptosis and the reversal of the activation of HSCs, but also to take out the injury
insult mainly acting on liver hepatocytes, that is in fact driving the liver fibrosis cascade. Finally,
regarding potential therapeutic approaches targeting Ubl PTMs, compelling evidence indicates that
whereas NEDDylation inhibition provides a global mechanism for reversing liver fibrosis, with respect
to ubiquitination and SUMOylation, we believe that potential therapeutic approaches in liver fibrosis
should be more specific aiming at specific ligases with targets playing an important role in the fibrosis
pathogenic processes.
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Figure 1. Schematic representation of the post-translational modifications (PTMs) described to date
occurring in the main hepatic cell types involved during liver fibrosis, hepatocytes, Kupffer cells (KCs),
and hepatic stellate cells (HSCs). Damage causing the transition from a normal healthy liver to a fibrotic
liver are also referred, as well as the small-molecule inhibitors of PTMs that have resulted effective in
the reversion of liver fibrosis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/8/12/1575/s1,
Table S1: UNIPROT entry of the different species where homology of the Ubls was compared.

Author Contributions: Writing—original draft preparation, All; writing—review and editing, All.

Funding: This research was funded by Gobierno Vasco-Departamento de Salud 2013111114 (to M.L.M.-C.),
ELKARTEK 2016, Departamento de Industria del Gobierno Vasco (to M.L.M.-C.), Ministerio de Ciencia, Innovación
y Universidades MICINN: SAF2017-87301-R and RTI2018-096759-1-100 integrado en el Plan Estatal de Investigación
Cientifica y Técnica y Innovación, cofinanciado con Fondos FEDER (to M.L.M.-C. and T.C.D. respectively), BIOEF
(Basque Foundation for Innovation and Health Research): EITB Maratoia BIO15/CA/014; Asociación Española
contra el Cáncer (M.S.-M., T.C.D. and M.L.M.-C.), Daniel Alagille Award from EASL (to T.C.D.), Fundación
Científica de la Asociación Española Contra el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017
(to M.L.M.-C.), La Caixa Foundation Program (to M.L.M.-C.). Gilead Sciences International Research Scholars
Program in Liver Disease (to M.V.-R.). Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III.
We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644).

Conflicts of Interest: Martínez-Chantar advises for Mitotherapeutix LLC.

http://www.mdpi.com/2073-4409/8/12/1575/s1


Cells 2019, 8, 1575 11 of 15

References

1. Pellicoro, A.; Ramachandran, P.; Iredale, J.P.; Fallowfield, J.A. Liver fibrosis and repair: Immune regulation
of wound healing in a solid organ. Nat. Rev. Immunol. 2014, 14, 181–194. [CrossRef] [PubMed]

2. Campana, L.; Iredale, J.P. Regression of Liver Fibrosis. Semin. Liver Dis. 2017, 37, 1–10. [PubMed]
3. Yoon, Y.J.; Friedman, S.L.; Lee, Y.A. Antifibrotic Therapies: Where Are We Now? Semin. Liver Dis. 2016, 36,

87–98. [CrossRef] [PubMed]
4. Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Asp.

Med. 2019, 65, 37–55. [CrossRef]
5. Byass, P. The global burden of liver disease: A challenge for methods and for public health. BMC Med. 2014,

12, 159. [CrossRef]
6. Marcellin, P.; Kutala, B.K. Liver diseases: A major, neglected global public health problem requiring urgent

actions and large-scale screening. Liver Int. 2018, 38 (Suppl. 1), 2–6. [CrossRef]
7. Singh, S.; Osna, N.A.; Kharbanda, K.K. Treatment options for alcoholic and non-alcoholic fatty liver disease:

A review. World J. Gastroenterol. 2017, 23, 6549–6570. [CrossRef]
8. Arab, J.P.; Arrese, M.; Trauner, M. Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease.

Annu. Rev. Pathol. 2018, 13, 321–350. [CrossRef]
9. Fabris, L.; Spirli, C.; Cadamuro, M.; Fiorotto, R.; Strazzabosco, M. Emerging concepts in biliary repair and

fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 313, G102–G116. [CrossRef]
10. Guillot, A.; Tacke, F. Liver Macrophages: Old Dogmas and New Insights. Hepatol. Commun. 2019, 3, 730–743.

[CrossRef]
11. An, L.; Wang, X.; Cederbaum, A.I. Cytokines in alcoholic liver disease. Arch. Toxicol. 2012, 86, 1337–1348.

[CrossRef] [PubMed]
12. Pinzani, M.; Rombouts, K. Liver fibrosis: From the bench to clinical targets. Dig. Liver Dis. 2004, 36, 231–242.

[CrossRef] [PubMed]
13. Hofmann, A.F.; Hagey, L.R. Bile acids: Chemistry, pathochemistry, biology, pathobiology, and therapeutics.

