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Abstract

Bacteriophages play key roles in microbial evolution1,2, marine nutrient cycling3, and human 

disease4. Phages are genetically diverse and their genome architectures are characteristically 

mosaic, driven by horizontal gene transfer (HGT) with other phages and host genomes5. As a 

consequence, phage evolution is complex and their genomes are composed of genes with distinct 

and varied evolutionary histories6,7. However, there are conflicting perspectives on the roles of 

mosaicism, and the extent to which it generates a spectrum of genome diversity8 or genetically 

discrete populations9,10. Here, we show that bacteriophages evolve within two general 

evolutionary modes that differ in the extent of HGT by an order of magnitude. Temperate phages 

distribute into high and low gene flux modes, whereas lytic phages share only the lower gene flux 

mode. The evolutionary modes are also a function of the bacterial host, and different proportions 

of temperate and lytic phages are distributed in either mode depending on the host phylum. Groups 

of genetically-related phages fall into either the high or low gene flux modes, suggesting there are 

genetic as well as ecological drivers of HGT rates. Consequently, genome mosaicism varies 

depending on the host, lifestyle, and genetic constitution of phages.

The vast majority (>95%) of sequenced bacteriophage genomes are from double-stranded 

DNA (dsDNA) tailed phages, and 2,191 dsDNA genomes in public databases were 

examined for evolutionary patterns driven by HGT. These phages infect over 130 host 

genera, predominantly in the phyla Actinobacteria, Bacteroidetes, Cyanobacteria, 

Firmicutes, and Proteobacteria (Supplementary Data 1) and inhabit a wide variety of 

environments. However, the representation of phages of different hosts is highly 

heterogeneous; 877 (40%) phages of Proteobacteria infect 76 genera and 828 (38%) phages 

of Actinobacteria infect 15 genera, but the other 22% are broadly distributed across the other 

42 host genera. Approximately 35% of the total have been isolated, sequenced, and 

annotated with manual inspection in the Science Education Alliance Phage Hunters 

Advancing Genomics and Evolutionary Science (SEA-PHAGES) program8,11, all of which 

infect Actinobacterial hosts.
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We determined gene content variation relative to nucleotide distances by pairwise 

comparison of all dsDNA phages using two kmer-based metrics that facilitate the 2.7 × 106 

comparisons that are computationally challenging using alignment-based approaches (Fig. 

1a, Supplementary Data 2). First, whole genome nucleotide sequence similarities were 

calculated using Mash12 using parameters that mirror homology-based Average Nucleotide 

Identity (ANI) measures (Supplementary Fig. 1a). Specifically, very large sketch sizes were 

chosen as these increase the accuracy of Mash distances when comparing distantly related 

genomes12. Second, gene content differences were determined by first grouping genes into 

phamilies13 according to amino acid sequence relationships using kclust, implemented in 

Phamerator8,14 with parameters that mirror BLAST-based measures8, then by calculating the 

proportions of pairwise shared phamilies.

Because the genetic diversity of phages is high, most pairwise comparisons (97%) have 

values outside of the informative ranges of comparison (Fig. 1a; see below); i.e. they have no 

DNA similarity and share few if any genes at the amino acid sequence level. However, 

comparisons between genomes with measurable similarities reveal two distinct patterns, one 

in which gene content dissimilarity is roughly proportional to Mash distance, and a second 

in which gene content dissimilarity increases more quickly as Mash distance grows. We 

propose that the hyperbolic-like disproportionate increase in gene content variation reflects a 

faster rate of gene acquisition and loss through HGT, and we will refer to these as the low 

(LGCF) and high (HGCF) gene content flux evolutionary modes (Fig. 1a). Because Mash is 

an alignment-free calculation of similarity, it does not strictly correlate with evolutionary 

divergence, and non-alignment characteristics such as base composition can influence Mash 

values. Likewise, grouping of genes into phamilies with alignment-free methods may 

imperfectly reflect sequence relationships. To address these, we showed that similar analyses 

using alignment-based ANI on a subset of phage genomes, using alternative methods for 

gene family construction15 and indexing gene content, all produce similar patterns to those 

shown in Figure 1a (Supplementary Fig. 2); a representative alignment-based phylogeny also 

supports the pham designations (Supplementary Fig. 3). Thus, although alignment-free 

comparisons should be used with caution when comparing such diverse genomes, the close 

agreement with subsets of the data using alignment-based methods (Supplementary Figs. 2 

and 3) adds confidence to the interpretation that these distinct evolutionary patterns are not 

artifacts of kmer-based approaches. We note that phages with ssDNA, ssRNA, or dsRNA 

genomes show different distributions to dsDNA phages, although sample sizes are small 

(Supplementary Fig. 4).

Two approaches were used to relate the genomic similarity plot to previous genome 

comparisons (Fig. 1). First, the values for evidently dissimilar genomes were determined by 

comparing phages with non-phage viruses, phages with different nucleic acid types, and 

phages of different host phyla (Supplementary Fig. 5a–c). Second, we correlated the 

genomic similarity plot with prior groupings of actinobacteriophages established with 

several metrics8,16 (Supplementary Fig. 5d–f). These groupings include ‘clusters’ of phages 

sharing nucleotide sequence similarity spanning at least 50% of the genome lengths, and 

‘subclusters’ sharing relatively high levels of ANI; phages with no close relatives are 

‘singletons’8,16. Comparing phages that share (or don’t share) the characteristics in these 

two approaches defines sectors in the plot for further analysis (Fig. 1b). Fewer than 2% of 
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the 2.4 × 106 dsDNA phage comparisons lie within the intra-cluster sectors, reflecting the 

overall high level of diversity (Fig. 1b).

