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ABSTRACT

MicroRNAs bind to and regulate the abundance and activity of target messenger RNA through sequestration, enhanced
degradation, and suppression of translation. Although miRNA have a predominantly negative effect on the target protein
concentration, several reports have demonstrated a positive effect of miRNA, i.e., increase in target protein concentration on
miRNA overexpression and decrease in target concentration on miRNA repression. miRNA–target pair-specific effects such as
protection of mRNA degradation owing to miRNA binding can explain some of these effects. However, considering such pairs
in isolation might be an oversimplification of the RNA biology, as it is known that one miRNA interacts with several targets,
and conversely target mRNA are subject to regulation by several miRNAs. We formulate a mathematical model of this
combinatorial regulation of targets by multiple miRNA. Through mathematical analysis and numerical simulations of this
model, we show that miRNA that individually have a negative effect on their targets may exhibit an apparently positive net
effect when the concentration of one miRNA is experimentally perturbed by repression/overexpression in such a multi-miRNA
multitarget situation. We show that this apparent unexpected effect is due to competition and will not be observed when
miRNA interact noncompetitively with the target mRNA. This result suggests that some of the observed unusual positive
effects of miRNA may be due to the combinatorial complexity of the system rather than due to any inherently unusual positive
effect of the miRNA on its target.
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INTRODUCTION

An important layer of regulation in the multilevel gene regu-
lation process is post-transcriptional regulation, including
transcript turnover and translational control (Mata et al.
2005). A class of regulators termed microRNAs (miRNA)
play an important role in post-transcriptional regulation.
miRNA biogenesis and its regulation has been described in
recent reviews (Krol et al. 2010; Yates et al. 2013). Mature
miRNAs cause varied effects on gene expression through
interaction with microRNA recognition elements (MREs),
which are complementary or partially complementary se-
quences on their target messenger-RNA (mRNA). miRNA–
mRNA interaction is combinatorial. MREs may be present
on mRNA as well as noncoding transcripts both endogenous,
such as long noncoding RNA, as well as synthetic RNA, such
as antagomirs (Krützfeldt et al. 2005; Ebert et al. 2007). As a
result, each miRNA has several binding partners including

∼100–200 target mRNA (Brennecke et al. 2005; Krek et al.
2005). Conversely, each mRNA is regulated by multiple
miRNA. Estimates of the mean number of MREs on coding
strands range from 2.4 to 15 (John et al. 2004; Kiriakidou
et al. 2004; Savas and Tanese 2010). It is reported that
∼60% of mRNA have binding sites for one or more
miRNAs in their 3′ untranslated region (3′ UTR) (van
Rooij 2011). Related miRNAs such as miR-10a and miR-
10b have hundreds of common targets (Martin et al. 2014).
miR-206 competes with miR-344 for the MRE which is the
translational control element inside the 3′ UTR thereby pro-
moting or repressing KLF4 expression (Lin et al. 2011). miR-
101a andmiR-199a∗ bind to 3′ UTR of Cox-2mRNA thereby
controlling its expression (Chakrabarty et al. 2007).
The miRNA effectuates repression by causing either

translational repression or stoichiometric/nonstoichiometric
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mRNA degradation (Breving and Esquela-Kerscher 2010),
shown in Figure 1. Translational repression by miRNA can
come about via multiple methods (Liu et al. 2005; Cheku-
laeva and Filipowicz 2009; McDaneld 2009; Fabian et al.
2010; Huntzinger and Izaurralde 2011), such as (i) by block-
ing the initiation site; (ii) by hindering the eIF4E function
or its recruitment to 5′ cap of the target; (iii) by slowing
down elongation owing to ribosome fall off or promotion
of premature termination; or (iv) by translocation of the
miRNA-target complex to processing bodies (P-bodies).
The predominant action of miRNA on its targets is destabi-
lization of target transcripts (Guo et al. 2010), which occurs
through multiple mechanisms including the slicer activity of
Argonaute 2, deadenylation/decapping-dependent pathways,
and coordinated regulation by RNA-binding proteins and
miRNA (Fabian et al. 2010; Huntzinger and Izaurralde
2011;Wu and Brewer 2012). miRNA activity has been termed
as catalytic because one miRNA regulates more than one
target strand. This nonstoichiometric effect is thought to be
due to selective degradation of the target mRNA strand
from the bound complex (Hutvágner and Zamore 2002;
Baccarini et al. 2011).

The role of miRNA in regulation of gene expression has
been long thought to be repressive in action, with decreased
target transcript concentrations resulting from miRNA ac-
tivity. Recent reports (Huang et al. 2012; Vasudevan 2012)
demonstrate the unexpected positive role of miRNA. Over-
expression of miR-223 leads to increased expression of its tar-
get GLUT4 protein expression thereby leading to increased
glucose uptake (Lu et al. 2010). miR-34 binding to the 3′