Cell Mol. Life Sci. 2008, 65, 2461–2483. [CrossRef] [PubMed]
14. Arndtz, K.; Hirschfield, G.M. The Pathogenesis of Autoimmune Liver Disease. Dig. Dis. 2016, 34, 327–333.

[CrossRef]
15. Iwaisako, K.; Haimerl, M.; Paik, Y.H.; Taura, K.; Kodama, Y.; Sirlin, C.; Yu, E.; Yu, R.T.; Downes, M.;

Evans, R.M.; et al. Protection from liver fibrosis by a peroxisome proliferator-activated receptor delta agonist.
Proc. Natl. Acad. Sci. USA 2012, 109, E1369–E1376. [CrossRef]

16. Wells, R.G.; Schwabe, R.F. Origin and function of myofibroblasts in the liver. Semin. Liver Dis. 2015, 35, e1.
[CrossRef]

17. Karin, D.; Koyama, Y.; Brenner, D.; Kisseleva, T. The characteristics of activated portal
fibroblasts/myofibroblasts in liver fibrosis. Differentiation 2016, 92, 84–92. [CrossRef]

18. Friedman, S.L. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev.
2008, 88, 125–172. [CrossRef]

19. Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol.
2017, 14, 397–411. [CrossRef]

20. Zhang, D.Y.; Friedman, S.L. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology 2012, 56,
769–775. [CrossRef]

21. Arriazu, E.; Ruiz de Galarreta, M.; Cubero, F.J.; Varela-Rey, M.; Perez de Obanos, M.P.; Leung, T.M.;
Lopategi, A.; Benedicto, A.; Abraham-Enachescu, I.; Nieto, N. Extracellular matrix and liver disease. Antioxid.
Redox Signal. 2014, 21, 1078–1097. [CrossRef] [PubMed]

22. Bataller, R.; Brenner, D.A. Liver fibrosis. J. Clin. Investig. 2005, 115, 209–218. [CrossRef] [PubMed]
23. Weiss, A.; Attisano, L. The TGFbeta superfamily signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 2013, 2,

47–63. [CrossRef] [PubMed]
24. Kang, Y.; Chen, C.R.; Massague, J. A self-enabling TGFbeta response coupled to stress signaling: Smad

engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell 2003, 11, 915–926.
[CrossRef]

25. Okada, M.; Enomoto, M.; Kawada, N.; Nguyen, M.H. Effects of antiviral therapy in patients with chronic
hepatitis B and cirrhosis. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 1095–1104. [CrossRef]

http://dx.doi.org/10.1038/nri3623
http://www.ncbi.nlm.nih.gov/pubmed/24566915
http://www.ncbi.nlm.nih.gov/pubmed/28201843
http://dx.doi.org/10.1055/s-0036-1571295
http://www.ncbi.nlm.nih.gov/pubmed/26870935
http://dx.doi.org/10.1016/j.mam.2018.09.002
http://dx.doi.org/10.1186/s12916-014-0159-5
http://dx.doi.org/10.1111/liv.13682
http://dx.doi.org/10.3748/wjg.v23.i36.6549
http://dx.doi.org/10.1146/annurev-pathol-020117-043617
http://dx.doi.org/10.1152/ajpgi.00452.2016
http://dx.doi.org/10.1002/hep4.1356
http://dx.doi.org/10.1007/s00204-012-0814-6
http://www.ncbi.nlm.nih.gov/pubmed/22367091
http://dx.doi.org/10.1016/j.dld.2004.01.003
http://www.ncbi.nlm.nih.gov/pubmed/15115333
http://dx.doi.org/10.1007/s00018-008-7568-6
http://www.ncbi.nlm.nih.gov/pubmed/18488143
http://dx.doi.org/10.1159/000444471
http://dx.doi.org/10.1073/pnas.1202464109
http://dx.doi.org/10.1055/s-0035-1554915
http://dx.doi.org/10.1016/j.diff.2016.07.001
http://dx.doi.org/10.1152/physrev.00013.2007
http://dx.doi.org/10.1038/nrgastro.2017.38
http://dx.doi.org/10.1002/hep.25670
http://dx.doi.org/10.1089/ars.2013.5697
http://www.ncbi.nlm.nih.gov/pubmed/24219114
http://dx.doi.org/10.1172/JCI24282
http://www.ncbi.nlm.nih.gov/pubmed/15690074
http://dx.doi.org/10.1002/wdev.86
http://www.ncbi.nlm.nih.gov/pubmed/23799630
http://dx.doi.org/10.1016/S1097-2765(03)00109-6
http://dx.doi.org/10.1080/17474124.2017.1361822


Cells 2019, 8, 1575 12 of 15

26. Navasa, M.; Forns, X. Antiviral therapy in HCV decompensated cirrhosis: To treat or not to treat? J. Hepatol.
2007, 46, 185–188. [CrossRef]