Lytic and temperate phages differentially influence their microbial environments17 and are 

proposed to differ in their evolution18–21. Intra-lytic and intra-temperate phage comparisons 

distribute into the HGCF and LGCF modes, respectively, regardless of whether empirically-

determined (Fig. 1c) or predicted (Supplementary Fig. 6) lifestyle data are used. Lytic phage 

comparisons predominantly lie within the LGCF modes (94%; Fig. 1d), whereas temperate 

phage comparisons segregate into both the HGCF (43%) and LGCF (57%) profiles; we will 

refer to these as class 1 and class 2 temperate phages, respectively (Fig. 1c,d). As expected, 

there are few examples of similarities between lytic and temperate phages, although those 

observed are in the HGCF mode (Fig. 1c). Additionally, while both classes of temperate 

phages are present among Siphoviridae and Myoviridae, most temperate Podoviridae phages 

are class 1 (Supplementary Fig. 7a).

Genetically-related lineages of phages have distinctive HGCF and LGCF profiles (Fig. 2). 

For example, temperate Mycobacterium Cluster F phages evolve exclusively in the HGCF 

mode, whereas temperate Mycobacterium Cluster K and lytic Propionibacterium Cluster BU 

phages exclusively evolve in the LGCF mode, although with distinctive profiles (Fig. 2a). 

These patterns are observed even when alignment-based ANI is used to determine 

nucleotide distances (Supplementary Fig. 2d). The correlation between genome type and 

evolutionary mode extends to all of the clusters for which there are sufficient genomes to 

evaluate, regardless of whether they are classified as predominantly temperate or lytic (Fig. 

2b). Approximately 60% of the designated actinobacteriophage clusters have sufficient 

members to assign to HGCF or LGCF modes (Fig. 2c).

The HGCF and LGCF profiles could differ because of differential rates of gene acquisition 

and loss5, or because the genes that are not shared (i.e. that are either not homologous, or are 

too distantly related to be grouped into the same phamily) have different characteristics 

(such as base composition) and thus contribute differently to the Mash nucleotide distance 

measures. Several lines of evidence support the former interpretation (Supplementary Fig. 

8). First, HGCF comparisons exhibit greater variation in genome size than LGCF and lytic 

comparisons (Supplementary Fig. 8a), consistent with higher levels of HGT. Second, the 

Mash distances of the portions of the genomes corresponding to the unshared genes is 

similar for lytic and both classes of temperate phages (Supplementary Fig. 8b,c), such that 

these are not driving the different evolutionary modes. As a consequence, if two pairs of 

genomes are compared in which 50% of the genes in each pair are homologues, the 

nucleotide sequences of the shared genes are much more closely related in the HGCF than in 

the LGCF comparisons (Fig. 2d). We also note that the gene content differences correlate 

with the proportions of the total coding sequences derived from the unshared genes similarly 

for the different modes (Supplementary Fig. 8d), ruling out distortions resulting from 

exchange of large numbers of disproportionately small genes. However, for all phage 

groups, unshared (non-homologous) genes are generally smaller than shared (homologous) 

genes, reflecting prior observations (Supplementary Fig. 8e)16. Taken together, these 

observations support the hypothesis that the HGCF and LGCF profiles are driven by 
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different rates of HGT, rather than acquisition of different types of genes from distinct 

sources.

Differential rates of HGT can be directly tested with Cluster A actinobacteriophages since 

they atypically distribute into both LGCF and HGCF modes (Fig. 3a). There are nearly 200 

phages in this cluster, they are all temperate or recent derivatives of temperate phages, and 

they share common genomic architectures8. However, they are quite diverse and are 

subdivided into 17 subclusters8. Subcluster A1 phages – representing 25% of all Cluster A 

phages – follow the HGCF mode (spanning a narrow range of low Mash distance), whereas 

all other Cluster A phage comparisons follow the LGCF mode (Fig. 3a). Subcluster A1 

phages are somewhat distantly related to other Cluster A phages (Fig. 3a), but they share 

general properties such as genome size, GC% content, immunity regulation, head packaging 

strategy, and tail type8.

Phylogenetic analysis of all Cluster A phages based on highly conserved structural/assembly 

genes shows that Subcluster A1 phages form a monophyletic clade with markedly shorter 

branch lengths than phages of other subclusters (Fig. 3b). Distinct genomic similarity 

distributions are still observed when these branch lengths – corrected for evolutionary 

distance – are used instead of Mash-based whole genome nucleotide distance (Fig. 3a, c), 

adding further confidence in the Mash-based analyses (Fig. 1). Phylogenetic analyses 

(branch length determinations) of other representative actinobacteriophage clusters from 

each mode reveal similar trends, and they show that HGCF comparisons differ from LGCF 

and lytic comparisons in several general gene content metrics (Supplementary Fig. 9).

