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Abstract

Plasmodium falciparum is a parasitic protozoan that can cause malaria, which is a deadly

disease. Therefore, the accurate identification of malaria parasite mitochondrial proteins is

essential for understanding their functions and identifying novel drug targets. For classifying

protein sequences, several adaptive statistical techniques have been devised. Despite sig-

nificant gains, prediction performance is still constrained by the lack of appropriate feature

descriptors and learning strategies in current systems. Moreover, good ground truth data is

important for Artificial Intelligence (AI)-based models but there is a lack of that data in the lit-

erature. Therefore, in this work, we propose a novel hybrid network that combines 1D Con-

volutional Neural Network (CNN) and Bidirectional Gated Recurrent Unit (BGRU) to classify

the malaria parasite mitochondrial proteins. Furthermore, we curate a sequential data that

are collected from National Center for Biotechnology Information (NCBI) and UniProtKB/

Swiss-Prot proteins databanks to prepare a dataset that can be used by the research com-

munity for AI-based algorithms evaluation. We obtain 4204 cases after preprocessing of the

collected data and denote this set of proteins as PF4204. Finally, we conduct an ablation

study on several conventional and deep models using PF4204 and the benchmark PF2095

datasets. The proposed model ‘CNN-BGRU’ obtains the accuracy values of 0.9096 and

0.9857 on PF4204 and PF2095 datasets, respectively. In addition, the CNN-BGRU is com-

pared with state-of-the-arts, where the results illustrate that it can extract robust features

and identify proteins accurately.
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Introduction

Unicellular eukaryotes or protozoan parasites cause many diseases that impact human health

[1]. Malaria is caused by the parasite plasmodium, which kills over one million African chil-

dren each year. 40% of the worldwide people had been at risk of infection in 2016, as per a

World Health Organization (WHO) assessment [2]. The four plasmodium types, which may

induce malaria in peoples are Parasite falciparum, Plasmodium vive, Plasmodium malaria, and

Plasmodium ovale, with Parasite falciparum being the most hazardous [3]. Plasmodium

malaria is found in the salivary cells of female anopheles, and it penetrates the human body to

become sporozoites (N). Infection with the malaria parasite occurs when a female anopheles

mosquito bites an uninfected person for sporozoites to be injected into the human body [4].

The life cycle of Plasmodium malaria has complicated, comprising two significant cycles:

(asexual reproduction) in the human body and (sexual reproduction) in the anopheles mos-

quito [5]. A prokaryotic cell consists of cytoplasm and a membrane, the mitochondria are

membrane-bound organelle within the cytoplasm, moreover the core role of mitochondria is

to provide the cell energy needed to control the metabolism and produce Adenosine Triphos-

phate (ATP) [6] (Table 1 for the list of abbreviations). The mitochondrial proteins of plasmo-

dium falciparum are an important target for anti-malarial medications, and their

identification by manual tests is challenging and time-consuming. Mitochondria have their

own Deoxyribonucleic Acid (DNA) and ribosomes [7, 8]. However, malaria remains a severe

public health hazard despite global attempts to control it, and there is currently no malaria vac-

cine that any organization has approved [9]. As a result, pharmaceutical institutions must wait

for long time to produce their related drugs.

A computationally automated and trustworthy method must be developed to selectively

identify proteins, enabling on-time and suitable medication manufacture [10]. By sifting

through the vast volumes of complicated data generated throughout the drug discovery pro-

cess and extracting new and crucial information, AI technologies have the potential to acceler-

ate pharmaceutical research [11]. Other domains, including the diagnosis of malaria based on

visual cues, have demonstrated the efficacy of AI approaches. For instance, Loddo et al. [12]

compared eleven CNN-based state-of-the-art architectures for malaria analysis using two data-

sets. Their results illustrated that DenseNet-201 performance was established and robust

Table 1. Abbreviations used in the paper.

DL Deep Learning NCBI National Center for Biotechnology Information

RNN Recurrent Neural Network ML Machine Learning

DL Deep Learning MCC Matthews Correlation Coefficient

NPV Negative Predictive Value WHO World Health Organization

ATP Adenosine Triphosphate DNA Deoxyribonucleic Acid

AI Artificial Intelligence PDB Protein Data Bank

NB Naive Bayes FDR False Discovery Rate

SVM Support Vector Machine PCA Principal Component Analysis

FPR False Positive Rate BGRU Bidirectional Gated Recurrent Unit

NLP Natural Language Processing CNN Convolutional Neural Network

RNN Recurrent Neural Network PSSM Position Specific Scoring Matrix

LR Logistic Regression SAAC Split Amino Acid Composition

FNR False Negative Rate GRU Gated Recurrent Unit

KNN K-Nearest Neighbors PAAC Pseudo Amino Acid Composition

IoT Internet of Things DT Decision Tree

https://doi.org/10.1371/journal.pone.0275195.t001
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compared to the other models. Similarly, Abdurrahman et al. [13] fine-tuned object detection

models such as YOLOV4 and YOLOV3 for plasmodium detection in profuse blood smear

microscopic images. Among all the models, YOLOV4 had attained the highest detection accu-

racy. In another study, Oyewola et al. [14] introduced a CNN-based model for malaria parasite

classification. The model was trained using reinforcement learning strategy and the obtained

accuracy was 94.79%.