UTR has been reported to lead to the up-regulation of expres-
sion of its target (Ghosh et al. 2008). The miRNA X1miR16
mediates translational activation of Myt1 gene leading to
maintenance of immature state of the oocyte (Mortensen
et al. 2011). The net effect of miR-466l’s binding to IL-10
AU-rich elements is to prevent IL-10mRNA degradationme-
diated by tristetraprolin, resulting in stability of IL-10 mRNA
and elevated IL-10 expression (Ma et al. 2010). Binding
of miR-10a to the 5′ end of ribosomal proteins leads to
increase in their translation efficiency during amino acid star-
vation. Conversely, inhibition of endogenous miR-10a causes
decrease in translational levels (Ørom et al. 2008).These and
other examples of noncanonical miRNA signaling leading to
miRNA-dependent increase in target protein expression are
hypothesized to be due to increased translation and/or de-
creased degradation of the miRNA–mRNA complex, or feed-
back transcriptional activation of target gene expression
(Maute et al. 2014). We have previously developed a mathe-
matical model and predicted a parameter zone where such
pair-specific positive effects are to be expected (Gokhale
and Gadgil 2012). Here, we analytically show that even in
the absence of such unusual pair-specific target–miRNA in-
teractions, (apparent) unexpected positive effects may be
possible as a result of the multiple interacting nonlinear ef-
fects of miRNA on common targets.
We computationally explore the possibility that the com-

binatorial nature of miRNA–mRNA interaction could result
in observations of an apparent positive effect of miRNAwhen
the concentration of a single miRNA is changed through
knockdown/knockout or overexpression. We hypothesize

FIGURE 1. Effects of miRNA. Sequences coding for RNA andmiRNA through a series of processing steps lead to formation of mRNA and functional
miRNA, respectively. The miRNA complex (RISC) so formed can bind mRNA leading either to reduced rate in translation or stoichiometric/non-
stoichiometric degradation of complex. Figure shows only nonstoichiometric degradation leading to recycling of miRNA.
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that the decrease or increase in one miRNA results in a
change in the distribution of all miRNA binding to a set of
common targets and the observed effect on one particular
target protein level is the net effect of change in the distribu-
tion of miRNA bound to that target. Mathematical models
can help identify whether such a positive effect may be ob-
served even though the miRNA’s individual effect is to
repress the target in a single-miRNA–single-target situation.
miRNA effects have been investigated using stochastic and
deterministic mathematical models that include a range of
detail, summarized in Supplemental Table S1. Someminimal
models, for instance, a model for miRNA action in compet-
ing endogenous RNA (ceRNA) networks (Gérard and Novák
2013), only include reversible binding of miRNA and mRNA
and degradation of the complex. Others include details of
miRNA biogenesis, formation of RISC (Hausser et al.
2013), stoichiometric degradation of complex, selective deg-
radation resulting in “catalytic,” or nonstoichiometric return
of miRNA from the complex (Gokhale and Gadgil 2012;
Klironomos and Berg 2013), and details of translation by
the bound mRNA (Zinovyev et al. 2013). An excellent review
paper by Zhdanov discusses almost all the kinetic models un-
til 2011 (Zhdanov 2011). Most models published before 2013
do not include the effect of competition, either resulting from
twomiRNA binding to the same target, or resulting from one
miRNA that can bind to two targets with differing affinity.
Several recent reviews (Taulli et al. 2013; Kartha and
Subramanian 2014; Tay et al. 2014) have summarized situa-
tions where competition for the samemiRNA species leads to
complex regulation of target expression and discussed math-
ematical models for understanding this “ceRNA language.”
Multi-miRNA–multi-mRNA models have been formulat-

ed for specific modules where the targets regulate miRNA
transcription, e.g., 2miRNA–2mRNA networks regulating
the cell fate/differentiation decision (Lu et al. 2013; Yan
et al. 2014), feedback loops with one miRNA and one target
whose protein product regulates miRNA expression (Sici-
liano et al. 2013), or modules where one of the targets is a
TF that regulates expression of the other targets (Riba et al.
2013). However, we limit our discussion to models where
the target proteins have no effect on miRNA activity or con-
centration. A vast majority of recent models are developed to
simulate and analyze the ceRNA effect, and so model at a
minimum two competing (m)RNA strands and one miRNA
that can bind to both. Ala et al. (2013) formulated a model
for one miRNA interacting with two competing RNA, and
together with bioinformatics analysis and experimental
data determined the optimal conditions for ceRNA activity.
Noorbakhsh et al. (2013) model and simulate the stochastic
dynamics of onemiRNA binding to one coding and one non-
coding transcript and show that noise is a measure of the
crosstalk between competing miRNA binding targets. In an
excellent analysis of the combinatorial interactions between
mRNA and miRNA, Figliuzzi et al. (2013b) have derived
an expression for steady-state transcript and complex con-

centration for multiple-miRNA interacting with multiple
mRNA, but focused on analysis of the sensitivity of mRNA
concentrations at steady state as a function of the transcrip-
tion rate of other ceRNA. Translation (by free mRNA or
mRNA–miRNA complex) has not been modeled, and the
analysis is limited to the effect on steady-state transcript lev-
els. The effect of changes in miRNA transcription rate on the
net target protein formation has not been studied as it was
not the objective of that work. They have recently extended
this analysis to the study of the dynamics of post-transcrip-
tional regulation by ceRNA (Figliuzzi et al. 2013a). A stochas-
tic description of multi-miRNA–multi-mRNA interactions
was formulated and used (Bosia et al. 2013) to study the effect
of ceRNA transcription rate on the noise of network compo-
nents and the response time required to reattain steady state
after a perturbation. Jia and Kulkarni (2010) have studied the
effect of regulation by small RNAs on protein distribution
through a model that includes translation by both bound
and unbound mRNA. They assume that the concentration
of the small RNA is large such that the complex formation
rate is pseudo-first order in the mRNA concentration. They
have extended their initial model for multiple-miRNAs reg-
ulating a single mRNA (Baker et al. 2012), retaining the as-
sumption of pseudo-first-order reaction rates. Pseudo-first-
order miRNA–mRNA interaction kinetics have also been
used in a detailed model of translation (Morozova et al.
2012) to discriminate between various modes of miRNA ac-
tion on translation.
To our knowledge, a detailed model for the miRNAmech-