27. Terziroli Beretta-Piccoli, B.; Mieli-Vergani, G.; Vergani, D.; Vierling, J.M.; Adams, D.; Alpini, G.; Banales, J.M.;
Beuers, U.; Bjornsson, E.; Bowlus, C.; et al. The challenges of primary biliary cholangitis: What is new and
what needs to be done. J. Autoimmun. 2019, 102328. [CrossRef]

28. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: The diagnosis and
management of patients with primary biliary cholangitis. J. Hepatol. 2017, 67, 145–172. [CrossRef]

29. Lindor, K.D.; Bowlus, C.L.; Boyer, J.; Levy, C.; Mayo, M. Primary Biliary Cholangitis: 2018 Practice Guidance
from the American Association for the Study of Liver Diseases. Hepatology 2019, 69, 394–419. [CrossRef]

30. Nevens, F.; Andreone, P.; Mazzella, G.; Strasser, S.I.; Bowlus, C.; Invernizzi, P.; Drenth, J.P.; Pockros, P.J.;
Regula, J.; Beuers, U.; et al. A Placebo-Controlled Trial of Obeticholic Acid in Primary Biliary Cholangitis.
N. Engl. J. Med. 2016, 375, 631–643. [CrossRef]

31. Trauner, M.; Nevens, F.; Shiffman, M.L.; Drenth, J.P.H.; Bowlus, C.L.; Vargas, V.; Andreone, P.;
Hirschfield, G.M.; Pencek, R.; Malecha, E.S.; et al. Long-term efficacy and safety of obeticholic acid
for patients with primary biliary cholangitis: 3-year results of an international open-label extension study.
Lancet Gastroenterol. Hepatol. 2019, 4, 445–453. [CrossRef]

32. Karlsen, T.H.; Folseraas, T.; Thorburn, D.; Vesterhus, M. Primary sclerosing cholangitis—A comprehensive
review. J. Hepatol. 2017, 67, 1298–1323. [CrossRef] [PubMed]

33. Banner, B.F.; Savas, L.; Zivny, J.; Tortorelli, K.; Bonkovsky, H.L. Ubiquitin as a marker of cell injury in
nonalcoholic steatohepatitis. Am. J. Clin. Pathol. 2000, 114, 860–866. [CrossRef] [PubMed]

34. Guy, C.D.; Suzuki, A.; Burchette, J.L.; Brunt, E.M.; Abdelmalek, M.F.; Cardona, D.; McCall, S.J.; Unalp, A.;
Belt, P.; Ferrell, L.D.; et al. Costaining for keratins 8/18 plus ubiquitin improves detection of hepatocyte injury
in nonalcoholic fatty liver disease. Hum. Pathol. 2012, 43, 790–800. [CrossRef] [PubMed]

35. Cai, Y.; Shen, X.Z.; Zhou, C.H.; Wang, J.Y. Abnormal expression of Smurf2 during the process of rat liver
fibrosis. Chin. J. Dig. Dis. 2006, 7, 237–245. [CrossRef] [PubMed]

36. Zhang, T.; Kho, D.H.; Wang, Y.; Harazono, Y.; Nakajima, K.; Xie, Y.; Raz, A. Gp78, an E3 ubiquitin ligase
acts as a gatekeeper suppressing nonalcoholic steatohepatitis (NASH) and liver cancer. PLoS ONE 2015, 10,
e0118448. [CrossRef] [PubMed]

37. Wilson, C.L.; Murphy, L.B.; Leslie, J.; Kendrick, S.; French, J.; Fox, C.R.; Sheerin, N.S.; Fisher, A.; Robinson, J.H.;
Tiniakos, D.G.; et al. Ubiquitin C-terminal hydrolase 1: A novel functional marker for liver myofibroblasts
and a therapeutic target in chronic liver disease. J. Hepatol. 2015, 63, 1421–1428. [CrossRef]

38. Hasegawa, D.; Fujii, R.; Yagishita, N.; Matsumoto, N.; Aratani, S.; Izumi, T.; Azakami, K.; Nakazawa, M.;
Fujita, H.; Sato, T.; et al. E3 ubiquitin ligase synoviolin is involved in liver fibrogenesis. PLoS ONE 2010, 5,
e13590. [CrossRef]

39. Cappadocia, L.; Lima, C.D. Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism.
Chem. Rev. 2018, 118, 889–918. [CrossRef]

40. Kim, K.M.; Han, C.Y.; Kim, J.Y.; Cho, S.S.; Kim, Y.S.; Koo, J.H.; Lee, J.M.; Lim, S.C.; Kang, K.W.; Kim, J.S.;
et al. Galpha12 overexpression induced by miR-16 dysregulation contributes to liver fibrosis by promoting
autophagy in hepatic stellate cells. J. Hepatol. 2018, 68, 493–504. [CrossRef]

