organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N-Dibenzyl-*O,O*′-dimethyl thiophosphate

Akbar Raissi Shabari,^a* Fahimeh Sabbaghi,^b Mehrdad Pourayoubi,^c Marek Nečas^d and Michal Babiak^d

^aFaculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran, ^bDepartment of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran, ^cDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and ^dDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno CZ-61137, Czech Republic

Correspondence e-mail: a.raissi_shabari@yahoo.com

Received 23 September 2012; accepted 1 October 2012

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.064; data-to-parameter ratio = 15.7.

The P atom in the title compound, $C_{16}H_{20}NO_2PS$, is bonded in a distorted tetrahedral P(S)(O)₂N environment with the bond angles at the P atom in the range 99.37 (7) to 115.68 (5)°. The angles at the amido N atom (with bond-angle sum of 357.8°) confirm its *sp*² character. The C–O–P bond angles are 119.78 (11) and 119.39 (12)°.

Related literature

For a related phosphoramidothioate structure, see: Sabbaghi *et al.* (2012). For structures with a $P-N(CH_2C_6H_5)_2$ fragment, see: Pourayoubi *et al.* (2012).

Experimental

Crystal data

C₁₆H₂₀NO₂PS $M_r = 321.36$ Orthorhombic, $P2_12_12_1$ a = 6.8377 (3) Å b = 8.1115 (4) Å c = 28.6187 (16) Å

Data collection

Oxford Diffraction Xcalibur Sapphire2 diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009) $T_{\rm min} = 0.802, T_{\rm max} = 0.927$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.064$ S = 1.033010 reflections 192 parameters H-atom parameters constrained $V = 1587.31 (14) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.31 \text{ mm}^{-1}$ T = 120 K 0.75 \times 0.55 \times 0.25 mm

4397 measured reflections 3010 independent reflections 2747 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.014$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.25 \mbox{ e } {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.31 \mbox{ e } {\rm \AA}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 982 \mbox{ Friedel pairs} \\ \mbox{Flack parameter: } -0.04 \mbox{ (7)} \end{array}$

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

Support of this investigation by the Islamic Azad University, North Tehran Branch, is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5538).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Pourayoubi, M., Jasinski, J. P., Shoghpour Bayraq, S., Eshghi, H., Keeley, A. C., Bruno, G. & Amiri Rudbari, H. (2012). Acta Cryst. C68, 0399–0404.
- Sabbaghi, F., Pourayoubi, M. & Nečas, M. (2012). Acta Cryst. E68, o2891. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supplementary materials

Acta Cryst. (2012). E68, o3074 [doi:10.1107/S1600536812041220]

N,N-Dibenzyl-O,O'-dimethyl thiophosphate

Akbar Raissi Shabari, Fahimeh Sabbaghi, Mehrdad Pourayoubi, Marek Nečas and Michal Babiak

Comment

The structure determination of the title compound (Fig. 1) was performed as a part of a project on the synthesis of a new phosphoramidothioate (Sabbaghi *et al.*, 2012). The P=S (1.9299 (6) Å), P—O (1.5796 (12) and 1.5961 (12) Å) and P—N (1.6343 (15) Å) bond lengths are within the expected values. The P atom has a distorted tetrahedral configuration (Fig. 1). The bond angles at the P atom vary in the range 99.37 (7) (O1—P1—O2) to 115.68 (5)° (O1—P1—S2). The nitrogen atom shows *sp*² character with the average bond angle 119.3° with the C—N—C angle (114.98 (13) Å) contracted relative to the P—N—C angles (123.50 (11) and 119.30 (11) Å) similar to previously reported compounds with a P—N(CH₂C₆H₅)₂ fragment (Pourayoubi *et al.*, 2012).

Experimental

To a solution of dimethyl chlorothiophosphate, [CH₃O]₂P(S)Cl, (1.7 mmol) in dry CH₃CN (30 ml), a solution of dibenzylamine (3.4 mmol) in the same solvent (5 ml) was added at ice bath temperature. After 4 h stirring, the solvent was removed and the product was washed with distilled water and recrystallized from methanol at room temperature. The single crystals, suitable for X-ray analysis were obtained from this solution after a few days at room temperature.

Refinement

All carbon bound H atoms were placed in calculated positions and were refined as riding with their U_{iso} set to either $1.2U_{eq}$ or $1.5U_{eq}$ (methyl) of the respective carrier atoms; in addition, the methyl H atoms were allowed to rotate about the C—C bond.

Computing details

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis CCD* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: Mercury (Macrae *et al.*, 2008); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

Figure 1

Crystal data

The molecular structure of the title compound with ellipsoids shown at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.