anism of action that includes second-order association, non-
stoichiometric mRNA degradation, and translation by the
bound mRNA has not so far been used to analyze the com-
binatorial effect of multiple competing small RNA on a tar-
get. Here, we present such a model and use it to analyze
translational modulation of a target by multiple miRNA.
For simulations, we use previously reported parameters that
result in intuitive effects, i.e., the effect of a single miRNA
on its target is negative when there is no competition from
another miRNA. We identify conditions for a 2miRNA–
1mRNA system where increase in one miRNA concentration
has a positive effect on the concentrations of the target, thus
establishing that such an observation of an unexpected effect
may not always imply any inherent positive effect of the
miRNA on the target, but rather could be an observation re-
sulting from the effect of interaction and competition. We
also show that this apparent positive effect is not observed
when the miRNA interact independently or noncompeti-
tively with their common target.

RESULTS

Model for combinatorial mRNA–miRNA network

For analyzing the effect of competing miRNA, we develop a
model, schematically represented in Figure 2, for a system

Analysis of combinatorial miRNA effects
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of 2 miRNAs (μ1 and μ2) binding to and post-transcription-
ally regulating expression of their common target mRNAm1.
Throughout, the same symbols are used in a context-de-
pendent manner for entities and their concentrations. We
assume zero-order formation kinetics, with each μj and m1

being formed with a zero-order birth rate bmj and bm1 , respec-
tively. We assume that m1 can bind to every miRNA μ1,
μ2 with second-order association rate constants k+11, k

+
12,

respectively. The resulting complexes c11, c12 can undergo
first-order dissociation (rate constants,
respectively, k−11, k

−
12), stoichiometric de-

gradation (rate constants dc11, d
c
12), or

selective degradation of either the
miRNA (nonstoichiometric miRNA deg-
radation with mRNA returned, rate con-
stant kretm11 , kretm12 ) or selective degradation
of mRNA (nonstoichiometric mRNA
degradation where miRNA is recycled,
rate constant kretm11 , kretm12 ). If MREs on
the mRNA are overlapping, only a single
miRNA can bind to the mRNA, and
a “combicomplex” with both miRNA
simultaneously bound to the same
mRNA cannot exist. In such a competi-
tive binding situation, miRNAs compete
to bind to the mRNA. If MREs are
nonoverlapping, there is a possibility of

combicomplex formation where free miRNAs bind to exist-
ing complexes. This combicomplex is formed either by com-
plex c11 binding to miRNA μ2 with second-order association
rate k+112, or by complex c12 binding to μ1 with second-order
association rate k+121. The complexes (c112, c11, and c12) con-
taining mRNA, as well as the unbound mRNA (m1) can serve
as a template for first-order formation of protein p1 with
translation rate constants bp112, b

p
11, b

p
12, and bp1, respectively.

Protein, mRNA, the twomiRNAs, and combicomplex are as-
sumed to undergo first-order degradation with rate constants
dp1, d

m
1 , d

m
1 , d

m
2 , and d′112, respectively.

The differential equations for this system and the associat-
ed parameters are given in Tables 1 and 2, respectively. At
steady state, the system of coupled nonlinear equations (stat-
ed in Supplemental Information Section S.3) can be analyti-
cally solved (Supplemental Information Section S.4) for
the case when there is perfect competition. Simplification
results in a cubic equation in one variable, whose solution us-
ing Mathematica is given in PDF format as Supplemental
Information File 2 (Mathematica file available upon request).
Using this expression for steady-state protein concentration,
we calculated the scaled protein concentrations as a function
of bm1 , b

p
11, and k+11 keeping the other parameters constant at

values given in Table 2.
We first show that for these parameters, if individual

miRNA effects are simulated, the effects are always intuitive
or expected, i.e., increase in miRNA formation rate results
in a decrease in steady-state target protein concentration
when there is no competition by the other miRNA. To sim-
ulate the no-competition case, we derive the steady-state con-
centration for a system with just one miRNA and onemRNA.
It is easy to show that this expression is given by a visually
uninterpretable expression given in Equation 1. Despite the
lack of elegant symmetry or amenability to simplification,
the equation precisely relates the protein concentration to
the values of the various reaction rate parameters. The de-
tailed derivation and analysis is given in Supplemental

FIGURE 2. Schematic representation for the model. mRNA (m1) asso-
ciates and dissociates with miRNAs (μ1 and μ2) forming complexes c11
and c12. These complexes formed can be stoichiometrically degraded
(rate constants dc11, d

c
12), selectively degraded (nonstoichiometric degra-

dation, rate constants kretm/m
11 and kretm/m

12 ), or can be associated with sec-
ond miRNA to form combicomplex (c112). The combicomplex formed
can be stoichiometrically degraded. mRNA, complexes, and combicom-
plexes translate to form protein. The rate parameters are depicted in
italics and species in bold. Unfilled arrows depict catalytic formation
of protein from complexes and mRNA, dashed arrows represent non-
stoichiometric degradation of one species from the complex returning
the other species. (Ø) Sink/source.