In this area, a number of computationally sophisticated techniques are being developed,

such as Machine Learning (ML) methods for extracting local features from biological

sequences and a variety of classifiers to distinguish the different types of proteins. Unfortu-

nately, these methods exhibit mediocre performance and provide non-representative classifi-

ers when attempting to extract contextual features from sequence patterns. Any model must

have strong feature engineering in order to deliver accurate results. Feature extraction is car-

ried out manually in ML models. However, when data complexity rises, manual feature selec-

tion may result in a number of issues, such as choosing characteristics that don’t provide the

optimal answer or omitting crucial features. To solve this problem, automatic feature selection

might be employed. According to the literature evaluation, there is a research gap since the

generalized model is not used to classify other protein sequences for other disorders. Addi-

tionally, reliable ground truth data are crucial for ML and DL models, yet the literature lacks

this information. Besides, we notice acceleration in discovering a new number of these pro-

teins. In the year 1995, approximately 50000 (UniProt) and in the year 2021, according to the

statistics report of the Protein Data Bank (PDB), it reached 560000 proteins [15]. Finding

mitochondrial protein sequences continues to be a challenge. The scholar’s attention is

directed to identifying it because the protein sequences represent an essential role in the sci-

ence of proteins and bioinformatics. The primary contribution of this work may be summed

up as follows:

• The most difficult part of sequence classification is feature selection. The situation of high

dimensionality is made worse by the most popular representations, because sequences lack

specific characteristics. The characteristics may be automatically extracted from the input

data using Deep Learning (DL) models, though. As a result, a novel hybrid architecture

based on CNN and BGRU is suggested in this research, whereby CNN layers are utilized to

extract spatial features and BGRU layers to extract sequential information from the protein

sequence while the dense layer serving as a classifier.

• For ML and DL models, reliable ground truth data is crucial, yet the literature lacks this

information. In order to classify protein sequences, we thus create a new dataset (PF4204)

from multiple data banks, including UniProtKB/Swiss-Prot and NCBI. This information

may be used by researchers to ask challenging biological questions and gain additional

knowledge and understanding.

• Using the benchmark PF2095 dataset and the PF4204 dataset, we perform an ablation exper-

iment on several ML and DL models. On the PF4204 and PF2095 datasets, the proposed

model ‘CNN-BGRU’ yielded accuracy scores of 0.9096 and 0.9857, respectively. The findings

demonstrate that our model can reliably identify proteins and extract robust features when it

is compared to state-of-the-art approaches.

The remaining sections of the study are structured as follows: Section 2 is devoted to related

research, while Section 3 examines the CNN-BGRU architecture that is proposed. Section 4

discusses the significant experimentation, and Section 5 wraps up with the suggested

technique.
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Related work

The methods that are used in proteins sequence prediction and categorization of the mito-

chondrion and non-mitochondrion proteins include ML and DL approaches. The ML-based

methods consist of two basic steps: classifier and features. For instance, Wan et al. [16] used a

Logistic Regression (LR) classifier to determine protein subcellular localization. Next, to pre-

dict protein-protein interaction locations, the Naive Bayes (NB) method was used [17]. Similar

to this, Support Vector Machine (SVM), a reliable and effective ML approach, has been exten-

sively utilized to categorize mitochondrial proteins. The basic sequences of proteins may be

used to extract characteristics in a variety of ways. For protein sequences of different lengths,

techniques for extracting amino acid, dipeptide, and tripeptide characteristics can result in

fixed-length data. The method for extracting features that is most frequently employed is

called Split Amino Acid Composition (SAAC). For the prediction of mitochondrial transit

peptides in Plasmodium falciparum sequences utilizing statistical techniques, Principal Com-

ponent Analysis (PCA), and supervised neural networks, Bender et al. [18] established an effi-

cient approach named ‘PlasMit’. A novel method dubbed PM-OTC developed by Bian et al.