41. Liu, H.; Li, J.; Tillman, B.; French, B.A.; French, S.W. Ufmylation and FATylation pathways are downregulated
in human alcoholic and nonalcoholic steatohepatitis, and mice fed DDC, where Mallory-Denk bodies (MDBs)
form. Exp. Mol. Pathol. 2014, 97, 81–88. [CrossRef] [PubMed]

42. Lebosse, F.; Testoni, B.; Fresquet, J.; Facchetti, F.; Galmozzi, E.; Fournier, M.; Hervieu, V.; Berthillon, P.;
Berby, F.; Bordes, I.; et al. Intrahepatic innate immune response pathways are downregulated in untreated
chronic hepatitis B. J. Hepatol. 2017, 66, 897–909. [CrossRef] [PubMed]

43. Goldstein, G.; Scheid, M.; Hammerling, U.; Schlesinger, D.H.; Niall, H.D.; Boyse, E.A. Isolation of a
polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living
cells. Proc. Natl. Acad. Sci. USA 1975, 72, 11–15. [CrossRef] [PubMed]

44. Kumar, S.; Tomooka, Y.; Noda, M. Identification of a set of genes with developmentally down-regulated
expression in the mouse brain. Biochem. Biophys. Res. Commun. 1992, 185, 1155–1161. [CrossRef]

45. Mahajan, R.; Delphin, C.; Guan, T.; Gerace, L.; Melchior, F. A small ubiquitin-related polypeptide involved in
targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 1997, 88, 97–107. [CrossRef]

http://dx.doi.org/10.1016/j.jhep.2006.11.001
http://dx.doi.org/10.1016/j.jaut.2019.102328
http://dx.doi.org/10.1016/j.jhep.2017.03.022
http://dx.doi.org/10.1002/hep.30145
http://dx.doi.org/10.1056/NEJMoa1509840
http://dx.doi.org/10.1016/S2468-1253(19)30094-9
http://dx.doi.org/10.1016/j.jhep.2017.07.022
http://www.ncbi.nlm.nih.gov/pubmed/28802875
http://dx.doi.org/10.1309/4UBB-BF78-F55V-50KA
http://www.ncbi.nlm.nih.gov/pubmed/11338474
http://dx.doi.org/10.1016/j.humpath.2011.07.007
http://www.ncbi.nlm.nih.gov/pubmed/22036053
http://dx.doi.org/10.1111/j.1443-9573.2006.00275.x
http://www.ncbi.nlm.nih.gov/pubmed/17054587
http://dx.doi.org/10.1371/journal.pone.0118448
http://www.ncbi.nlm.nih.gov/pubmed/25789613
http://dx.doi.org/10.1016/j.jhep.2015.07.034
http://dx.doi.org/10.1371/journal.pone.0013590
http://dx.doi.org/10.1021/acs.chemrev.6b00737
http://dx.doi.org/10.1016/j.jhep.2017.10.011
http://dx.doi.org/10.1016/j.yexmp.2014.05.010
http://www.ncbi.nlm.nih.gov/pubmed/24893112
http://dx.doi.org/10.1016/j.jhep.2016.12.024
http://www.ncbi.nlm.nih.gov/pubmed/28043874
http://dx.doi.org/10.1073/pnas.72.1.11
http://www.ncbi.nlm.nih.gov/pubmed/1078892
http://dx.doi.org/10.1016/0006-291X(92)91747-E
http://dx.doi.org/10.1016/S0092-8674(00)81862-0


Cells 2019, 8, 1575 13 of 15

46. Matunis, M.J.; Coutavas, E.; Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the
Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol.
1996, 135, 1457–1470. [CrossRef]

47. Enchev, R.I.; Schulman, B.A.; Peter, M. Protein neddylation: Beyond cullin-RING ligases. Nat. Rev. Mol. Cell
Biol. 2015, 16, 30–44. [CrossRef]

48. Abidi, N.; Xirodimas, D.P. Regulation of cancer-related pathways by protein NEDDylation and strategies for
the use of NEDD8 inhibitors in the clinic. Endocr. Relat. Cancer 2015, 22, T55–T70. [CrossRef]

49. Mendoza, H.M.; Shen, L.N.; Botting, C.; Lewis, A.; Chen, J.; Ink, B.; Hay, R.T. NEDP1, a highly conserved
cysteine protease that deNEDDylates Cullins. J. Biol. Chem. 2003, 278, 25637–25643. [CrossRef]

50. Sundqvist, A.; Liu, G.; Mirsaliotis, A.; Xirodimas, D.P. Regulation of nucleolar signalling to p53 through
NEDDylation of L11. EMBO Rep. 2009, 10, 1132–1139. [CrossRef]