The homology-based phylogeny provides a framework for calculating the rates at which the 

non-homologous genes are being acquired or lost, and we observe that Subcluster A1 phages 

exhibit nearly 10 times more pham gains and losses than Cluster A phages in other 

subclusters (Fig. 3d). The same pattern is observed for other groups of phages (Fig. 3e), and 

the predicted HGT events correlate with homology-based evolutionary distances 

(Supplementary Figs. 3b, 10a, b). Specifically, the HGCF temperate phages in Cluster F 

show much greater rates of gene acquisition and loss that the LGCF phages of Clusters BD 

or K, or the lytic phages in Cluster B (Fig. 3e). Thus, at least for these subsets of the phages, 

there is a strong correlation between the rates of gene acquisition and loss derived from 

homology-based phylogenetic reconstruction, and the modes that exhibit when comparing 

GCD and Mash distances with alignment-free methods (Fig. 1). There are no obvious 

genetic characteristics that distinguish phages of specific modes (Fig. 3f), and the different 

HGT rates between HGCF and LGCF modes are not correlated with specific types of genes 

(Supplementary Fig. 10c, d).

Phages infecting hosts within different phyla show different distributions among HGCF and 

LGCF modes (Fig. 4). The numbers of phages infecting Firmicutes (Fig. 4d) and 

Proteobacteria (Fig. 4e) are sufficient to provide robust profiles, similar to the 

actinobacteriophages (Fig. 4a), although with different distributions. Over 80% of temperate 

phages infecting Firmicutes, but less than 50% of temperate phages infecting Proteobacteria, 

are class 1. Bacteroidetes and Cyanobacteria phages contribute almost exclusively to HGCF 

and LGCF profiles, respectively (Fig. 4b, c), and the cyanobacteria phages are of particular 
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note as these reflect aqueous environments explored using metagenomics and viral 

tagging9,22. The Cyanobacterial phage comparisons closely map to the LGCF mode, there is 

a dearth of comparisons in the ‘inter-cluster’ sectors, and none of the temperate phages are 

class 1 (Fig. 1b, 4c). This is consistent with reports of genetically-distinct phage populations 

and constrained genomic mosaicism of Synechococcus phages9. In contrast, Actinobacterial 

and Proteobacterial phages show both LGCF and HGCF profiles, have many class 1 

temperate phages, and have substantial inter-cluster relatedness (Fig. 4a, e). These are 

consistent with extensive genomic mosaicism and a continuum of genetic diversity5,8,23. 

Thus, the bifurcation of evolutionary modes by host, environment, lifestyle, and genome 

accounts for different views on phage genome mosaicism and evolution8,9.

While the biological mechanisms that cause a ten-fold change in HGT and two distinct 

evolutionary modes are unclear, the two modes have important biological implications. 

Bacterial genomes, when similarly analyzed for classification, do not show bifurcating 

genomic similarity patterns24–26, although they do exhibit varying rates of HGT27. Many 

well-studied temperate phages that contribute to host physiology, virulence, and viral 

defense evolve in the HGCF mode, including the Cluster N mycobacteriophages28, lambda 

and its relatives29, and others2,4 (Supplementary Fig 11). Selection for such traits may fuel 

the HGCF mode, suggesting the possibility that many of the unshared genes – most of which 

have unknown function – contribute to host adaptations. Alternatively, the increased HGT 

rates may be the result of specific genes such as recombinases, but these have yet to be 

identified. Class 1 temperate phages engage in more exchange with lytic phages than class 2 

temperate phages do, although these are relatively rare because of overall dissimilarity of the 

genomes (Fig. 1c), as well as the rare exchanges between phages with different tail 

morphotypes (Supplementary Fig. 7b). Other factors such as variations in host range 

evolution, differential access to the common gene pool in different environments, constraints 

on the diversity of genomes available for recombination, and the roles of temperate phages 

at different microbial densities, are also expected to contribute to these modes of phage 

genome evolution17,30,31.

Methods

Phages used in this study

A total of 2,333 microbial viruses were used for this study. All 1,941 viruses in the NCBI 

RefSeq database (https://www.ncbi.nlm.nih.gov/refseq/) listed as ‘microbial viruses’ were 

downloaded on 8/11/2016 and combined with phages in a local Phamerator14 database 

Actinobacteriophage_785, thus comprising 2,191 double-stranded DNA bacteriophages, 84 

bacteriophages with alternative nucleic acid genomes (ssDNA, dsRNA, ssRNA), 23 

bacteriophages with unspecified nucleic acid type, 3 archaeal viruses, 1 eukaryotic virus, 

and 31 viruses of unspecified origin (see Supplementary Data 1 for a complete list of 

viruses). All 2,333 viral genomes were used to create the Bacteriophages_2333 Phamerator 

database (http://phamerator.webfactional.com/databases_Hatfull). CDS features from the 

Actinobacteriophage_785 database (for those actinobacteriophages) or from the RefSeq 

records (for all other genomes) were retrieved and used. Phamerator implements the kclust 

algorithm, and all CDS translations were grouped into 62,363 unique phamilies (phams)14.
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Collection of virus metadata

Several types of metadata were used for analysis: phage clusters, host taxonomy, viral 

taxonomy, and phage lifestyle (Supplementary Data 1). For all metadata fields in 

Supplementary Data 1, missing/incomplete data were listed as “Unspecified” and were 

excluded from each specific type of analysis.