[19] predicts mitochondrial proteins in plasmodium utilizing the chosen tripeptide composi-

tion as inputs and SVM as a predictor. In another work, Cai et al. [20] used an SVM-based

method to group proteins into functional families in order to learn more about the physico-

chemical characteristics of various amino acids. In order to predict the mitochondrial proteins

of malaria parasites, Verma et al. [21] made a hybrid SAAC, and Position Specific Scoring

Matrix (PSSM)-based SVM model. By combining a SAAC and PSSM, Hayat et al. [22] intro-

duced memory-SVM to forecast the kinds of membrane protein. Pseudo Amino Acid Compo-

sition (PAAC) and the structural alphabet are used in a study by Zhang et al. [23] to predict

the mitochondrial proteins of malaria parasites. To predict the protein’s sub-mitochondrial

sites, Zeng et al. [24] used hybrid feature descriptors, PAAC, and pseudo PSSM with SVM

classifier. Xiong et al. [25] proposed an ensemble approach for the prediction of type IV

secreted effectors of bacteria from the sequence of the proteins. For the classification of mito-

chondrial proteins, Afridi et al. [26] demonstrated genetic programming and an ensemble

strategy based on the feature extraction approach. An ensemble learning-based method for

classifying cancer-fighting and non-cancerous peptides was demonstrated by Alsanea et al.

[27] in their study.

DL-based methods extract features that help in accessing several biological information,

improving prediction accuracy. Some researchers fully harnessed the power of the CNN

architecture for applications in computational biology and in modelling the specificity of

protein-DNA binding sequences [28]. For instance, Savojardo et al. [29] proposed an effec-

tive method called ‘DeepMito’ for protein sub-mitochondrial locations using a CNN. Alipa-

nahi et al. [30] attempt to develop a unique concept in DL to distinguish between DNA-

binding and non-DNA-binding proteins is another noteworthy achievement. In addition,

Qu et al. [31] used main sequences and two layers CNN, long short-term memory (LSTM)

networks to boost learning capacity in their DL-based technique to predicting proteins-DNA

binding. To classify the DNA binding proteins, Qiu et al. [28] suggested a novel method

based on CNN structures with sequence-based learning. In order to construct malaria para-

site vaccines, Su et al. [32] established a very successful model employing DL approaches to

categorize mitochondrial and non-mitochondrial proteins. This model provides crucial

information for building secure and efficient vaccinations as well as preventing drug resis-

tance. Similarly, Zhang et al. [23] proposed a weakly-supervised CNN-based architecture to

predict DNA-binding proteins further their method gave good results compared to other tra-

ditional methods.
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The proposed approach

The entire approach that we used to classify the malaria parasite mitochondrial proteins is

depicted in Fig 1 The methodology involves three stages comprising six sub-processes:

Fig 1. Overview of the proposed hybrid architecture for plasmodium mitochondrial proteins classification.

https://doi.org/10.1371/journal.pone.0275195.g001

PLOS ONE A deep learning hybrid network for plasmodium falciparum parasite mitochondrial proteins classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0275195 October 6, 2022 5 / 18

https://doi.org/10.1371/journal.pone.0275195.g001
https://doi.org/10.1371/journal.pone.0275195


benchmark dataset collection, data acquisition and preprocessing, protein sequence encoding,

embedding layer, CNN, and the sequential model ‘BGRU’. The detailed description of the pro-

posed approach is discussed in the following sub-sections.

Data acquisition and preparation

The critical factor in constructing mitochondrial protein prediction method of the malaria

parasite is to identify suitable datasets. In this study, we utilized a dataset denoted as PF4204

and one existing benchmark dataset PF2095 [10]. The standard dataset PF4204 for this work is

obtained from UniProtKB/Swiss-Prot protein databank, which are considered positive sam-

ples. The dataset contains 1202 raw sequences in FASTA format. We collected the positive

data by searching the keywords: ‘Plasmodium falciparum mitochondrion’ available online

[33]. Furthermore, from the NCBI database as positive samples in FASTA format, we collected

1335 raw sequences by searching the keywords ‘mitochondrion Plasmodium falciparum’ and

‘Plasmodium falciparum’ [porgn:__txid5833]) available online [34]. The sources of protein

sequences are [RefSeq (3), GenBank (613), DDBJ (690), EMBL (29)]. Moreover, we collected

2445 negative samples by searching the ‘non-mitochondrion proteins’ from UniProtKB/Swiss-

Prot protein databank in FASTA format. The PF4204 is a set of protein biological sequences

used in this study as a dataset collected from various data banks. The PF4204 contains 4204

samples, 2102 positive (mitochondrion proteins) and 2102 negative (non-mitochondrion pro-

teins) samples. After that, we processed positive and negative sequences using the CD-HIT

software [35] with global alignment and a sequence identity threshold of 0.5 to eliminate iden-

tical sequences. Then, remove protein sequences with a similarity equal to 80%, remove

shorter length (less than 40) of amino acids, and the most extended sequence from each cluster

is picked as the final sequence. After the refining process, we collected 2102 and 2102 as the

mitochondrion and non-mitochondrion samples, respectively, for classification purposes.

There is no need to feed the PF2095 benchmark dataset through the pre-processing phase

because it is publicly available, which is downloaded from [10]. The total number of proteins

in the dataset is 2095, containing 890 positive (mitochondrion proteins) and 1205 negative

(non-mitochondrion proteins) samples. The samples of both datasets are shown in Fig 5(a).