TABLE 1. Differential equations for a system of two miRNA interacting with one mRNA

dm1

dt
= bm

1 − dm
1 m1 − k+11m1m1 − k+12m1m2 + k−11c11 + k−12c12 + kretm11 c11 + kretm12 c12

dm1

dt
= bm

1 − dm
1m1 − k+11m1m1 + k−11c11 + kretm11 c11 + k−121c112 − k+121c12m1

dm2

dt
= bm

2 − dm
2m2 − k+12m1m2 + k−12c12 + kretm12 c12 + k−112c112 − k+112c11m2

dc11
dt

= k+11m1m1 − k−11c11 − kretm11 c11 − kretm11 c11 − dc
11c11 + k−112c112 − k+112c11m2

dc12
dt

= k+12m1m2 − k−12c12 − kretm12 c12 − kretm12 c12 − dc
12c12 + k−121c112 − k+121c12m1

dc112
dt

= k+121c12m1 + k+112c11m2 − (k−121 + k−112 + d′
112)c112

dp1

dt
= bp

1m1 − dp
1 p1 + bp

11c11 + bp
12c12 + bp

112c112

Nyayanit and Gadgil

310 RNA, Vol. 21, No. 3



Information Section S.5 (Mathematica file is available upon
request).

p =

( ����������������������������������������
(−abm1 + cbm1 + dm1 d

m
1 )2 + 4abm1 d

m
1 d

m
1

√

+ abm1 − cbm1 − dm1 d
m
1

)
(k+11bp1(kretm11 + d11)

×
( ������������������������������������������������

2dm1 d
m
1 (abm1 + cbm1 ) + (abm1 − cbm1 )2 + dm

2

1 dm
2

1

√

− cbm1 − dm1 d
m
1 + a(bm1 k+11bp1(kretm11 + d11) + 2dm1

×(bp1bm1 (kretm11 + kretm11 + k−11 + d11) + bm1 k
+
11b

p
11))

)

2adp1d
m
1 (k+11(kretm11 + d11)

×
( ������������������������������������������������

2dm1 d
m
1 (abm1 + cbm1 ) + (abm1 − cbm1 )2 + dm

2

1 dm
2

1

√

− cbm1 − dm1 d
m
1 + a(bm1 k+11(kretm11 + d11)

+ 2dm1 d
m
1 (kretm11 + kretm11 + k−11 + d11))

)

where

a = (k+11(kretm11 + d11))
(kretm11 + k−11 + kretm11 + d11)

c = (k+11(kretm11 + d11))
(kretm11 + k−11 + kretm11 + d11)

(1)

If the ceRNA effect is to be simulated, a system of two
mRNAs and one or two miRNAs can be simulated. The dif-

ferential equations for a 2miRNA–2mRNA system are given
in Supplemental Information Section S.6. All these con-
ditions are special cases of a model system of M-miRNA
interacting combinatorially with N-miRNAs, for which the
equations and a partial solution obtained are given in
Supplemental Information Sections S.1, S.2. Here, we use
the analytical and numerical solution of the equations for
the 2miRNA–1mRNA system at steady state to show that
combinatorial complexity results in apparent unexpected
positive effects attributed to miRNA.

Combinatorial regulation may lead to apparent positive
effects of miRNA on target protein

First, we show that the choice of parameters used (using pa-
rameters from previous reports, see Table 2) is such that
when one-miRNA–one-mRNA interactions are considered
the miRNA has a negative effect on target protein concen-
tration. For the simple case of one miRNA interacting with
one target, the steady-state protein concentration is given
by Equation 1. Parameters as stated in Table 2, i.e., “typical”
parameters where miRNA has a negative effect on net trans-
lation rate and transcript concentration are used to calculate
the reference protein concentration pref. We vary the miRNA
formation rate, miRNA affinity to mRNA (association rate),
and the specific rate of translation owing to the bound
mRNA, keeping all these parameters in the previously
published range. No set of parameters used here is chosen
so as to favor an unexpected positive miRNA effect. For

TABLE 2. Model parameters

Sr. no.
Reaction rate
parameter

Values of parameter
for general model Meaning of reaction rate parameter Reference

1 bm
1 ,b

m
2 1 molecule/sec Rate of microRNA1 and 2 formations Shimoni et al. (2007)

2 bm
1 2 molecules/sec Rate of mRNA formation Assumed, similar to miRNA formation rate

3 dm
1 ,d

m
2 0.0025/sec Rate of microRNA1 and 2 degradations Shimoni et al. (2007)

4 dm
1 0.002/sec Rate of mRNA degradation Shimoni et al. (2007)

5 k+11, k
+
12 1/molecule/sec Rate of mRNA1 binding to microRNA1

and 2 respectively
Shimoni et al. (2007)

6 k−11, k
−
12 0.02/sec Rate of complexes dissociation Shimoni et al. (2007)

7 dc
11,d

c
12 0.94 × 0.002/sec Rate of complexes degradation Gokhale and Gadgil (2012). Results qualitatively

similar when value is set to 0.003/sec
8 kretm11 , kretm12 0.2 × 0.002/sec Rate of mRNA return from the complexes Gokhale and Gadgil (2012). Qualitatively similar

results if value is set to 0
9 kretm11 , kretm12 0.4 × 0.002/sec Rate of miRNA return from the complexes Gokhale and Gadgil (2012)

10 k+112, k
+
121 1/molecule/sec Rate of complexes forming

combicomplexes with the second
microRNA

Identical to k+11, k
+
12

11 k−112, k
−
121 0.02/sec Rate of combicomplexes dissociation Identical to k−11, k