Host genera of the 785 actinobacteriophages were derived from phagesdb (http://

phagesdb.org). For the other 1,548 genomes, the Biopython32 package was used to retrieve 

host genus from each RefSeq record. Host data is stored in multiple fields in RefSeq records, 

and manual assessment of host data parsed from these fields was required to identify the best 

choice of host genus. For all 2,333 genomes, the ete3 python package33 was used within the 

conda environment (https://www.continuum.io) to retrieve the complete host taxonomy.

For viral taxonomy, taxonomic data of the 785 actinobacteriophages were derived from 

phagesdb (http://phagesdb.org), and for all other phages from each RefSeq record using 

Biopython. Cluster data was obtained from phagesdb.

Empirical phage lifestyle data for 1,067 phages was obtained from multiple sources. For the 

785 actinobacteriophages in phagesdb, lifestyle for all phages within a specific cluster was 

assigned if there was empirical data or strong, reasonable genomic evidence indicating they 

are temperate or lytic (pers. communication with W. Pope). For phages of other host phyla, 

lifestyle data was compiled from two online resources, PHACTS34 and ACLAME35, as well 

as previously compiled data for subsets of these phages19,23,36–38 and as well as other 

various literature. Lifestyle data was thus curated for over 40% of the phages in this 

database, resulting in 452 lytic and 614 temperate phages, and predominantly from the host 

phyla Actinobacteria (562 phages), Firmicutes (131 phages), and Proteobacteria (362 

phages).

Categorization of phams into general gene functions

Phams present within 785 actinobacteriophages, which have been predominantly manually 

and systematically curated through the SEA-PHAGES program, were manually grouped into 

mutually exclusive, but non-exhaustive, functional categories based on the pham 

descriptions present in the database. Common gene functions associated with each category 

are as follows: lysis (endolysin, holin, LysA, LysB, LysM, lysin); lysogeny (immunity 

repressor, integrase, parA, parB, excise); recombination/replication (DnaB, DnaC, DnaJ, 

Ftsk, helicase, ku, DNA polymerase, primase, RDF, RecA, RecB, RecE, RecT, RusA, RuvC, 

resolvase); structural/assembly (capsid, capsid maturation protease, capsid morphogenesis, 

head assembly, head-to-tail connector, head decoration, major capsid, major tail subunit, 

minor tail subunit, portal, teminase, structural, tail assembly chaperone, tail fiber, tape 

measure, scaffolding, tail, tail sheath, tail spike, baseplate); misc. (any phams with gene 

functions that do not clearly fit into any of the above categories; no known function (no 

pham description data available).
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Prediction of phage lifestyle

The lifestyles of all phages in the dataset were predicted in order to complement the 

empirical lifestyle dataset. Phamerator identifies conserved domains in all genes using the 

NCBI conserved domain database39. All conserved domains in the dataset that contain 

descriptions relating to “integrase” (for integrating temperate phages) or “parA” 

(partitioning gene found in extrachromosomal temperate phages40), or those that are 

associated with phams that contain manual descriptions relating to “integrase” or “parA”, 

were manually identified, resulting in 206 “temperate phage” domains. All phams in the 

dataset containing at least one temperate phage domain were identified, resulting in 149 

“temperate phage” phams. All phages in the dataset containing at least one temperate phage 

pham were identified, resulting in 962 predicted temperate and 1371 predicted lytic phages. 

The predicted lifestyle data conflicts with the empirical lifestyle data in 4% of the empirical 

dataset. Not surprisingly, some of these are readily identifiable as recent lytic mutant 

derivatives of temperate parents, such as the Cluster K phage, TM441. Additionally, 

temperate mu-like phages integrate into the host genome using transposases instead of 

integrases, so they were not identified using this strategy, accounting for several other 

phages on this list. We also note that some recombinase genes may contain similar 

conserved domains as found in integrases; true lytic phages containing these recombinases 

would be erroneously categorized as temperate. Conversely, true temperate phages that 

contain novel integration machinery would be missed by this strategy and would be 

erroneously categorized as lytic.

Calculation of gene content dissimilarity

Custom python scripts were developed to compute a gene content dissimilarity index. For 

each pairwise comparison of genomes, the number of shared phams between the two 

genomes was computed, and this was divided by the total number of phams present in each 

genome. The two proportions were averaged and converted to a gene content dissimilarity: 1 

– average shared pham proportion, ranging from 0 (all phams are shared) to 1 (no phams are 

shared) (Supplementary Data 2). The Jaccard index was also computed, where the number 

of shared phams was divided by the total number of phams present in both genomes. Gene 

function-specific gene content dissimilarity was computed for each pairwise comparison in 

the same manner, except that only the subset of phams grouped into each specific category 

were used.

Calculation of whole genome nucleotide distance

Mash software v1.1 was used to compute nucleotide distance between all genomes using 

custom bash and python scripts. Mash implements kmer-based scoring using two user-

defined parameters (kmer size and sketch size) to enable rapid genomic comparisons12. It 

was originally described as a tool that, with optimized parameters, can quickly group related 

sequences at the species level (nucleotide distance < 0.05). The Mash distance highly 

correlates with average nucleotide identity (ANI), a common metric for genome sequence 

similarity that is robust but computationally prohibitive for large datasets12. In general, 

larger sketch sizes and smaller kmer sizes provide more accurate estimates between 
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genomes of greater distance. We extended Mash’s utility to examine patterns of phage 

genome evolution across larger distances and optimized the parameters accordingly.