51. Rabut, G.; Peter, M. Function and regulation of protein neddylation. ‘Protein modifications: Beyond the
usual suspects’ review series. EMBO Rep. 2008, 9, 969–976. [CrossRef] [PubMed]

52. Dye, B.T.; Schulman, B.A. Structural mechanisms underlying posttranslational modification by ubiquitin-like
proteins. Annu Rev. Biophys. Biomol. Struct. 2007, 36, 131–150. [CrossRef] [PubMed]

53. Leidecker, O.; Matic, I.; Mahata, B.; Pion, E.; Xirodimas, D.P. The ubiquitin E1 enzyme Ube1 mediates NEDD8
activation under diverse stress conditions. Cell Cycle 2012, 11, 1142–1150. [CrossRef] [PubMed]

54. Chen, Y.; Neve, R.L.; Liu, H. Neddylation dysfunction in Alzheimer’s disease. J. Cell Mol. Med. 2012, 16,
2583–2591. [CrossRef] [PubMed]

55. Barbier-Torres, L.; Delgado, T.C.; Garcia-Rodriguez, J.L.; Zubiete-Franco, I.; Fernandez-Ramos, D.; Buque, X.;
Cano, A.; Gutierrez-de Juan, V.; Fernandez-Dominguez, I.; Lopitz-Otsoa, F.; et al. Stabilization of LKB1 and
Akt by neddylation regulates energy metabolism in liver cancer. Oncotarget 2015, 6, 2509–2523. [CrossRef]

56. Yu, J.; Huang, W.L.; Xu, Q.G.; Zhang, L.; Sun, S.H.; Zhou, W.P.; Yang, F. Overactivated neddylation pathway
in human hepatocellular carcinoma. Cancer Med. 2018, 7, 3363–3372. [CrossRef]

57. Delgado, T.C.; Barbier-Torres, L.; Zubiete-Franco, I.; Lopitz-Otsoa, F.; Varela-Rey, M.; Fernandez-Ramos, D.;
Martinez-Chantar, M.L. Neddylation, a novel paradigm in liver cancer. Transl. Gastroenterol. Hepatol. 2018, 3,
37. [CrossRef]

58. Gao, Q.; Yu, G.Y.; Shi, J.Y.; Li, L.H.; Zhang, W.J.; Wang, Z.C.; Yang, L.X.; Duan, M.; Zhao, H.; Wang, X.Y.; et al.
Neddylation pathway is up-regulated in human intrahepatic cholangiocarcinoma and serves as a potential
therapeutic target. Oncotarget 2014, 5, 7820–7832. [CrossRef]

59. Embade, N.; Fernandez-Ramos, D.; Varela-Rey, M.; Beraza, N.; Sini, M.; Gutierrez de Juan, V.; Woodhoo, A.;
Martinez-Lopez, N.; Rodriguez-Iruretagoyena, B.; Bustamante, F.J.; et al. Murine double minute 2 regulates
Hu antigen R stability in human liver and colon cancer through NEDDylation. Hepatology 2012, 55, 1237–1248.
[CrossRef]

60. Bailly, A.P.; Perrin, A.; Serrano-Macia, M.; Maghames, C.; Leidecker, O.; Trauchessec, H.;
Martinez-Chantar, M.L.; Gartner, A.; Xirodimas, D.P. The Balance between Mono- and NEDD8-Chains
Controlled by NEDP1 upon DNA Damage Is a Regulatory Module of the HSP70 ATPase Activity. Cell Rep.
2019, 29, 212–224. [CrossRef]

61. Zubiete-Franco, I.; Fernandez-Tussy, P.; Barbier-Torres, L.; Simon, J.; Fernandez-Ramos, D.; Lopitz-Otsoa, F.;
Gutierrez-de Juan, V.; de Davalillo, S.L.; Duce, A.M.; Iruzubieta, P.; et al. Deregulated neddylation in liver
fibrosis. Hepatology 2017, 65, 694–709. [CrossRef] [PubMed]

62. Zuo, W.; Huang, F.; Chiang, Y.J.; Li, M.; Du, J.; Ding, Y.; Zhang, T.; Lee, H.W.; Jeong, L.S.; Chen, Y.; et al.
c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-beta type II receptor.
Mol. Cell 2013, 49, 499–510. [CrossRef] [PubMed]

63. Kumar, D.; Das, M.; Sauceda, C.; Ellies, L.G.; Kuo, K.; Parwal, P.; Kaur, M.; Jih, L.; Bandyopadhyay, G.K.;
Burton, D.; et al. Degradation of splicing factor SRSF3 contributes to progressive liver disease. J. Clin.
Investig. 2019, 130, 4477–4491. [CrossRef] [PubMed]

64. Zhao, X. SUMO-Mediated Regulation of Nuclear Functions and Signaling Processes. Mol. Cell 2018, 71,
409–418. [CrossRef]