−
12

12 d′
112 0.002/sec Rate of combicomplex degradation Assumed, similar to d11,d12

13 bp
1 0.01/sec Rate of mRNA translation Shimoni et al. (2007)

14 bp
11,b

p
12 0.001/sec Rate of complexes translation Gokhale and Gadgil (2012)

15 dp
1 0.001/sec Rate of protein degradation Shimoni et al. (2007)

16 bp
112 0.001/sec Rate of translation from combicomplex Identical to bp

11,b
p
12

Analysis of combinatorial miRNA effects
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instance, the maximum value of the translation rate of the
bound mRNA is never more than the translation rate of
free mRNA, and the total degradation rate of the mRNA–
miRNA complex is never lower than the degradation rate
of unbound mRNA. Figure 3A shows the scaled protein ratio
p̂ = p/ pref (i.e., protein concentration for a particular pa-
rameter combination scaled by pref) for this parameter space.
If any path is traced along the bm1 -axis, i.e., for increasing val-
ues of the miRNA formation rate, for a constant value of oth-
er parameters, the colors always shift from darker to lighter,

indicating a decrease in the relative target protein. This dem-
onstrates that at any point in this space, the target protein
concentration decreases with increase in the miRNA forma-
tion rate. Conversely, a decrease in the miRNA formation
rate, corresponding to a knockdown experiment, leads to
an increase in the target protein concentration. This conclu-
sion is also clear from Figure 3B, which shows a few such in-
dividual paths for constant values of the translation rate
constant for the complex. We are interested in a qualitative
estimate of whether the system shows expected (target

FIGURE 3. (A) Scaled protein steady-state level for single mRNA–single miRNA as a function of rate of formation of miRNA1 (bm1 molecules/sec),
translation by complex c11 (bp11 /sec), and formation of complex c11 (k+11/molecule/sec). Position marked with × corresponds to reference values of
bm1 , b

p
11, and k

+
11 as listed in Table 2. Other parameter values constant, given in Table 2. (B) Line plot of scaled protein level for one miRNA, interacting

with single mRNA. Lines represents specific parts of A, for constant complex formation rate (k+11 = 0.2943/molecule/sec). For all constant levels of
bp11, increase in rate of miRNA formation (bm1 ) leads to decrease in protein ratio levels. Reference values of bm1 , b

p
11, and k

+
11 listed in Table 2 are 1 mol-

ecule/sec, 0.001/sec, and 1/molecule/sec. Other parameter values are constant, given in Table 2.
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protein decreases with increase in miRNA formation) or un-
expected (target protein increases with increase in miRNA
formation) effects. The sensitivity of protein concentration
to miRNA formation rate constant is a measure of whether
the protein concentration will increase (positive value of sen-
sitivity) or decrease (negative value of sensitivity) when the
miRNA formation rate increases. The sensitivity values so ob-
tained are converted into binary value to depict the parame-
ter region when the unexpected and expected effects are
observed. The slice plot for actual sensitivity value obtained
is shown in Supplemental Figure S1; and the binarized value
in Supplemental Figure S2. It is seen that this value is always
negative, also confirming the result seen in Figure 3A,B. This
is the expected effect, consistent with a negative role for
miRNA in regulation of target protein levels. Keeping simu-
lation parameters unchanged, we then investigate whether
inclusion of a competing miRNA changes these results.
For exactly the same parameter range, we simulate the

combinatorial system with two competing miRNAs and
one mRNA. For this perfect competition condition, we as-
sume that the MREs overlap such that only one miRNA
can bind at a given time. Hence combicomplex formation
cannot occur, and the rate constants for combicomplex for-
mation are set to zero. The expressions for steady-state pro-
tein concentrations, with a detailed derivation are given in
Supplemental Information text Sections S.3 and S.4. Param-
eters controlling miRNA formation, miRNA affinity to
mRNA, and the translation owing to the bound mRNA are
varied in exactly the same range as in Figure 3. Figure 4A,B
are the equivalents of Figure 3A,B for the combinatorial reg-
ulation scenario. Figure 4A depicts the protein concentration
and Figure 4B is a 2-D subset of Figure 4A depicting effect of
change in miRNA formation rate on the target protein con-
centration. Unlike Figure 3A, in Figure 4A, one can find
certain paths in the direction of increasing miRNA
formation rate that go from lighter to darker shades showing
an increase in the protein level. Figure 4B shows the variation
of protein concentration with miRNA formation rate for the
same combinations of parameters as Figure 3B. Experiments
investigating the role of a specific miRNA typically measure
the change in protein levels as a function of change in that
miRNA level. Figure 4B represents such virtual experiments,
which are lines from the surface shown in Figure 4A. Each
line in Figure 4B shows the scaled protein concentration
for different miRNA formation rates for fixed values of the
other parameters. Different lines represent different values
of the complex translation rate. It is seen that some lines,
for lower translation rates, show the expected result of
decrease in target protein with increase in miRNA formation
rate. However, parts of other lines have a positive slope, i.e.,
the protein level increases with increase in miRNA formation
rate. This shows the unexpected effect. From Figure 4B, it is
clear that there are certain ranges in the parameter space
where the steady-state target protein concentration increases
with an increase in the miRNA formation rate. The range of

parameter space where this effect is observed is clear from
the binarized sensitivity shown in Figure 4C. The actual sen-
sitivity values corresponding to this graph are shown in Sup-
plemental Figure S3. Note that the range of parameter space
simulated in Figure 4 is identical to that in Figure 3, where in
the absence of competition the miRNA effect was the expect-
ed negative effect for the entire range of parameter combina-
tions. This clearly demonstrates that even for parameters
where the inherent effect of any single miRNA is negative,
in the presence of combinatorial miRNA effects, the net effect
of an increase in miRNA might be an increase in steady-state
target levels, or conversely, a decrease in the miRNA forma-
tion rate might lead to a decrease in the target protein con-
centration, falsely suggestive of an unexpected positive role
for miRNA.

