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Machine learning is helping the interpretation of biological complexity by enabling the
inference and classification of cellular, organismal and ecological phenotypes based on
large datasets, e.g., from genomic, transcriptomic and metagenomic analyses. A number
of available algorithms can help search these datasets to uncover patterns associated with
specific traits, including disease-related attributes. While, in many instances, treating an
algorithm as a black box is sufficient, it is interesting to pursue an enhanced understanding
of how system variables end up contributing to a specific output, as an avenue toward new
mechanistic insight. Here we address this challenge through a suite of algorithms, named
BowSaw, which takes advantage of the structure of a trained random forest algorithm to
identify combinations of variables (“rules”) frequently used for classification. We first apply
BowSaw to a simulated dataset and show that the algorithm can accurately recover the
sets of variables used to generate the phenotypes through complex Boolean rules, even
under challenging noise levels. We next apply our method to data from the integrative
Human Microbiome Project and find previously unreported high-order combinations of
microbial taxa putatively associated with Crohn’s disease. By leveraging the structure of
trees within a random forest, BowSaw provides a new way of using decision trees to
generate testable biological hypotheses.
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INTRODUCTION

The production of large biological data sets with high-throughput techniques has increased the
utilization of supervised machine learning algorithms (Goodswen et al., 2021; Reel et al., 2021),
including support vector machines (Yang et al., 2021), neural networks (Rampelli et al., 2021) and
random forests (Dicker et al., 2021), to produce predictions of complex phenotypes (e.g., healthy vs.
disease) from measurable traits (Cesario et al., 2021; Hughes et al., 2021; Marcos-Zambrano et al.,
2021). These algorithms use measurements of relevant traits such as gene variants, the presence/
absence of microbial taxa, or metabolic consumption variables as predictors. Categorical prediction
of phenotypes is typically the end goal of these applications. However, an additional benefit of these
algorithms is the potential to extract explanatory classification rules. In this context, a rule is defined
as a Boolean function of a set of traits, such that the value of the function is 1 (true) when the traits are
associated with a given phenotype. Identifying the relationships between the traits involved in
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classification rules may yield key insights into the biological
processes associated with important phenotypes (Furqan and
Siyal, 2016; Visscher et al., 2017). This realization is creating
demand for methods that assist in the interpretation of supervised
machine learning methods (Azmi et al., 2019; Nguyen et al., 2019;
Le et al., 2020), especially when the measured traits may be causal
agents of disease states, such as genetic variants or microbial taxa
(LaPierre et al., 2019). Identifying classification rules associated
with a phenotype of interest is valuable because these rules are
likely to carry information about the causal mechanisms that
generate the phenotype.

Algorithms that are particularly valuable in this respect are
those involving decision trees, such as random forests, since
decision trees are easily interpretable (Brodley and Friedl,
1997). Decision trees are rule-based classifiers, where rules
arise from a series of “yes-no” questions that can efficiently
divide the data into categorical groups. In a biological context,
such rules may arise from sets of genes whose simultaneous
modulation could affect a phenotype, or sets of microbial species
whose co-occurrence may be associated with a disease state.
While in several cases it seems like disease phenotypes are
uniquely associated with a single specific pattern [e.g.,
retinoblastoma (Knudson, 1971)], there is increasing evidence
for cases in which multiple distinct patterns can be associated
with (and potentially causing) the same high-level phenotype
(Emily et al., 2009; Leem et al., 2014). A particular example we
will explore in this work is the multiplicity of distinct microbial
presence/absence patterns which may be associated with Crohn’s
disease (Proctor et al., 2019). Crohn’s disease has five clinically
defined sub-types (Reading, 2014) but studies of the associated
microbiome do not usually indicate which form of Crohn’s
disease a donor has been diagnosed with. Each sub-type of the
disease may be associated with different microbes, each requiring
different treatment regimes. As discussed later, we hypothesize
that the different rules associated with a given phenotype label
may be related to these different subtypes, with potential
therapeutic implications.

The fact that there may be multiple etiologies that generate the
same or similar phenotypes complicates the straightforward
interpretation of parameter coefficients or variable importance
scores (Louppe, 2014; Wright et al., 2016). Uncovering the
multiple interactions between predictive variables as they
relate to phenotypic labels remains a challenging statistical
endeavor, but one that is of paramount importance. In an
ideal situation, one could conduct a best subset search,
evaluating all possible classification rules that can be defined
using the data and identifying a set of rules that concisely explain
the observed associations. This strategy is computationally
intractable using a brute force approach: even a relatively
small biological data set of 50 features with binary coding
would require examining over 250 variable sets and many
more specific rules (since the specific value of features, 0, 1, or
‘omitted’, is important). Identifying the associated rules that a
random forest uses to classify a given sample (a specific row of the
data matrix) offers the possibility to bypass the brute force
approach and enables the development of mechanistic
hypotheses for follow-up studies. This challenge, and an

overview of the key strategy we propose, are illustrated in
Figure 1. In Figure 1A we depict a toy model where
measured variables (traits) have only two possible values (e.g.,
present/absent), the high-level phenotype (category) is binary
(e.g., no disease/disease), and two distinct Boolean rules can both
generate the phenotype. The goal in this case is to identify each of
the rules that are associated with the phenotype. The multiple
Boolean rules obtained in this manner can be thought of as a
consensus decision tree that possesses the most informative
branches of the forest with respect to a given class label. In
this work, we will show how this can be achieved by in-depth
analyses of any given random forest (RF) (Figure 1B).