65. Eisenhardt, N.; Chaugule, V.K.; Koidl, S.; Droescher, M.; Dogan, E.; Rettich, J.; Sutinen, P.; Imanishi, S.Y.;
Hofmann, K.; Palvimo, J.J.; et al. A new vertebrate SUMO enzyme family reveals insights into SUMO-chain
assembly. Nat. Struct. Mol. Biol. 2015, 22, 959–967. [CrossRef]

http://dx.doi.org/10.1083/jcb.135.6.1457
http://dx.doi.org/10.1038/nrm3919
http://dx.doi.org/10.1530/ERC-14-0315
http://dx.doi.org/10.1074/jbc.M212948200
http://dx.doi.org/10.1038/embor.2009.178
http://dx.doi.org/10.1038/embor.2008.183
http://www.ncbi.nlm.nih.gov/pubmed/18802447
http://dx.doi.org/10.1146/annurev.biophys.36.040306.132820
http://www.ncbi.nlm.nih.gov/pubmed/17477837
http://dx.doi.org/10.4161/cc.11.6.19559
http://www.ncbi.nlm.nih.gov/pubmed/22370482
http://dx.doi.org/10.1111/j.1582-4934.2012.01604.x
http://www.ncbi.nlm.nih.gov/pubmed/22805479
http://dx.doi.org/10.18632/oncotarget.3191
http://dx.doi.org/10.1002/cam4.1578
http://dx.doi.org/10.21037/tgh.2018.06.05
http://dx.doi.org/10.18632/oncotarget.2309
http://dx.doi.org/10.1002/hep.24795
http://dx.doi.org/10.1016/j.celrep.2019.08.070
http://dx.doi.org/10.1002/hep.28933
http://www.ncbi.nlm.nih.gov/pubmed/28035772
http://dx.doi.org/10.1016/j.molcel.2012.12.002
http://www.ncbi.nlm.nih.gov/pubmed/23290524
http://dx.doi.org/10.1172/JCI127374
http://www.ncbi.nlm.nih.gov/pubmed/31393851
http://dx.doi.org/10.1016/j.molcel.2018.07.027
http://dx.doi.org/10.1038/nsmb.3114


Cells 2019, 8, 1575 14 of 15

66. Hendriks, I.A.; Vertegaal, A.C. A comprehensive compilation of SUMO proteomics. Nat. Rev. Mol. Cell Biol.
2016, 17, 581–595. [CrossRef]

67. Muller, S.; Ledl, A.; Schmidt, D. SUMO: A regulator of gene expression and genome integrity. Oncogene 2004,
23, 1998–2008. [CrossRef]

68. Jackson, S.P.; Durocher, D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell 2013, 49,
795–807. [CrossRef]

69. Golebiowski, F.; Matic, I.; Tatham, M.H.; Cole, C.; Yin, Y.; Nakamura, A.; Cox, J.; Barton, G.J.; Mann, M.;
Hay, R.T. System-wide changes to SUMO modifications in response to heat shock. Sci. Signal. 2009, 2, ra24.
[CrossRef]

70. Yang, W.; Thompson, J.W.; Wang, Z.; Wang, L.; Sheng, H.; Foster, M.W.; Moseley, M.A.; Paschen, W. Analysis
of oxygen/glucose-deprivation-induced changes in SUMO3 conjugation using SILAC-based quantitative
proteomics. J. Proteome Res. 2012, 11, 1108–1117. [CrossRef]

71. Psakhye, I.; Jentsch, S. Protein group modification and synergy in the SUMO pathway as exemplified in
DNA repair. Cell 2012, 151, 807–820. [CrossRef] [PubMed]

72. Bossis, G.; Melchior, F. Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes.
Mol. Cell 2006, 21, 349–357. [CrossRef] [PubMed]

73. Kang, J.S.; Saunier, E.F.; Akhurst, R.J.; Derynck, R. The type I TGF-beta receptor is covalently modified and
regulated by sumoylation. Nat. Cell Biol. 2008, 10, 654–664. [CrossRef] [PubMed]

74. Desterro, J.M.; Rodriguez, M.S.; Hay, R.T. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB
activation. Mol. Cell 1998, 2, 233–239. [CrossRef]

75. Liu, Y.; Zhao, D.; Qiu, F.; Zhang, L.L.; Liu, S.K.; Li, Y.Y.; Liu, M.T.; Wu, D.; Wang, J.X.; Ding, X.Q.; et al.
Manipulating PML SUMOylation via Silencing UBC9 and RNF4 Regulates Cardiac Fibrosis. Mol. Ther. 2017,
25, 666–678. [CrossRef]