Interactions between MREs lead to apparent
positive effects

Figure 4A shows results for a competitive binding situation,
where two miRNAs compete, presumably because the
MREs are overlapping. In this situation, binding of one
miRNA completely prevents binding of the other miRNA.
It is unclear whether the unintuitive effect seen is due to
the mere presence of the other miRNA, or whether competi-
tion between the two miRNAs is necessary. The other ex-
treme situation when two miRNA influence a common
target is that the binding of one miRNA has no effect on
binding of the other miRNA. Such a noncompetitive situa-
tion is modeled; with the possibility of combicomplex forma-
tion with rates such that binding of any miRNA to bound or
unboundmRNA is governed by the same parameters (as stat-
ed in Table 2). Figure 5 shows the equivalent of Figure 4B for
this situation. The entire plot of scaled protein concentration
for the entire parameter range is shown in Supplemental
Figure S4. It is seen that all lines on Figure 5 (that correspond
exactly to the translation rates shown in Figs. 3B, 4B) have a
negative slope, i.e., the protein concentration as expected de-
creases with the miRNA formation rate irrespective of the
value of the complex translation rate. It is clear that the ap-
parent positive effects seen in Figure 4B are completely abro-
gated when miRNA are allowed to independently bind and
regulate mRNA.

DISCUSSION

Several models have considered the implications of RNA spe-
cies (ceRNA) competing for the same miRNA. Here we for
the first time present the use of a comprehensive model for
miRNA action to investigate the effect of multiple-miRNA
competing for the same mRNA that includes second-order
association with miRNA, translation by free and bound
mRNA, and nonstoichiometric/stoichiometric degradation
of mRNA. We model overexpression/down-regulation as a
corresponding change in the miRNA formation rate leading

Analysis of combinatorial miRNA effects

www.rnajournal.org 313



FIGURE 4. (A) Scaled protein steady-state level for two miRNAs competitively interacting with single mRNA as a function of rate of formation of
miRNA2 (bm2 ), translation by complex c12 (bp12), and formation of complex c12 (k+12). All three axes ranges are exactly as in Figure 3A. Position marked
with × corresponds to reference values of bm1 , b

p
11, and k

+
11 as listed in Table 2. Other parameter values constant, given in Table 2. (B) Line plot of scaled

protein level for two miRNA, competitively interacting with single mRNA. Lines represent specific parts of A, for constant complex formation rate
(k+11 = 0.2943/molecule/sec). For some constant levels of bp12 increase in rate of miRNA formation (bm2 ) leads to increase in protein ratio levels.
Reference values of bm1 , b

p
11, and k+11 listed in Table 2 are 1 molecule/sec, 0.001/sec, and 1/molecule/sec. Other parameter values constant, given in

Table 2. (C) Binarized protein steady-state sensitivity to miRNA formation rate for two miRNAs competitively interacting with single mRNA as a
function of rate of formation of miRNA2 (bm2 ), translation by complex c12 (bp12), and formation of complex c12 (k+12). All three axes ranges are exactly
as in Figure 3B. The two colors depict the light gray regions of expected (negative sensitivity, protein decreases with miRNA formation rate) and dark
gray regions of unexpected (positive sensitivity) effects of miRNA on steady-state target protein level, in contrast with Supplemental Figure S2
for a 1miRNA–1mRNA system with the same parameters which is uniformly green (expected effect). Other parameter values are constant, given
in Table 2.
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to a correlated change in the total miRNA concentration. We
use the model to investigate the possibility of observing pos-
itive effects of miRNA, i.e., an increase in target protein con-
centration when the miRNA formation is increased in an
overexpression experiment or equivalently a decrease in tar-
get protein concentration when the miRNA formation is de-
creased in a knockout/knockdown experiment. The actual
mode of action has been previously modeled in great detail.
We believe that this model can serve as a framework to study
the effect of competition among competing miRNAs on the
concentration of their common target.
Several low- and high-throughputmethods have been used

to identify miRNA targets (Tarang andWeston 2014). Several
recent experimental studies on single miRNA report the ob-
servation of nonintuitive effects of miRNA on their target
transcript and/or protein levels, in both miRNA overexpres-
sion and knockdown experiments. Genome-wide analysis of
miRNAs and targets leads to the observation that predicted
target mRNA expression is anti-correlated (as expected)
but often not correlated, or (unexpectedly) positively corre-
lated with miRNA expression. An elaborate study (Nicolas
et al. 2008) of the effect of overexpression and knockdown
of the same miRNA in the same model system resulted in
the finding that there were 21 targets with a 6-mer seed match
that consistently changed in both experimental conditions,
but none of them were predicted by computational tools.
Conversely, even such an elaborate experiment failed to iden-