(I)

$C_{16}H_{20}NO_2PS$	F(000) = 680
$M_r = 321.36$	$D_{\rm x} = 1.345 {\rm ~Mg} {\rm m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2953 reflections
a = 6.8377 (3) Å	$\theta = 3.1 - 27.6^{\circ}$
b = 8.1115 (4) Å	$\mu = 0.31 \text{ mm}^{-1}$
c = 28.6187 (16) Å	T = 120 K
V = 1587.31 (14) Å ³	Prism, colourless
Z=4	$0.75 \times 0.55 \times 0.25 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur Sapphire2	Absorption correction: multi-scan
diffractometer	(CrysAlis RED; Oxford Diffraction, 2009)
Radiation source: Enhance (Mo) X-ray Source	$T_{\min} = 0.802, T_{\max} = 0.927$
Graphite monochromator	4397 measured reflections
Detector resolution: 8.4353 pixels mm ⁻¹	3010 independent reflections
ωscan	2747 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.014$

$\theta_{\text{max}} = 27.7^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$	$k = -7 \rightarrow 10$
$h = -4 \rightarrow 8$	$l = -18 \rightarrow 37$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.064$	$w = 1/[\sigma^2(F_o^2) + (0.0379P)^2]$
S = 1.03	where $P = (F_0^2 + 2F_c^2)/3$
3010 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
192 parameters	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 982 Friedel
direct methods	pairs
Secondary atom site location: difference Fourier	Flack parameter: $-0.04(7)$
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	-0.1193 (3)	0.0377 (2)	0.26315 (7)	0.0250 (4)
H1A	-0.1339	0.0939	0.2330	0.037*
H1B	-0.2488	0.0089	0.2754	0.037*
H1C	-0.0420	-0.0629	0.2589	0.037*
C2	-0.2073 (3)	-0.0532 (2)	0.40718 (7)	0.0259 (4)
H2A	-0.3466	-0.0609	0.4149	0.039*
H2B	-0.1372	-0.0006	0.4331	0.039*
H2C	-0.1545	-0.1640	0.4020	0.039*
C3	-0.0215 (2)	0.3937 (2)	0.37593 (6)	0.0155 (4)
H3A	-0.1422	0.3714	0.3579	0.019*
H3B	0.0473	0.4869	0.3608	0.019*
C4	0.3118 (2)	0.2750 (2)	0.38807 (6)	0.0150 (4)
H4A	0.3780	0.1672	0.3918	0.018*
H4B	0.3144	0.3312	0.4188	0.018*
C5	-0.0757 (2)	0.4412 (2)	0.42528 (6)	0.0159 (4)
C6	0.0174 (3)	0.5705 (2)	0.44800 (6)	0.0200 (4)
H6	0.1180	0.6297	0.4324	0.024*
C7	-0.0350 (3)	0.6145 (2)	0.49342 (7)	0.0251 (4)
H7	0.0297	0.7031	0.5086	0.030*
C8	-0.1815 (3)	0.5286 (2)	0.51624 (7)	0.0245 (4)
H8	-0.2167	0.5575	0.5473	0.029*
С9	-0.2761 (3)	0.4010 (2)	0.49388 (7)	0.0245 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Н9	-0.3773	0.3426	0.5095	0.029*