A subset of 79 phage genomes from multiple actinobacteriophage clusters and host phyla 

were chosen (Supplementary Data 1). Pairwise ANI of all genomes was computed using 

default settings in DNA Master (http://cobamide2.bio.pitt.edu), an alignment-based 

approach similar to that described by Konstantinidis and Tiedje42. For the largest genome in 

the database, phage G, at a size of ~500,000 bp, Mash recommends kmer sizes of 13 or 

larger, so we tested kmer sizes ranging from 13 to 17, and sketch values of 200, 1000, 5000, 

and 25,000 (Supplementary Fig. 1a). Correlations of ANI-based distance (1 – ANI) and 

Mash-based distance were analyzed in RStudio (https://www.rstudio.com) to determine the 

optimal parameters. We determined that in using kmer = 15 and sketch = 25,000, Mash and 

ANI distances correlate up to a Mash distance of ~0.33 (ANI distance of ~0.4). We retained 

all distances with a p-value < 1×1010. Additionally, since genome sizes ranged from 2.5 kb 

to nearly 500 kb, we added a parameter to minimize distortions caused by large genome size 

disparities (Supplementary Fig. 1b). We limited our analysis to genomes that had a 

maximum genome size disparity of 100%, meaning that for any pairwise comparison, one 

genome was no more than twice the size of the other genome (however, we note that <2% of 

all comparisons are impacted by this parameter, and <0.06% of these comparisons are 

positioned within intra-cluster boundaries, so omitting this parameter would not impact 

results). After optimization, the following parameters were used for further genome 

comparisons: kmer = 15, sketch = 25,000, p-value < 1E-10, and genome size disparity of 

100%.

Using these optimized parameters, nucleotide distances for all ~2.7 million pairwise 

comparisons in the dataset were computed (Supplementary Data 2). In order to retain all 

data points to generate scatterplots and histograms, all comparisons that did not exhibit 

relationships based on the optimized parameters were set to a distance of 0.5, larger than any 

other value that passed the filters. Thus, nucleotide distances for this dataset range from near 

0 (complete identity) to 0.5 (completely unrelated). Of the ~2.4 million pairwise 

comparisons between dsDNA viruses tested, less than 9% passed the filter, reflecting the 

large genetic diversity in the dataset. We note that even though we optimized the Mash 

parameters, the same general patterns are observed in the data when either less stringent 

parameters (sketch size = 5000, kmer size = 13) or more stringent parameters (sketch size = 

50,000, kmer size = 17) are used, indicating that the observed patterns are robust to a range 

of Mash parameters.

Plotting genomic similarity and defining sectors

Genomic similarities were plotted with RStudio (version 0.99.903, implementing R version 

3.3.0). Each point represents a single pairwise comparison, and its position in the scatterplot 

reflects the genomic relationship between the two phages. To compare patterns in genomic 

similarities, only the 2,191 dsDNA bacteriophage data was plotted. However, we used the 

other 142 viruses to inform our interpretation of the metrics used. First, viruses of different 

host domains and nucleic acid genomes are expected to be unrelated6,10,20. In our analysis, 

there were no significant nucleotide distances computed between any bacteriophages and the 
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eukaryotic virus, Tetraselmis viridis virus S1. Additionally, all genomic similarities between 

bacteriophages and the three archaeal viruses, or between bacteriophages of different nucleic 

acid types, exceeded nucleotide distances of 0.38 and had gene content dissimilarities of 1, 

and over 99% of comparisons between dsDNA phages of different host phyla exhibit either 

nucleotide distances of 0.5 or gene content dissimilarities of 1 (Supplementary Fig. 5a–c).

Next, we compared and contrasted phage genomic diversity within and between manually 

curated actinobacteriophage clusters, subclusters, clustered phages that have not yet been 

subclustered, and singletons (Supplementary Fig. 5d–f). Almost 100% of comparisons 

involving phages within the same cluster (intra-cluster) exhibit nucleotide distances below 

0.42 and gene content dissimilarities below 0.89. Similarly, almost 100% of comparisons 

involving phages within the same subcluster (intra-subcluster) exhibit nucleotide distances 

below 0.2 and gene content dissimilarities below 0.62.

Using these cluster-specific and subcluster-specific values, we defined sectors on the 

genomic similarity plot to highlight approximate boundaries between different types of 

relationships (Fig. 1b): ‘Intra-cluster and intra-subcluster’ (dark grey), phages with enough 

similarity to be grouped into the same subcluster; ‘Intra-cluster but inter-subcluster’ (light 

grey), phages with enough similarity to be grouped into the same cluster; ‘Inter-cluster but 

distantly related’ (grid pattern), phages that lack enough similarity to be grouped into the 

same cluster, but low gene content dissimilarity may suggest they are distant relatives; 

‘Inter-cluster w/HGT’ (grid pattern), phages that lack enough similarity to be grouped into 

the same cluster, but exhibit low nucleotide distance, suggesting that they have experienced 

substantial, recent, horizontal gene transfer that skews the whole genome nucleotide 

distance; ‘Unrelated’ (black), phages that lack enough similarity to be grouped into the same 

cluster, did not pass the p-value threshold, or that contain large genome size disparities; 

White sectors, approximate regions of the profile that contain no data and are inaccessible 

due to the intrinsic relationship between the two metrics.