tify a previously validated target as its transcript level did not
change. The study also reported a distribution of differential
expression levels spanning both up- and down-regulation of
transcripts with seed sequence matches following either over-
expression or knockdown of miRNA indicating the presence
of both expected and unexpected effects on putative targets.
In a study of non-small cell lung cancer tissue (Ma et al.
2011), of the target genes with conserved miRNA binding
sites, 10.5% were anti-correlated, 10.1% were correlated
and 79.4% genes showed no correlation with the miRNA ex-
pression. Typically, only the set of mRNA with anti-correlat-
ed levels is selected for further study presumably under the
implicit assumption that the unexpected behavior either re-
sults from indirect effects or experimental/assay error. As a
result, valid miRNA targets may be omitted from analysis.
It is therefore important to analyze the potential causes for
positive correlation and lack of correlation beyond the simple
explanations of indirect effects.
We have previously constructed a comprehensive model

for a single mRNA interacting with a single miRNA and
shown that such positive effects can indeed be observed for
pair-specific effects that are mathematically represented as
certain regions of parameter space. The mechanistic implica-
tion of these parameter regions are situations where the
miRNA binding stabilizes the transcript, or enhances the
translation rate, or both. Suchmechanisms have also been ex-
perimentally reported.

FIGURE 5. Line plot of scaled protein level for two miRNA, noncompetitively interacting with single mRNA. Lines represent specific parts of
Supplemental Figure S3. For every constant level of bp12 increase in rate of miRNA formation (bm2 ) leads to decrease in protein ratio levels. Other pa-
rameter values are constant, given in Table 2.
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However, a majority of individual miRNA–mRNA inter-
actions reported to date demonstrate a negative regulation
of target protein levels by the miRNA. In this paper, we
show that even when this is the case, the combinatorial
effects of miRNA can lead to situations where for certain
biologically feasible regions of parameter space, there is an
apparent positive effect of miRNA, i.e., steady-state target
protein concentrations are positively correlated with
miRNA formation rate. The unique advantage of a mecha-
nism-based mathematical model is that it enables dissection
of the causes for such unintuitive observations. We have car-
ried out an analysis of the model similar to the result shown
in Figure 5, where we changed the system to simulate a
perfectly noncompetitive system. Simulation of a range of
partial competition scenarios where the binding of one
miRNA to the common target retards but does not com-
pletely inhibit the binding of the other miRNA (results not
shown here) shows that while partial competition also leads
to nonintuitive effects as seen in Figure 4, a milder effect close
to the perfect-noncompetition case abrogates such an effect,
and the results are similar to those shown in Figure 5. In this
model, we have allowed the possibility of nonstoichiometric
degradation where the mRNA–miRNA can selective degrade
such that only the miRNA or only the mRNA component is
degraded.While there are several reports of selective degrada-
tion of mRNA and recycling of miRNA, we are not aware of
any reports of selective degradation of miRNA. However,
even upon setting the rate constant for this process to zero,
the results obtained are similar to those reported here, indi-
cating that selective miRNA degradation is not required for
observing the nonintuitive effect reported in this paper.

It is instructive to analyze the regions of the parameter
space where the nonintuitive effects are observed, i.e., the
darker areas in Figure 4C. The steady-state protein level de-
pends on the steady-state levels of the free mRNA and the
miRNA–mRNA complexes c11 and c12. In particular, it can
be written as a weighted sum of mRNA in these three states
as p1 = (bp1[m1] + bp11c11 + bp12c12)/dp1, where the weights
are the translation efficiencies of the free and bound forms.
The relative concentration of these forms depends on the
miRNA interaction with the mRNA. There are three key pa-
rameters that determine the miRNA action, which are the
three axes in Figure 4A,C. The miRNA formation rate con-
trols the total miRNA present, the rate of association or com-
plex formation controls the affinity of the miRNA for the
mRNA, and the rate of translation, which is always less
than the rate of translation by unbound mRNA, defines
the effectiveness of the repression by miRNA. The relative
parameters for the two miRNA determine the apparent re-
sponse. In Figure 4, all c12 translation rates simulated are at
values lower than the value for m1 but some values are taken
higher and some lower than the constant translation rate for
c11. When the association rate is higher and c12 translation
rate is higher than the corresponding values for c11, miRNA2
binds better but does not repress as much. Therefore, when

its concentration of miRNA2 is decreased by decrease in its
formation rate, the fraction of mRNA bound by miRNA1 is
larger, resulting in a net higher repression of translation
and therefore a lower target protein concentration. The over-
all effect observed is that a decrease in miRNA2 formation
rate has resulted in a decrease in its target protein, i.e., a coun-
terintuitive effect. For this simulation the total degradation
rate of each of the complexes was comparable with (though
not higher than) the degradation rate for unbound mRNA.
Similar results are obtained when the stoichiometric degra-
dation rate of each complex is assumed to be 50% higher
than the degradation rate constant for unbound mRNA.
Conversely, when the concentration of miRNA2 is increased
by increase in its formation rate, the fraction ofmRNA bound
by miRNA1 is lower, resulting in a net lower repression of
translation and therefore a higher target protein concentra-
tion. The overall effect observed is that an increase in
miRNA2 formation rate has resulted in an increase in its tar-
get protein, i.e., a counterintuitive effect.
A similar analogy can be constructed for miRNA2 binding

better but the complex c12 being more stable than c11 (even
when neither complex is more stable than unbound
mRNA). As the concentration of miRNA2 is decreased, the
other takes its place, but the net effect is a decrease in target
protein levels as the complex is more unstable. Again, a re-
duction in miRNA2 level leads to a decrease in target protein,
incorrectly suggesting that miRNA2 has a positive effect on
target protein. However as the effects are expected to be
not as simple, a mathematical model is needed to analyze a
complicated scenario such as when the miRNA2 binding is
more favorable than that of miRNA1, and c12 translates as
well as degrades more efficiently than c11.
We have independently varied the parameters for miRNA