76. Ahner, A.; Gong, X.; Frizzell, R.A. Divergent signaling via SUMO modification: Potential for CFTR
modulation. Am. J. Physiol. Cell Physiol. 2016, 310, C175–C180. [CrossRef]

77. Arvaniti, E.; Vakrakou, A.; Kaltezioti, V.; Stergiopoulos, A.; Prakoura, N.; Politis, P.K.; Charonis, A. Nuclear
receptor NR5A2 is involved in the calreticulin gene regulation during renal fibrosis. Biochim. Biophys. Acta
2016, 1862, 1774–1785. [CrossRef]

78. Fang, S.; Yuan, J.; Shi, Q.; Xu, T.; Fu, Y.; Wu, Z.; Guo, W. Downregulation of UBC9 promotes apoptosis of
activated human LX-2 hepatic stellate cells by suppressing the canonical NF-kappaB signaling pathway.
PLoS ONE 2017, 12, e0174374.

79. Bu, F.T.; Chen, Y.; Yu, H.X.; Chen, X.; Yang, Y.; Pan, X.Y.; Wang, Q.; Wu, Y.T.; Huang, C.; Meng, X.M.; et al.
SENP2 alleviates CCl4-induced liver fibrosis by promoting activated hepatic stellate cell apoptosis and
reversion. Toxicol. Lett. 2018, 289, 86–98. [CrossRef]

80. Ramani, K.; Tomasi, M.L.; Yang, H.; Ko, K.; Lu, S.C. Mechanism and significance of changes in
glutamate-cysteine ligase expression during hepatic fibrogenesis. J. Biol. Chem. 2012, 287, 36341–36355.
[CrossRef]

81. Lin, X.; Liang, M.; Liang, Y.Y.; Brunicardi, F.C.; Feng, X.H. SUMO-1/Ubc9 promotes nuclear accumulation and
metabolic stability of tumor suppressor Smad4. J. Biol. Chem. 2003, 278, 31043–31048. [CrossRef] [PubMed]

82. Liu, S.; Long, J.; Yuan, B.; Zheng, M.; Xiao, M.; Xu, J.; Lin, X.; Feng, X.H. SUMO Modification Reverses
Inhibitory Effects of Smad Nuclear Interacting Protein-1 in TGF-beta Responses. J. Biol. Chem. 2016, 291,
24418–24430. [CrossRef] [PubMed]

83. Janka, C.; Selmi, C.; Gershwin, M.E.; Will, H.; Sternsdorf, T. Small ubiquitin-related modifiers: A novel and
independent class of autoantigens in primary biliary cirrhosis. Hepatology 2005, 41, 609–616. [CrossRef]
[PubMed]

84. Veggiani, G.; Gerpe, M.C.R.; Sidhu, S.S.; Zhang, W. Emerging drug development technologies targeting
ubiquitination for cancer therapeutics. Pharmacol. Ther. 2019, 199, 139–154. [CrossRef]

85. Wertz, I.E.; Murray, J.M. Structurally-defined deubiquitinase inhibitors provide opportunities to investigate
disease mechanisms. Drug Discov. Today Technol. 2019, 31, 109–123. [CrossRef]

86. Liu, J.; Shaik, S.; Dai, X.; Wu, Q.; Zhou, X.; Wang, Z.; Wei, W. Targeting the ubiquitin pathway for cancer
treatment. Biochim. Biophys. Acta 2015, 1855, 50–60. [CrossRef]

87. Zhou, Y.; Ji, C.; Cao, M.; Guo, M.; Huang, W.; Ni, W.; Meng, L.; Yang, H.; Wei, J.F. Inhibitors targeting the
SUMOylation pathway: A patent review 20122015 (Review). Int. J. Mol. Med. 2018, 41, 3–12. [CrossRef]

http://dx.doi.org/10.1038/nrm.2016.81
http://dx.doi.org/10.1038/sj.onc.1207415
http://dx.doi.org/10.1016/j.molcel.2013.01.017
http://dx.doi.org/10.1126/scisignal.2000282
http://dx.doi.org/10.1021/pr200834f
http://dx.doi.org/10.1016/j.cell.2012.10.021
http://www.ncbi.nlm.nih.gov/pubmed/23122649
http://dx.doi.org/10.1016/j.molcel.2005.12.019
http://www.ncbi.nlm.nih.gov/pubmed/16455490
http://dx.doi.org/10.1038/ncb1728
http://www.ncbi.nlm.nih.gov/pubmed/18469808
http://dx.doi.org/10.1016/S1097-2765(00)80133-1
http://dx.doi.org/10.1016/j.ymthe.2016.12.021
http://dx.doi.org/10.1152/ajpcell.00124.2015
http://dx.doi.org/10.1016/j.bbadis.2016.06.013
http://dx.doi.org/10.1016/j.toxlet.2018.03.010
http://dx.doi.org/10.1074/jbc.M112.370775
http://dx.doi.org/10.1074/jbc.C300112200
http://www.ncbi.nlm.nih.gov/pubmed/12813045
http://dx.doi.org/10.1074/jbc.M116.755850
http://www.ncbi.nlm.nih.gov/pubmed/27703003
http://dx.doi.org/10.1002/hep.20619
http://www.ncbi.nlm.nih.gov/pubmed/15726652
http://dx.doi.org/10.1016/j.pharmthera.2019.03.003
http://dx.doi.org/10.1016/j.ddtec.2019.02.003
http://dx.doi.org/10.1016/j.bbcan.2014.11.005
http://dx.doi.org/10.3892/ijmm.2017.3231