Data preprocessing

In most protein sequence classification applications, feature encoding is a time-consuming but

necessary step in developing a statistical ML model. Various methodologies have presented

protein sequence encoding, including homology-based, n-gram, and extraction methods

based on physicochemical attributes. Although those methods perform effectively in most situ-

ations, their implementation in practice is limited due to the high level of human participation.

DL technology’s ability to automatically learn characteristics is one of the most successful parts

of its development. In DL models, all input and output variables must be numbers. This

implies that before fitting and assessing a model, data must have transformed from categorical

data to numerical data. The two most popular methods are one-hot encoding and ordinal

encoding. Categorical variables are represented as binary vectors in one-hot encoding. In

order to do this, the categorical values must first be converted to integer numbers. The index

of the integer, which is denoted with a 1, is then used to represent each integer value as a binary

vector with all other values being zero. While it is important to note that the protein sequence

encoding has no influence on the outcome, trying to give a regular number to each amino acid

results in the encoding technique essentially creating a digital vector of a protein sequence

with a predetermined length. In Natural Language Processing (NLP), words are represented

using the vector space model. Each discrete vocabulary word is embedded into a continuous
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vector space using the mapping technique known as embedding. In this method, semantically

related phrases are mapped to semantically related places. This is done by adding a weight

matrix W� Rd X|V| to the one-hot vector from the left, where |V| is the number of distinct sym-

bols in the lexicon as stated in Eq 1. After the embedding layer, the input amino acid sequence

is transformed into a series of dense real-valued vectors, like as (V1, V2. . .Vt). Consider that

each number mapping has a fixed vector length, and that the dense output vector length is

now 8x1 in the embedding layer. Layer proteins will cause the sequence to transform into an

8x8 matrix.

Vt ¼WXt
ð1Þ

Hybrid model learning

This section discusses the proposed hybrid network for plasmodium falciparum parasite mito-

chondrial proteins classification.

Convolutional neural network. The DL algorithms operate very effectively in classifica-

tion by extracting feature representations dependent on convolution and the max-pooling

layer. The CNN is a powerful DL approach. Besides, a CNN is a deep feed-forward network

that extends a traditional artificial neural network by adding extra layers and convolutional

blocks. Implementing convolution blocks in the network gave rise to ‘convolutional’. A CNN

structure comprises three layers: convolutional, pooling, and fully connected [36]. Convolu-

tions, activation functions, pooling, dropout, batch normalization, fully linked blocks, and

other techniques are used in these layers, coupled in various ways. The following aspects can

be used to construct a CNN structure: The input data can be in one of three formats: one-

dimensional (1D), two-dimensional (2D), or three-dimensional (3D). This data can come

from numerous sources such as sensors, audio, video, and 3D images. Next the convolutional

layers can accomplish the feature extraction tasks. The extraction is processed by using convo-

lution operations to the input, and the outcome is sent to the following layer’s input [37]. Sev-

eral filters, kernels, padding, and stride are used to design the convolutions operations, which

result in a feature map after implementing an activation function like ReLU or tanh. Further-

more, the pooling layers, which are generally practiced after a convolutional layer, are in

charge of storing the information created by the feature maps. For example, when processing

an image, these layers substantially decrease the input amount, reduce calculation times, speed

up the training process, and result in more accurate features extraction. Max pooling is the

most popular strategy used on these layers. Therefore, the fully connected layer is a traditional

back-propagation neural network that handles the features produced by the previous layers. It

generates a prediction for the network’s final output, a regressing task, such as a metric fore-

cast, or a classification task, such as classifying an image.

This research utilized a 1D CNN because there are many benefits to using 1D CNNs,

including great results on smaller sample sizes, easy implementation compared to 2D CNNs

and other DL structures, a faster training process and excessive extracting important features

from sequence data and time-series [38]. Since the data displays a matrix structure, we start

giving input data to the model. First, compose the data in a fixed-size matrix and send it to the

convolution layer for image-like processing when dealing with gene encoding. The framework

in Fig 1 shows that the convolution layers are used to extract the features and pooling layers

accompany each one to extract deep and important features. For the convolution layer to pro-

cess the data, mitochondrial protein sequence is generated in a matrix of constant size. Convo-

lution layers make up the model in this study, and each is followed by a max-pooling layer for

the extraction of important patterns. A filter is needed to check the amino-acid sequences

throughout this layer to receive a new function map.
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Gated recurrent units network. GRU is a form of sequential models that addresses the

problem of long-term dependencies, which can cause vanishing gradients in more extensive

vanilla neural networks. GRU solves this problem by storing memory from prior time points

to assist the network make better predictions in the future. GRU emphasizes the construction

of gates, which control information processing and storage and consent the network’s hidden

states to be updated and forgotten. The internal structure review of GRU contains the update

gate, which determines what data to remove and what different material to include, while the

reset gate determines how much prior knowledge to forget [39]. In Fig 2(a), zt presents the

update gate, rt denotes the reset gate, h�t represents the applicant hidden state of the currently

hidden node, ht represents the current hidden state, xt represents the current neural network’s

input, and ht−1 represents the previously hidden state. The following is the whole calculating

Eqs (2–5). Where σ is the sigmoid activation function, which can be range between 0 and 1.