Using these sectors, almost 100% of comparisons involving dsDNA phages of different host 

phyla are positioned in the unrelated sector. Less than 1% of inter-cluster comparisons and 

about 1% of comparisons involving at least one singleton are positioned within the intra-

cluster sector. Fewer than 3.5% of inter-subcluster comparisons between phages of the same 

cluster and nearly 99% of comparisons involving phages of the same cluster but have not yet 

been subclustered are positioned within the intra-subcluster sector.

Categorizing comparisons into evolutionary modes

For data subsets used in Supplementary Figs. 8 and 9, each pairwise comparison was 

classified in the HGCF evolutionary mode if a) the mash distance was less than 0.16 and 

gene content dissimilarity was above the line y = 3.5x, or b) the mash distance was greater 

than 0.16 and gene content dissimilarity was above the line y = 2x + 0.25. Otherwise, the 

pairwise comparison was classified in the LGCF evolutionary mode.

Prediction of evolutionary mode per phage and cluster

Individual phages were classified into evolutionary modes as follows (Supplementary Fig. 

6c). In addition to the parameters used for classifying individual comparisons described 
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above, only comparisons that are distributed within intra-cluster boundaries (nucleotide 

distance < 0.42, gene content dissimilarity < 0.89) and within the intermediate range of 

similarity (where they are not positioned within the regions where the two modes converge, 

reflected by nucleotide distance < 0.06 and gene content dissimilarity < 0.22 or nucleotide 

distance > 0.28 and gene content dissimilarity > 0.79, as observed in Fig. 1a) were used. 

With each comparison classified, the proportion of comparisons in the HGCF mode were 

computed. Phages were classified as a) “HGCF” if > 80% of comparisons are distributed in 

the HGCF mode, b) “LGCF if < 20% of comparisons are distributed in the HGCF mode, c) 

“Mixed” if 20–80% of comparisons are distributed in the HGCF mode, d) “Unknown” if no 

comparisons were distributed in either of the two mode regions (Supplementary Fig. 6d). 

Nearly 60% of phages exhibit 100% of comparisons in one mode or the other. While the 

thresholds and parameters are intended to predict the evolutionary mode in an unbiased, 

conservative manner, there are nevertheless phages that exhibit a “Mixed” distribution. This 

designation is likely an artifact for many of these phages based on the conservative 

thresholds used. For instance, while 15 of the Subcluster A1 phages are assigned “HGCF”, 

40 are assigned “Mixed”, not because they are broadly distributed across the LGCF sector, 

but simply due to their distant pairwise relationships with other Cluster A phages that are 

positioned within close proximity to the conservative boundaries (Fig. 3a). Classification of 

individual actinobacteriophage clusters were based on the classification of their constituent 

phages. Clusters were classified as a) “HGCF” if they contain phages classified as HGCF 

and contain no phages classified as LGCF or Mixed, b) “LGCF” if they contain phages 

classified as LGCF and contain no phages classified as HGCF or Mixed, c) “Mixed” if more 

than one phage was classified as Mixed, and d) “Unknown” if all phages were classified as 

Unknown.

Calculation of genome size disparities

The genome size disparity was computed for each comparison by determining the absolute 

nucleotide difference between the two phage genomes, determining the proportion of the 

size difference relative to each individual genome, and averaging the two proportions. 

Sliding window averages were then computed by sorting all data points by whole genome 

nucleotide distance and using the runmean function in the caTools (version 1.17.1, https://

CRAN.R-project.org/package=caTools) R package to compute average genome size 

disparities within sliding windows of 101 data points.

Calculation of shared and unshared gene subset data

Shared and unshared nucleotide distances were computed as follows. Gene nucleotide 

sequences were extracted from genomes and analyzed using custom python scripts. For each 

comparison, gene phams were categorized as “shared” or “unshared” depending on whether 

they were present in both genomes or only one genome. Gene sequences for both genomes 

were categorized as “shared” or “unshared” depending on their associated pham’s assigned 

category. For each genome, gene sequences in each category were concatenated into a single 

nucleotide sequence. Each pairwise comparison thus resulted in four concatenated 

nucleotide sequences. Mash was used with the whole genome optimized parameters to 

compute nucleotide distances between the shared gene sequences, or between the unshared 

gene sequences, within each pairwise phage comparison. All shared and unshared nucleotide 
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distances with a p-value < 1 × 10−10 were less than 0.6; therefore, all insignificant data 

points were set to 0.6 so that all data is retained for each plot.

Each comparison thus resulted in a shared gene nucleotide distance and unshared gene 

nucleotide distance, in addition to the previously computed whole genome nucleotide 

distance (Supplementary Data 2). Sliding window averages for shared and unshared gene 

distances were computed similar to the genome size disparities, in which all data points were 

first sorted by whole genome gene content dissimilarity (Supplementary Fig. 8c). The 

proportion of total coding sequence derived from unshared genes in each genome was 

computed by dividing the length of the concatenated unshared gene sequences by the 

combined length of shared and unshared gene sequences (i.e. the genome’s total coding 

sequence). For each comparison, the unshared coding sequence proportions of both genomes 

were averaged.