Cells 2019, 8, 1575 15 of 15

88. Li, B.; Cong, M.; Zhu, Y.; Xiong, Y.; Jin, W.; Wan, Y.; Zhou, Y.; Ao, Y.; Wang, H. Indole-3-Carbinol Induces
Apoptosis of Hepatic Stellate Cells through K63 De-Ubiquitination of RIP1 in Rats. Cell Physiol. Biochem.
2017, 41, 1481–1490. [CrossRef]

89. Soucy, T.A.; Smith, P.G.; Milhollen, M.A.; Berger, A.J.; Gavin, J.M.; Adhikari, S.; Brownell, J.E.; Burke, K.E.;
Cardin, D.P.; Critchley, S.; et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer.
Nature 2009, 458, 732–736. [CrossRef]

90. Hjerpe, R.; Aillet, F.; Lopitz-Otsoa, F.; Lang, V.; England, P.; Rodriguez, M.S. Efficient protection and
isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep. 2009, 10, 1250–1258.
[CrossRef]

91. Da Silva-Ferrada, E.; Xolalpa, W.; Lang, V.; Aillet, F.; Martin-Ruiz, I.; de la Cruz-Herrera, C.F.; Lopitz-Otsoa, F.;
Carracedo, A.; Goldenberg, S.J.; Rivas, C.; et al. Analysis of SUMOylated proteins using SUMO-traps.
Sci. Rep. 2013, 3, 1690. [CrossRef] [PubMed]

92. Zubiete-Franco, I.; Garcia-Rodriguez, J.L.; Lopitz-Otsoa, F.; Serrano-Macia, M.; Simon, J.; Fernandez-Tussy, P.;
Barbier-Torres, L.; Fernandez-Ramos, D.; Gutierrez-de-Juan, V.; Lopez de Davalillo, S.; et al. SUMOylation
regulates LKB1 localization and its oncogenic activity in liver cancer. EBioMedicine 2019, 40, 406–421.
[CrossRef] [PubMed]

93. Lindsten, K.; Menendez-Benito, V.; Masucci, M.G.; Dantuma, N.P. A transgenic mouse model of the
ubiquitin/proteasome system. Nat. Biotechnol. 2003, 21, 897–902. [CrossRef] [PubMed]

94. Lectez, B.; Migotti, R.; Lee, S.Y.; Ramirez, J.; Beraza, N.; Mansfield, B.; Sutherland, J.D.; Martinez-Chantar, M.L.;
Dittmar, G.; Mayor, U. Ubiquitin profiling in liver using a transgenic mouse with biotinylated ubiquitin.
J. Proteome Res. 2014, 13, 3016–3026. [CrossRef]

95. Pirone, L.; Xolalpa, W.; Mayor, U.; Barrio, R.; Sutherland, J.D. Analysis of SUMOylated Proteins in Cells and
In Vivo Using the bioSUMO Strategy. Methods Mol. Biol. 2016, 1475, 161–169. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1159/000470650
http://dx.doi.org/10.1038/nature07884
http://dx.doi.org/10.1038/embor.2009.192
http://dx.doi.org/10.1038/srep01690
http://www.ncbi.nlm.nih.gov/pubmed/23604351
http://dx.doi.org/10.1016/j.ebiom.2018.12.031
http://www.ncbi.nlm.nih.gov/pubmed/30594553
http://dx.doi.org/10.1038/nbt851
http://www.ncbi.nlm.nih.gov/pubmed/12872133
http://dx.doi.org/10.1021/pr5001913
http://dx.doi.org/10.1007/978-1-4939-6358-4_12
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Chronic Liver Disease (CLD) 
	Etiology and Pathophysiology of Chronic Liver Disease (CLD) 
	Liver Fibrosis and Cell Types 
	Overview of the Current Treatment Options for Chronic Liver Disease and Liver Fibrosis 

	Post-Translational Modifications (PTMs) by Ubiquitin-Like (Ubl) Proteins 
	NEDDylation in Liver Fibrosis 
	SUMOylation in Liver Fibrosis 
	Therapeutic Strategies Targeting Ubls Modifications in Liver Fibrosis 

	Concluding Remarks 
	References