C10	-0.2240 (3)	0.3574 (2)	0.44868 (6)	0.0200 (4)
H10	-0.2903	0.2695	0.4335	0.024*
C11	0.4258 (2)	0.3774 (2)	0.35330 (6)	0.0157 (4)
C12	0.4820 (3)	0.3088 (2)	0.31086 (6)	0.0189 (4)
H12	0.4468	0.1982	0.3039	0.023*
C13	0.5879 (3)	0.3985 (2)	0.27863 (6)	0.0215 (4)
H13	0.6242	0.3500	0.2497	0.026*
C14	0.6414 (3)	0.5599 (2)	0.28866 (6)	0.0211 (4)
H14	0.7158	0.6217	0.2668	0.025*
C15	0.5860 (3)	0.6299 (2)	0.33044 (7)	0.0223 (4)
H15	0.6212	0.7406	0.3372	0.027*
C16	0.4789 (3)	0.5395 (2)	0.36273 (7)	0.0191 (4)
H16	0.4416	0.5887	0.3915	0.023*
N1	0.1058 (2)	0.24562 (18)	0.37470 (5)	0.0143 (3)
01	-0.02041 (18)	0.14624 (14)	0.29598 (4)	0.0176 (3)
O2	-0.18301 (17)	0.04395 (15)	0.36533 (4)	0.0186 (3)
P1	0.03212 (6)	0.08173 (5)	0.346520 (16)	0.01436 (11)
S2	0.20827 (7)	-0.10397 (5)	0.348938 (16)	0.02011 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0280 (10)	0.0296 (10)	0.0173 (10)	-0.0001 (9)	-0.0063 (9)	-0.0056 (8)
C2	0.0274 (10)	0.0254 (10)	0.0248 (10)	-0.0004 (9)	0.0074 (9)	0.0080 (8)
C3	0.0169 (8)	0.0151 (8)	0.0145 (9)	0.0038 (8)	-0.0013 (7)	0.0016 (7)
C4	0.0134 (8)	0.0167 (8)	0.0148 (9)	0.0008 (7)	-0.0029 (8)	-0.0013 (7)
C5	0.0153 (8)	0.0151 (9)	0.0174 (9)	0.0069 (7)	-0.0009 (7)	0.0013 (7)
C6	0.0210 (9)	0.0195 (9)	0.0195 (10)	0.0003 (8)	0.0023 (8)	0.0019 (8)
C7	0.0310 (10)	0.0208 (9)	0.0237 (10)	0.0016 (9)	-0.0035 (9)	-0.0038 (8)
C8	0.0299 (10)	0.0295 (10)	0.0141 (9)	0.0086 (9)	0.0025 (9)	-0.0002(8)
C9	0.0211 (9)	0.0289 (10)	0.0235 (10)	0.0049 (9)	0.0059 (8)	0.0087 (9)
C10	0.0167 (8)	0.0195 (9)	0.0239 (10)	0.0015 (7)	-0.0025 (8)	0.0012 (8)
C11	0.0107 (7)	0.0207 (9)	0.0158 (9)	0.0037 (7)	-0.0026 (7)	0.0025 (8)
C12	0.0164 (8)	0.0226 (9)	0.0177 (10)	0.0013 (8)	-0.0039 (8)	-0.0017 (7)
C13	0.0179 (8)	0.0323 (10)	0.0142 (9)	0.0038 (9)	-0.0017 (7)	0.0013 (9)
C14	0.0145 (8)	0.0267 (10)	0.0221 (10)	0.0019 (8)	-0.0001 (8)	0.0115 (8)
C15	0.0187 (9)	0.0163 (9)	0.0320 (11)	0.0024 (8)	-0.0015 (8)	0.0057 (8)
C16	0.0165 (8)	0.0204 (9)	0.0204 (9)	0.0048 (8)	0.0000 (8)	-0.0005 (8)
N1	0.0125 (6)	0.0175 (7)	0.0130 (8)	0.0033 (6)	-0.0023 (6)	-0.0018 (6)
01	0.0211 (6)	0.0173 (6)	0.0143 (6)	0.0001 (5)	-0.0030 (6)	-0.0005 (5)
O2	0.0157 (6)	0.0207 (6)	0.0194 (6)	-0.0011 (5)	0.0011 (5)	0.0035 (5)
P1	0.01393 (19)	0.0150 (2)	0.0141 (2)	0.00099 (17)	0.00017 (19)	0.00013 (19)
S2	0.0221 (2)	0.0173 (2)	0.0209 (2)	0.00575 (18)	0.0001 (2)	-0.0006 (2)