For all phams present in clustered actinobacteriophages, a ‘pham distribution’ metric was 

computed, reflecting the total number of clusters or singletons in which the pham is present 

at least once (Supplementary Fig. 9c). The average pham distribution for shared and 

unshared phams was computed for each pairwise comparison. Orphams are phams that 

contain a single gene, and the ‘orpham frequency’ metric reflects the total number of 

orphams present for each comparison (Supplementary Fig. 9c). Sliding window averages for 

these two metrics were computed as for genome size disparities.

Analysis of prokaryotic Virus Orthologous Groups (VOGs)

We compared our strategy of clustering genes into shared phamilies to the strategy used for 

prokaryotic viral clusters of orthologous genes (VOGs). VOG data for 1,877 phages in our 

dataset was downloaded from the pVOG database15 on 2/21/2017. Gene content 

dissimilarity was computed based on VOG data and plotted it as in Figure 1. While there is a 

strong correlation between pham-based and VOG-based gene content dissimilarity 

(Supplementary Fig. 2e), some discrepancy is observed, but this is expected. Phamerator 

assigns all genes to a pham, even if they are the sole members of the pham. In contrast, the 

strategy to create VOGs relies on orthologous genes being present in at least three genomes 

in the dataset, and genes that do not meet this criteria are not assigned a VOG43. As a result, 

on average only ~60–70% of proteins per phage genome are assigned to VOGs15, which 

would increase gene content dissimilarity scores.

Creating cluster-specific multi-gene phylogenies

In order to compare Mash-based nucleotide distance to phylogenetic branch lengths, 

phylogenetic trees were created for specific clusters that differ in lifestyle and evolutionary 

mode. The phylogenies are based on several structural and assembly genes, which tend to be 

the most highly conserved genes44. We manually identified highly conserved structural/

assembly genes by assessing which phams were present in a majority of phages per cluster 

and assessing their predicted function based on SEA-PHAGES annotations. Multiple genes 

were used for each phylogeny, and since different clusters tend to be highly unrelated, it is 

not possible to create phylogenies based on the same exact types of genes. Specifically, for 

Cluster A [phams 2847 (head-to-tail connector), 22298 (head-to-tail connector); average 
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concatenated length = 263 amino acids]; for Cluster B [phams 3753 (minor tail subunit), 

5322 (capsid morphogenesis), 22085 (major capsid), 22421 (major tail subunit); average 

concatenated length = 2,214 amino acids]; for Cluster F [phams 431 (head-to-tail 

connector), 1120 (head-to-tail connector), 3237 (minor tail subunit), 5414 (head-to-tail 

connector), 5557 (minor tail subunit), 16649 (major tail subunit); average concatenated 

length = 1,470 amino acids]; for Cluster K [phams 2031 (major tail subunit), 4865 (head-to-

tail connector), 7777 (minor tail subunit), 8258 (major capsid), 21863 (scaffold), 21994 

(terminase large subunit), 22458 (portal); average concatenated length = 2,203 amino acids]; 

for Cluster BD [phams 4535 (head-to-tail connector), 5928 (scaffold), 6139 (major capsid), 

21799 (minor tail subunit), 21936 (major tail subunit), 22504 (portal); average concatenated 

length = 1,654 amino acids]. The number of genes used for each cluster-specific phylogeny 

varied due to the number of highly conserved structural and assembly genes available for 

analysis in that cluster as well as the average size of the gene (where it was attempted to 

create concatenated alignments that were comparable in length between clusters). Notably, 

for Cluster A phages only two genes were used. Originally, two other genes were used 

[phams 7209 (head-to-tail connector) and 22174 (portal)], but a horizontal gene transfer 

event among three of the Subcluster A1 phages resulted in an unreliable phylogenetic tree 

for downstream analysis, so these two genes were not used for the final tree. Protein 

sequences for each gene set were aligned using webPRANK45 using default settings, all 

gene alignments for each specific cluster were concatenated, and the concatenated 

alignments were used to construct phylogenies using PhyML in SeaView software46 using 

default settings.

Measuring rates of horizontal gene transfer

Rates of horizontal gene transfer were computed using Count software47 as follows. Using 

the cluster-specific multigene phylogenies and cluster-specific presence/absence pham 

tables, Count predicted the gain and loss of individual phams across the phylogeny using 

Wagner parsimony (with equal penalties for gains and losses). For each branch in the tree, 

gain/loss events were matched to amino acid distances using the ete3 python package. The 

total gain/loss events were divided by the total branch lengths in the tree (or A1 and non-A1 

subtrees in the Cluster A analysis) resulted in the HGT rates, similar to what has been done 

previously in bacterial genomes27. Summed gain and loss events for phams in specific gene 

function categories were divided by total branch lengths to obtain gene function-specific 

HGT rates. Gene function-specific rate deviation from expected (Supplementary Fig. 10d) is 

the log2 transformed ratio of the proportion of the category’s HGT rate relative to the total 

HGT rate in the cluster divided by the proportion of phams in the category relative to all 

phams in the cluster. We note that when larger gain penalties are used, the absolute number 

of predicted pham gains decreases while that of pham losses increases, as expected, and the 

sum total of gains and losses increases. Regardless of gain penalty though, the sum total of 

gains and losses remains proportionally larger in HGCF phages compared to LGCF phages. 