Which determines the relevance of previous information and then applies it to the contender

for the updated value. Where� the matrix’s Hadamard product, matrices of weights are u and

w, zt and rt are ranging between 0 to 1. The current cell state ht is the result of filtering the pre-

vious cell state ht−1 and the updated candidate h�t . The update gate zt determines the amount

of updated candidates required to calculate the current cell state and the amount of previous

cell state that is maintained [40].

zt¼s ðwzx xt þ uzh ht� 1Þ
ð2Þ

rt¼s wrx xt þ urh ht� 1ð Þ ð3Þ

h�t ¼ tan whxxt þ rt � uhhht� 1ð Þ ð4Þ

ht ¼ 1 � ztð Þ � h�t þ zt � ht� 1 ð5Þ

Multi-layer bidirectional gated recurrent units network. A BGRU is an updated form of

GRU, which follows a two-layer topology. Therefore, this layout provides the output layer with

all contextual information from the input layer at any given moment [41]. The basic idea

behind the BGRU is that the input sequence is processed through a forward and backward

Fig 2. (a) represents unit structure of GRU while (b) shows the working flow of BGRU.

https://doi.org/10.1371/journal.pone.0275195.g002
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direction, with both outputs connected in the same output layer. The basis working flow of

BGRU is displayed in Fig 2(b). In the BGRU neural network, the forward layer computes the

output of the hidden layer at each step from forward to backward, while the backward layer

does the opposite. The output layer superimposes and normalizes the output results of the for-

ward and backward layers at any given time, where ht is the output vector of the hidden layer

of the forward layer in the first and second layers of the BGRU neural network at time t, and ht
is the output vector of the hidden layer of the backward layer in the first and second layers of

the BGRU neural network at time t, and xt is the neural network input at time t. The concate-

nation of the forward and backward outputs is indicated by the Eq (8), in this case.

htf ¼ f w1 xt þ w2 ht� 1 þ bð Þ ð6Þ

htb ¼ f w3 xt þ w4 ht� 1 þ bð Þ ð7Þ

ot ¼ htf ; htb

� �
ð8Þ

Experimental results

The specifics of the system configuration and implementation, evaluation metrics, and result

comparison of several models are covered in this section, which is about the experimental

outcomes.

System configuration and implementation details

The sequential models for classifying Plasmodium mitochondrial proteins are implemented in

Python (3.8.5, using Keras (2.5.0) with Tensorflow (2.5.0) as the backend. The hardware setup

consists of a Windows 10 operating system with a Processor Intel1 Core™ i7-9750H CPU @

2.60GHz, NVIDIA graphics processing unit (GeForce GTX 950), and 16.0 GB installed RAM.

Two separate proteins datasets, PF4204 and PF2095 [10], are utilized to confirm and validate

the efficiency of the different sequential models. The models are then validated using the hold-

out and k-fold cross-validation approaches. The hold-out approach is used when the data is

fragmented into training, validation, and testing sets. While the training set and validation set

are used to train the model and validate it during training, the test set is used to assess how

well the model performs on data that has not yet been seen. In this study, a typical split of data

is considered using the hold-out method, which is to use 60% of the data for training, 20% for

validation, and the final 20% for testing. Similarly, the dataset is randomly partitioned into ’k’

groups for k-fold cross-validation. One of the groups is used for the test set, while the other

groups are used for the training set. After being trained on the training set, the model is put to

the test. The method is then carried out again after using each different group as the test set. In

this study 10-fold cross-validation is used where the dataset is split into 10 groups, the model is

trained and tested 10 times in total, and each group has the chance to act as the test set.

It is difficult to determine a hyperparameter and various interactions between hyperpara-

meters for a certain dataset. A better strategy is to systematically compare various choices for

model hyperparameters and select the subset that produces a model that performs the best on

a particular dataset. Hyperparameter optimization is the term used for this. One collection of

effective hyperparameters that may be used to design a model is the outcome of a hyperpara-

meter optimization. Hyperparameters are configurable settings that let a ML or DL model be

tuned for a particular task. In this study we used grid search optimization method for the
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proposed model hyperparamets values setting. Grid search analyzes each place in the grid and

defines a search space as a grid of hyperparameter values. Grid search is excellent for spotting

combinations that consistently produce good results. Adam optimizer is used to train each

model for up to 50 epochs on the dataset, using a learning rate of 0.001 and a batch size of 16.