Geometric parameters (Å, °)

C1—O1	1.455 (2)	С7—Н7	0.9500
C1—H1A	0.9800	C8—C9	1.378 (3)
C1—H1B	0.9800	С8—Н8	0.9500

C1—H1C	0.9800	C9—C10	1.387 (3)
C2—O2	1.443 (2)	С9—Н9	0.9500
C2—H2A	0.9800	C10—H10	0.9500
C2—H2B	0.9800	C11—C16	1.390 (2)
C2—H2C	0.9800	C11—C12	1.390 (2)
C3—N1	1.483 (2)	C12—C13	1.380 (3)
C3—C5	1.510 (2)	С12—Н12	0.9500
С3—НЗА	0.9900	C13—C14	1.390 (3)
С3—Н3В	0.9900	С13—Н13	0.9500
C4—N1	1.479 (2)	C14—C15	1.377 (3)
C4—C11	1.513 (2)	C14—H14	0.9500
C4—H4A	0.9900	C15—C16	1.389 (3)
C4—H4B	0.9900	С15—Н15	0.9500
C5—C6	1.389 (2)	С16—Н16	0.9500
C5—C10	1.392 (2)	N1—P1	1.6343 (15)
C6—C7	1 395 (3)	01—P1	1 5796 (12)
С6—Н6	0.9500	02—P1	1 5961 (12)
C7-C8	1 384 (3)	P1\$?	1.9299 (6)
07 00	1.504 (5)	11 52	1.9299 (0)
01	109.5	C8-C9-C10	120 25 (18)
O1 = C1 = H1B	109.5	$C_8 = C_9 = C_{10}$	120.25 (18)
	109.5	C_{10} C_{0} H_{0}	119.9
	109.5	$C_{10} = C_{10} = C_{5}$	119.9
	109.5	$C_{9} = C_{10} = C_{3}$	120.75 (18)
HIR—CI—HIC	109.5	$C_{2} = C_{10} = H_{10}$	119.0
	109.5	$C_{16} = C_{10} = H_{10}$	119.0
$O_2 = C_2 = H_2 A$	109.5	C16 - C11 - C12	118.43(10)
$U_2 = U_2 = H_2 B$	109.5	C10 - C11 - C4	121.75 (16)
$H_2A = C_2 = H_2B$	109.5	C12 - C11 - C4	119.79 (16)
02-C2-H2C	109.5		121.18 (18)
$H_2A = C_2 = H_2C$	109.5	C13—C12—H12	119.4
$H_2B = C_2 = H_2C$	109.5	CII—CI2—HI2	119.4
NI-C3-C5	111.89 (13)	C12-C13-C14	119.78 (18)
NI—C3—H3A	109.2	С12—С13—Н13	120.1
С5—С3—НЗА	109.2	С14—С13—Н13	120.1
N1—C3—H3B	109.2	C15—C14—C13	119.71 (17)
С5—С3—Н3В	109.2	C15—C14—H14	120.1
НЗА—СЗ—НЗВ	107.9	C13—C14—H14	120.1
N1—C4—C11	114.15 (14)	C14—C15—C16	120.36 (17)
N1—C4—H4A	108.7	C14—C15—H15	119.8
C11—C4—H4A	108.7	C16—C15—H15	119.8
N1—C4—H4B	108.7	C15—C16—C11	120.51 (17)
C11—C4—H4B	108.7	C15—C16—H16	119.7
H4A—C4—H4B	107.6	C11—C16—H16	119.7
C6—C5—C10	118.53 (17)	C4—N1—C3	114.98 (13)
C6—C5—C3	121.21 (16)	C4—N1—P1	123.50 (11)
C10—C5—C3	120.26 (17)	C3—N1—P1	119.30 (11)
C5—C6—C7	120.77 (17)	C1-O1-P1	119.78 (11)
С5—С6—Н6	119.6	C2—O2—P1	119.39 (12)
С7—С6—Н6	119.6	O1—P1—O2	99.37 (7)

C8—C7—C6	119.81 (18)	O1—P1—N1	104.62 (7)
С8—С7—Н7	120.1	O2—P1—N1	105.89 (7)
С6—С7—Н7	120.1	O1—P1—S2	115.68 (5)
C9—C8—C7	119.91 (18)	O2—P1—S2	114.41 (5)
С9—С8—Н8	120.0	N1—P1—S2	115.14 (6)
С7—С8—Н8	120.0		
N1—C3—C5—C6	101.64 (19)	C12—C11—C16—C15	-0.2 (2)
N1-C3-C5-C10	-79.63 (19)	C4—C11—C16—C15	179.07 (16)
C10—C5—C6—C7	0.6 (3)	C11—C4—N1—C3	-68.76 (18)
C3—C5—C6—C7	179.38 (16)	C11—C4—N1—P1	94.17 (17)
C5—C6—C7—C8	0.0 (3)	C5—C3—N1—C4	-75.77 (18)
C6—C7—C8—C9	-0.6 (3)	C5—C3—N1—P1	120.53 (14)
C7—C8—C9—C10	0.5 (3)	C1-O1-P1-O2	-61.56 (14)
C8—C9—C10—C5	0.1 (3)	C1-O1-P1-N1	-170.81 (13)
C6—C5—C10—C9	-0.7 (3)	C1—O1—P1—S2	61.40 (14)
C3—C5—C10—C9	-179.47 (16)	C2-O2-P1-O1	166.17 (12)
N1-C4-C11-C16	107.68 (18)	C2—O2—P1—N1	-85.59 (14)
N1-C4-C11-C12	-73.1 (2)	C2—O2—P1—S2	42.31 (14)
C16—C11—C12—C13	0.0 (3)	C4—N1—P1—O1	-108.86 (14)
C4—C11—C12—C13	-179.28 (16)	C3—N1—P1—O1	53.38 (13)
C11—C12—C13—C14	0.5 (3)	C4—N1—P1—O2	146.71 (13)
C12—C13—C14—C15	-0.8 (3)	C3—N1—P1—O2	-51.06 (14)
C13—C14—C15—C16	0.7 (3)	C4—N1—P1—S2	19.25 (16)
C14—C15—C16—C11	-0.1 (3)	C3—N1—P1—S2	-178.52 (10)