Therefore, the results using a gain penalty of 1 are reported, which reflect the smallest sum 

total of gains and losses predicted and are thus a conservative estimate of horizontal gene 

transfer rates.
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Analysis of LysB horizontal gene transfer

All Cluster F phages contain one of two LysB phams (21902 and 6754). All protein 

sequences from clustered actinobacteriophages that are assigned to either of these two 

phams were retrieved, and a single alignment and phylogenetic tree was constructed as for 

the cluster-specific multigene analysis.

Code availability

Custom bash, python, and RStudio scripts were used to execute software, process data, 

analyze data, and create figures. These are available upon request.

Data availability

The phage metadata, Mash distance data, and gene content dissimilarity data are provided 

with the paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Two evolutionary modes correlate with phage lifestyle
a, Nucleotide distance (using Mash) and gene content dissimilarity (using phams from 

Phamerator) are plotted for ~2.4 × 106 dsDNA phage comparisons to reveal two 

evolutionary modes (inset). The line at y = 2x is plotted for reference. Marginal frequency 

histograms emphasize densely-plotted regions, with truncated y axes for viewability. b, 

Defined genomic similarity plot sectors (dotted lines) highlight various genomic 

relationships (see Methods), including the percentage of dsDNA phage comparisons in panel 

a that are positioned in each sector. c, Comparisons involving two lytic (left), two temperate 
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(middle), or one lytic and temperate phage are plotted (right) as in panel a. d, Pie charts 

reflecting the proportion of predicted lytic and temperate phages in the dataset that exhibit 

the HGCF or LGCF mode. Two classes of temperate phages are apparent: those with HGCF 

(class 1) and those with LGCF (class 2). n = number of phages used for the analysis (distinct 

from the number of comparisons plotted).
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Figure 2. Phage clusters exhibit unique evolutionary trajectories
a, Cluster-specific intra-cluster (orange) and inter-cluster (black) comparisons are plotted as 

in Figure 1a for representative actinobacteriophage clusters and grouped by their predicted 

or known lifestyle, with cluster and host genus indicated. n = number of phages present in 

the specific cluster. b, Stacked bargraphs for 44 actinobacteriophage clusters in which the 

evolutionary mode of their constituent phages could be determined, along with their 

predicted lifestyle. For each cluster, the percentage of the constituent phages that are 

predicted to be temperate or lytic, along with the percentage of the constituent phages that 
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are predicted to be in each evolutionary mode, are indicated. c, Pie chart reflecting the 

proportion of all actinobacteriophage clusters in each mode (same color scheme as in panel 

b). d, BLAST-based whole genome alignments of two individual phage comparisons 

highlight class 1 (Cluster F phages Bobi and Cerasum) and class 2 (Cluster A phages 

Bactobuster and RhynO) temperate phages. Both comparisons have approximately equal 

gene content dissimilarities (0.51 and 0.50, respectively) but markedly unequal whole 

genome nucleotide distances (0.07 and 0.25, respectively). Spectrum color shading reflects 

BLASTN e-value significance of aligned regions, ranging from unrelated (white) to closely 

related (violet).
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Figure 3. Evolutionary modes correlate with different rates of HGT
a Mycobacteriophage Cluster A-specific comparisons are plotted (left) similar to Fig. 2, but 

subcluster relationships are highlighted. Cluster A comparisons involving two Subcluster A1 

phages (cyan), two non-Subcluster A1 phages (dark green), one Subcluster A1 and one non-

Subcluster A1 phage (purple), one Subcluster A1 and one non-Cluster A phage (black), and 

one non-Subcluster A1 and one non-Cluster A phage (grey) are plotted. Subcluster A1 

phages exhibit HGCF compared to other Cluster A phages. n = number of Cluster A phages 

in Subcluster A1 (nA1) and Subclusters A2-A17 (nnon-A1). The same Cluster A gene content 
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dissimilarities were plotted (right) against pairwise branch lengths from the phylogenetic 

tree in panel b. Box indicates the area of the plot enlarged in panel c. b, Phylogenetic tree of 

all Cluster A phages based on structural/assembly genes. All branches are colored as in 

panel a, highlighting that all A1 phages form a monophyletic clade. c, Enlarged area of plot 

in panel a (right) to highlight different patterns of gene content changes. d, Bar graph of the 

predicted number of pham gains and losses per substitution per amino acid site for A1 and 

non-A1 phages. e, Bar graph of the predicted number of pham gains and losses as in panel d 

for additional representative clusters (colored as in Supplementary Fig. 8a). f, Comparison 

of phages in specific representative clusters in the phylogenetic analysis, using several 

genome metrics such as GC content, genome size (size), and the number of all genes or 

genes in functional categories per genome (struc./asmbly = structural and assembly; 

recomb./rep. = recombination and replication; NKF = no known function). Each data point is 

a phage genome, and boxplots depict the middle 50% of the data surrounding the median 

(black bar).
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Figure 4. Host phyla exhibit diversity in phage evolutionary modes
a-e, Genomic similarities in Figure 1a were divided based on the five most predominant host 

phyla. Each host phylum displays unique phage genomic similarity profiles, indicating that 

patterns of phage evolution vary based on host. Pie charts reflect the proportion of phages of 

each host phylum that are predicted to be in each mode for each predicted lifestyle, as in Fig. 

1d (L = lytic, T = temperate). n = number of phages present in the host phylum that were 

used for the analysis.
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