Furthermore, two 1D CNN layers with 64 and 32 filters, 6 and 3 kernel size are used where

each layer is followed by pooling layer. Next two BGRU layers are used with 30 and 20 units

followed by a dense layer with 20 neurons. For the proposed model, overfitting is controlled

using k-fold cross-validation, regularization, dropout, and early stopping mechanism.

Evaluation metrics

The proposed network is evaluated using a variety of assessment metrics. These include accu-

racy, False Discovery Rate (FDR), sensitivity, False Negative Rate (FNR), precision, False Posi-

tive Rate (FPR), specificity, f1 score, Negative Predictive Value (NPV), and Matthews

Correlation Coefficient (MCC). The mathematical formulas are defined in Eqs (9)–(18).

Accuracy ¼
ðTP þ TNÞ
ðP þ NÞ

ð9Þ

Sensitivity ¼
TP

TP þ FN
ð10Þ

Specifictiy ¼
TN

TN þ FP
ð11Þ

Precision ¼
TP

TP þ FP
ð12Þ

F1 Score ¼
2TP

2TPþ FPþ FN
ð13Þ

MCC ¼
TP�TN � FP�FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p ð14Þ

NPV ¼
TN

ðTN þ FNÞ
ð15Þ

FPR ¼
FP

ðTN þ FPÞ
ð16Þ

FDR ¼
FP

ðFP þ TPÞ
ð17Þ

FNR ¼
FN

ðFN þ TPÞ
ð18Þ

Where TP represents the proportion of correctly predicted mitochondrial proteins, FP rep-

resents the proportion of incorrectly predicted non-mitochondrial proteins, TN represents the

proportion of correctly predicted non-mitochondrial proteins, and FN represents the propor-

tion of incorrectly predicted mitochondrial proteins.
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Ablation study on the PF4204 dataset

The overall results obtained on the PF4204 dataset are discussed in this section. Two methods

of evaluation are performed on the PF4204 dataset hold-out and 10-fold cross-validation

methods, which use both ML and DL algorithms. In hold-out method, 60% of the total samples

in this dataset are utilized for training, 20% for validation, while the remaining 20% are used

for model testing. We perform ablation study to assess the performance of different ML and

DL models. In order to evaluate the prediction performance of the ML models using the hold-

out evaluation method. We compare five commonly used ML algorithms including LR, NB,

K-Nearest Neighbor (KNN), Decision Tree (DT), and SVM. First, the LR algorithm achieved

an accuracy of 0.7848, while NB achieved 0.7979, also checked the KNN, DT, and SVM algo-

rithms, where the SVM outperformed the rest of the algorithms with an accuracy of 0.8216.

Employing the 10-fold cross-validation assessment approach. The LR algorithm’s accuracy

was 0.7363, while the NB algorithm’s accuracy was 0.7530. We also looked at the KNN, DT,

and SVM algorithms, with the SVM outperforming the others with the accuracy of 0.8005. Dif-

ferent evaluation metrics values of each ML algorithm using hold-out and 10-fold cross valida-

tion are presents in the Tables 2 and 3, respectively.

Using the hold-out assessment approach, the prediction performance of the DL models is

also assessed. The performance of GRU achieved 0.8561 accuracy. Similarly, the BGRU net-

work is also studied to classify mitochondrial proteins for the plasmodium falciparum parasite.

The performance obtained by the BGRU is 0.8799 accuracy. The next model is CNN and

GRU-based hybrid connection network that shows better performance than previous models,

Table 2. Performance of different models on PF4204 dataset using hold-out validation method.

Metrics/Models LR NB KNN DT SVM GRU BGRU CNN-GRU Proposed

Sensitivity 0.7816 0.7936 0.7986 0.8050 0.8165 0.8506 0.8736 0.8956 0.9070

Specificity 0.7882 0.8025 0.8094 0.8148 0.8272 0.8621 0.8867 0.9024 0.9124

Precision 0.7981 0.8122 0.8192 0.8239 0.8357 0.8685 0.8920 0.9061 0.9155

NPV 0.7711 0.7831 0.7880 0.7952 0.8072 0.8434 0.8675 0.8916 0.9036

FPR 0.2118 0.1975 0.1906 0.1852 0.1728 0.1379 0.1133 0.0976 0.0876

FDR 0.2019 0.1878 0.1808 0.1761 0.1643 0.1315 0.1080 0.0939 0.0845

FNR 0.2184 0.2064 0.2014 0.1950 0.1835 0.1494 0.1264 0.1044 0.0930

F1 Score 0.7898 0.8028 0.8088 0.8144 0.8260 0.8595 0.8827 0.9008 0.9112

MCC 0.5695 0.5957 0.6076 0.6195 0.6433 0.7123 0.7599 0.7979 0.8192

Accuracy 0.7848 0.7979 0.8038 0.8098 0.8216 0.8561 0.8799 0.8989 0.9096

https://doi.org/10.1371/journal.pone.0275195.t002

Table 3. Performance of different models on PF4204 dataset using 10-fold cross-validation method.