formation, binding and effect on translation in order to sim-
ulate behavior in this parameter space. It might be the case for
certain miRNA that the parameters are correlated, i.e., higher
binding affinitymay be associatedwith a lower translation rate
and higher degradation rate for the bound mRNA. However,
diametrically opposite situationswith translational repression
when there is a partial match, and translational enhancement
when there is increasing base-pairing has also been reported
(Saraiya et al. 2013). So we choose to avoid making assump-
tions about the covariance of various parameters. If certain re-
gions of parameter space are not accessible physically for a
particular pair of miRNAs and mRNAs, then clearly the pre-
dicted effects for that spacewill not be true. It is also clear from
the simulations that the unintuitive effect will not be seen for
all possible parameter combinations. For instance, when the
miRNA does not significantly bind to the mRNA, a change
in its formation rate is unlikely to lead to a change in the target
protein level. The identification of miRNA as a regulator of
target protein expression has logically led to development of
mathematical models that analyze the interaction of a single
miRNAwith one target. Thesemodels are sufficient to predict
and explain results on the effect of experimental changes in
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target mRNA. However, we believe that our analysis for the
first time shows that reduction of the reaction system to a
1miRNA–1mRNA system results in the inability to anticipate
unexpected experimental results from experiments where the
miRNA expression is changed and there are multiple miRNA
competing for the mRNA. This inability might erroneously
spur the search for an unusual mechanism when the real ex-
planation lies in the complexity of the system, not the unusu-
alness of individual interactions.
At a different scale, efforts to construct a genome-scale net-

work of miRNA–mRNA interactions have been reported. A
genome-scale network of miRNA, lncRNA, and mRNA has
been constructed (Jalali et al. 2013). Dynamics within such
networks, and the role of miRNA in propagation of dynamics
has been reported (Gérard and Novák 2013). However, mod-
els on this scale owing to computational/analysis constraints
use minimal models for miRNA–mRNA interactions, for
instance, ignoring nonstoichiometric effects, or translation
of bound complex. Models for two (m)RNA competing for
one miRNA have been used to analyze the ceRNA language.
We believe that the model presented here is an appropriate
tool to investigate systems with competingmiRNA, and in ge-
neral for combinatorial competition the model for two
miRNA interacting with twomRNA presents an optimal scale
where the model is “as simple as possible but not simpler” in
that it is amenable to analysis yet contains the complexity
needed to explain and predict emergent properties such as
the apparent positive effect of miRNA predicted in this paper.

MATERIALS AND METHODS

Analysis for 1mRNA–1miRNA system

For the simplest model that has one miRNA and its sole target
mRNA, we use Equation 1 to calculate the steady-state protein
concentration. We calculate the steady-state concentrations p for
different combinations of bm1 , b

p
11, and k

+
11 keeping the other param-

eters constant at values as stated in Table 2. We define a scaled
concentration p̂ = p/pref where pref is the protein steady-state con-
centration when the parameters are the “reference” values given in
Table 2. To determine the sensitivity of steady-state target protein
level for specific rate of miRNA synthesis, partial derivative of the
protein steady-state concentration is calculated with respect to
miRNA formation rate using Mathematica. The sensitivity was cal-
culated as a function of bm1 , b

p
11, and k+11. The plot obtained is con-

verted into binary form where values less than zero are labeled as
“negative” and the values greater than zero are labeled as “positive.”
This gives a clear idea of the regions where increase in miRNA leads
to increase in target protein levels. All the simulations were carried
out using MATLAB (MathWorks) version 7.14.0.739 (R2012a) and
symbolic calculation using Mathematica (Wolfram) version 7.

Numerical simulation for 1mRNA–2miRNA system

This is a competitive model where no combicomplexes are formed.
The “competition” may be due to the two miRNAs competing for

the same or overlapping binding sites on the target mRNA, or due
to “allosteric” effects where binding of one miRNA results in a con-
formational change preventing the binding of the other miRNA. As
in the previous section, we calculate the steady-state concentrations
as a function of bm2 , b

p
12, and k

+
12 keeping the other parameters cons-

tant at values as stated in Table 2 (except the rate of combicomplex
formation, which is set to zero).
Log-transformed plot for scaled protein steady-state concentra-

tions is drawn as for the 1miRNA–1mRNA model. Line plot is ob-
tained for change in specific rate of translation and miRNA
formation by extracting values from the scaled concentration table
keeping the complex formation rate constant. A similar analysis
was performed for noncompetitive model. Sensitivity analysis is car-
ried out as before using Mathematica. The discretization of sensitiv-
ity is identical to that for the 1mRNA–1miRNA model.
Two extreme situations are modeled: perfect competition for the

sameMRE, and independent binding of the twomiRNAs to separate
MREs. In the former case, the combicomplex formation rate is set to
zero, i.e., no further miRNA binding can take place when either of
the miRNAs are bound to the mRNA. In the latter case, the associ-
ation/dissociation constants for miRNA binding to free mRNA is as-
sumed to be the same as the association/dissociation constants for
that miRNA binding to a complex of the target mRNAwith the oth-
er mRNA, i.e., the fact that the mRNA is associated with another
miRNA does not influence the binding at all.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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