Metrics/Models LR NB KNN DT SVM GRU BGRU CNN-GRU Proposed

Sensitivity 0.7469 0.7582 0.7642 0.7755 0.7967 0.8347 0.8506 0.8607 0.8921

Specificity 0.7222 0.7458 0.7600 0.7727 0.8057 0.8436 0.8611 0.8870 0.9167

Precision 0.7826 0.8043 0.8174 0.8261 0.8522 0.8783 0.8913 0.9130 0.9348

NPV 0.6806 0.6911 0.6963 0.7120 0.7382 0.7906 0.8115 0.8220 0.8639

FPR 0.2778 0.2542 0.2400 0.2273 0.1943 0.1564 0.1389 0.1130 0.0833

FDR 0.2174 0.1957 0.1826 0.1739 0.1478 0.1217 0.1087 0.0870 0.0652

FNR 0.2531 0.2418 0.2358 0.2245 0.2033 0.1653 0.1494 0.1393 0.1079

F1 Score 0.7643 0.7806 0.7899 0.8000 0.8235 0.8559 0.8705 0.8861 0.9130

MCC 0.4662 0.4997 0.5190 0.5432 0.5964 0.6735 0.7073 0.7413 0.8037

Accuracy 0.7363 0.7530 0.7625 0.7743 0.8005 0.8385 0.8551 0.8717 0.9026

https://doi.org/10.1371/journal.pone.0275195.t003
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which obtains 0.8989 accuracy. The proposed model used CNN with the integration of BGRU

and achieved 0.9096 accuracy. Employing the 10-fold cross-validation assessment approach.

The performance of GRU achieved 0.8385 accuracy. Similarly, the BGRU network is also stud-

ied to classify mitochondrial proteins for the plasmodium falciparum parasite. The perfor-

mance obtained by the BGRU is 0.8551 accuracy. The next model CNN and GRU-based

hybrid connection network showed better performance than previous models, which obtained

0.8717 accuracy. Finally, the proposed model obtained value of accuracy is 0.9026. The detailed

comparative results for ML and DL using both types of evaluation methods are presented in

Tables 2 and 3 while the confusion matrices of all the models are shown in Fig 3.

Ablation study on the PF2095 dataset

The overall results obtained on the PF2095 dataset are discussed in this section. Same strategy

is applied to evaluate all the model as for PF4204 dataset is used. To evaluate the prediction

performance of the ML models using the hold-out evaluation method, five commonly used

ML algorithms are used. First, the LR algorithm achieved an accuracy of 0.7518, while NB

achieved 0.7971, also checked the KNN, DT, and SVM algorithms, where the SVM outper-

formed the rest of the algorithms with the accuracy of 0.8592. Employing the 10-fold

Fig 3. Comparative confusion matrices of different models using PF4204 dataset and hold-out validation method.

https://doi.org/10.1371/journal.pone.0275195.g003
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cross-validation assessment approach. The LR algorithm’s accuracy was 0.7857, while the NB

algorithm’s accuracy was 0.8143. We also looked at the KNN, DT, and SVM algorithms, where

the SVM outperforming the others with an accuracy of 0.8476.

Using the hold-out assessment approach, the prediction performance of the DL models is

also assessed. The performance of GRU achieved 0.9260 accuracy. Similarly, the BGRU net-

work is also studied to classify mitochondrial proteins for the Plasmodium falciparum parasite.

The performance obtained by the BGRU is 0.9379 accuracy. The next model CNN and GRU-

based hybrid connection network showed better performance than previous models, which

obtained 0.9642 accuracy. Finally, the proposed model achieved 0.9833 accuracy. Employing

the 10-fold cross-validation assessment approach. The performance of GRU achieved 0.9143

accuracy. Similarly, the BGRU network is also studied to classify mitochondrial proteins for

the Plasmodium falciparum parasite. The performance obtained by the BGRU is 0.9238 accu-

racy. The next model is a hybrid connection CNN and GRU and showed better performance

than previous models, which obtained 0.9476 accuracy while the proposed model obtained

value of accuracy is 0. 9857. The detailed comparative results for ML and DL using both types

of evaluation methods are presented in Tables 4 and 5 while the confusion matrices are shown

in Fig 4.

Comparative analysis and discussion using PF2095 dataset

This section illustrates the proposed architecture’s comparison to the competitive state-of-the-

art method in detail. The comparison is made using the PF2095 dataset and several evaluation

Table 4. Performance of different models on PF2095 dataset using hold-out validation method.

Metrics/Models LR NB KNN DT SVM GRU BGRU CNN-GRU Proposed

Sensitivity 0.7736 0.8130 0.8276 0.8488 0.8654 0.9360 0.9442 0.9680 0.9879

Specificity 0.7143 0.7707 0.7911 0.8137 0.8491 0.9112 0.9286 0.9586 0.9766

Precision 0.8233 0.8554 0.8675 0.8795 0.9036 0.9398 0.9518 0.9719 0.9839

NPV 0.6471 0.7118 0.7353 0.7706 0.7941 0.9059 0.9176 0.9529 0.9824

FPR 0.2857 0.2293 0.2089 0.1863 0.1509 0.0888 0.0714 0.0414 0.0234

FDR 0.1767 0.1446 0.1325 0.1205 0.0964 0.0602 0.0482 0.0281 0.0161

FNR 0.2264 0.1870 0.1724 0.1512 0.1346 0.0640 0.0558 0.0320 0.0121

F1 Score 0.7977 0.8337 0.8471 0.8639 0.8841 0.9379 0.9480 0.9699 0.9859

MCC 0.4790 0.5754 0.6107 0.6563 0.7060 0.8464 0.8711 0.9257 0.9654

Accuracy 0.7518 0.7971 0.8138 0.8353 0.8592 0.9260 0.9379 0.9642 0.9833

https://doi.org/10.1371/journal.pone.0275195.t004

Table 5. Performance of different models on PF2095 dataset using 10-fold cross-validation method.

Metrics/Models LR NB KNN DT SVM GRU BGRU CNN-GRU Proposed

Sensitivity 0.8818 0.9091 0.9189 0.9279 0.9292 0.9744 0.9829 0.9758 0.9922

Specificity 0.6800 0.7100 0.7273 0.7374 0.7526 0.8387 0.8495 0.9070 0.9756

Precision 0.7519 0.7752 0.7907 0.7984 0.8140 0.8837 0.8915 0.9380 0.9845

NPV 0.8395 0.8765 0.8889 0.9012 0.9012 0.9630 0.9753 0.9630 0.9877

FPR 0.3200 0.2900 0.2727 0.2626 0.2474 0.1613 0.1505 0.0930 0.0244

FDR 0.2481 0.2248 0.2093 0.2016 0.1860 0.1163 0.1085 0.0620 0.0155

FNR 0.1182 0.0909 0.0811 0.0721 0.0708 0.0256 0.0171 0.0242 0.0078

F1 Score 0.8117 0.8368 0.8500 0.8583 0.8678 0.9268 0.9350 0.9565 0.9883

MCC 0.5764 0.6352 0.6627 0.6823 0.6983 0.8297 0.8494 0.8918 0.9700

Accuracy 0.7857 0.8143 0.8286 0.8381 0.8476 0.9143 0.9238 0.9476 0.9857

https://doi.org/10.1371/journal.pone.0275195.t005
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metrics. For instance, MPPIF-Net is a hybrid model [10] that used encoder-decoder type

architecture for proteins sequence classification. The encoder part of the network is used to

extract the feature while decoder part learns these features and classifies the input proteins

sequence. Some evaluation metrics are used to predict the plasmodium mitochondrial pro-

teins, with an overall of 0.976 accuracy, 0.981 sensitivity, and 0.972 specificity. Finally, the pro-

posed model achieves 0.9857 accuracy, 0.9922 sensitivity, and 0.9756 specificity, proving that

the proposed model outperforms the state-of-the-art model. Fig 5(b) shows the comparative

results in more detail. The main drawback of our model is the using of fixed length protein

sequence as input. Further, in this study we focus only on binary classification.

Conclusion and future research direction

Identification of mitochondria proteins of plasmodium plays an important role to discover

anti-malaria drug targets, thus reducing mortality. This work designed a novel 1D and BGRU-

based hybrid architecture to classify the plasmodium falciparum parasite mitochondrial pro-

teins sequences. The proposed network is capable to swiftly and effectively distinguishing pro-

teins and automatically extracting deep features. It improves the prediction accuracy as well as

the fitting of uncharacterized data. In addition, the proteins sequences (PF4204) dataset is

Fig 4. Comparative confusion matrices of different models using PF2095 dataset and hold-out validation method.

https://doi.org/10.1371/journal.pone.0275195.g004
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collected from UniProt databank in the FASTA format and then preprocessed. Two datasets,

the PF4204 and PF2095 datasets, as well as nine different ML and DL models, GRU, BGRU are

utilized to validate and assess the proposed model’s efficacy. The comparison analysis reveals

that our model is both effective and efficient, with good classification accuracy. On the

FP4204, the proposed model achieves 90.96% accuracy. Similarly, the model obtained 98.57%

accuracy, on the FP2095 dataset. Finally, the suggested framework improves prediction accu-

racy as well as the fitting of uncharacterized data. In the future, we will explore the fusion of

traditional and deep features using ensemble learning approach to improve the performance.

Further, considering the importance of Internet of Things (IoT), light weight will be illustrated

that can be run easily on resource-constrained devises.
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