The random forest algorithm intrinsically takes advantage of
non-linear relationships between variables and is widely used in
the life sciences (Boulesteix et al., 2012; Nguyen et al., 2013; Touw
et al., 2013). RFs, when used to distinguish between disease states
known to have multiple causes, often result in excellent classifiers
(Duvallet et al., 2017; Franzosa et al., 2019). It has also been
reported that RFs capture subtle statistical interactions between
variables (Louppe, 2014). Unfortunately, an RF is not
straightforwardly interpretable despite its hierarchical
structure, and recovering those interactions is notoriously
difficult (Wright et al., 2016) due in large part to the method’s
reliance on ensembles of trees (Breiman, 2001). The difficulties in
interpretation created by these properties has led many to refer to
RF as a ‘black box’ model (Castelvecchi, 2016).

Identifying the rules that a RF utilizes in classification tasks is
an active area of research, and many strategies have been
developed to address this problem. Effective strategies have
focused on evaluating how individual variables influence the
classification probabilities of specific samples (Palczewska
et al., 2013; Welling et al., 2016), pruning existing decision
rules found in the tree ensemble to produce compact models
(Deng, 2019), computing conditional importance scores (Strobl
et al., 2008), or iteratively enriching the most prevalent variable
co-occurrences through regularization (Basu et al., 2018). These
approaches offer valuable methods for the identification of
statistical interactions between variables. However, we and
others have observed that while these methods are capable of
recovering a true causal rule in simulated data when exactly one
such rule is present, the existence of multiple rules associated with
one phenotype can confound interpretation efforts (Basu et al.,
2018).

Here we describe BowSaw, a new set of algorithms that utilizes
variable interactions in a trained RF model in order to extract
multiple candidate explanatory rules. With BowSaw, we set out to
develop a post hoc method intended to aid in the discovery of
these rules when the input variables are categorical in nature. The
primary approach of BowSaw is to start by approximating a best
combination of variables (i.e., a rule) that explain the forest’s
predictions for individual samples of a given class in the data set
and then to curate the collection of best combinations to obtain a
concise set of combinations that collectively segregate a class of
interest with high precision. For individual samples a rule is
identified by systematically quantifying the co-occurrence of
specific variable pairs across trees in the forest that attempt to
predict the class of the sample (out-of-bag trees) and then using
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the frequency of these co-occurring variable pairs to guide the
construction of a rule that precisely identifies the sample as its
observed class. For the entire set of samples, we then curate the
collection of all rules identified in this way, in order to produce a
small set of rules that are broadly and precisely applicable to
samples of the given class label.

We first demonstrate that BowSaw can recover true rules (when
they exist) by applying the algorithms to simulated data sets of
varying complexity. We then apply BowSaw to a study on the role of
the gut microbiome on Crohn’s disease (Proctor et al., 2019), and
show that it can find a previously unreported combination of
microbial taxa that is broadly and precisely associated with
Crohn’s disease samples in the data set. In its current
implementation, BowSaw can be applied to any dataset with
categorical or discrete predictors with any number of class labels.

METHODS

Overview of the Pipeline
Provided with a trained random forest and a training set, BowSaw
goes through three steps in order to generate a candidate rule
(variable-value combination) for each sample associated with the
phenotype of interest. First, for a specific sample, the Count
algorithm counts the frequency of unique ordered pairs of
variables encountered along each of its out-of-bag trees in the
forest (Figure 1C–step 2). Second, for that sample, the Construct
algorithm takes the counts from the first step and generates a list of
ordered pairs, ranked by their frequencies, then uses this list as a
guide to construct a candidate decision rule (which could consist of
two or more variables) that is associated with the observed
phenotype at a user defined precision threshold (Figure 1C–steps

FIGURE 1 | (A) In a hypothetical dataset there are two phenotype labels–“Disease” and “No Disease” that we wish to discriminate based on input predictor
variables. In this example, there are two distinct high-order patterns that both confer the same “Disease” phenotype. Our goal is to identify a potentially diverse set of
patterns (or, in this simplified case, all patterns) that are associated with the “Disease” label. (B) Instead of exhaustively evaluating variable combinations we leverage the
structure that emerges from an ensemble of decisions trees like those produced by a trained random forest. (C) For each sample with the observed phenotype
“Disease” we first identify the vector containing its input values (i). Then follow the paths it takes downs each tree that attempts to predict its class and record the
frequency of parent-child variable pairs (ii). Next, we rank parent-child variable pairs in descending order of frequency (iii). Finally, we use a great search to construct a
sample-specific rule that is fully associated with the “Disease” phenotype (iv). (D) All sample-specific rules are evaluated in order to obtain a consensus set of rules that
combined account for all samples with the “Disease” phenotype.
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3–4). Finally, theCurate algorithmpools the candidate decision rules
from each sample together and greedily selects a subset of rules that
collectively account for all of the samples with the desired phenotype
(Figure 1D). Optionally, the Sub-rule algorithm can be used to
generate pruned versions of candidate rules prior to applying the
Curate algorithm in order to obtain a more concise, albeit less
specific, set of candidate rules. The Count and Construct algorithms
generate the candidate rules for individual samples while the Curate
and Sub-rule algorithms produce a combined set of rules that
account for all samples with the chosen phenotype.

In the following section, we provide a description of the inputs
BowSaw takes and the algorithms that implement these steps
along with pseudocode.

Inputs
BowSaw takes as inputs a dataset, D, composed of N observed
vectors xi (together with their respective classes ki) each of p
categorical variables. There are assumed to be K possible class
labels for each vector in D which for the purposes of this
discussion denote different phenotypes. A random forest is
assumed to be trained on D to distinguish the classes
k � 1, . . . ,K. Additionally, BowSaw takes as input the feature
vector xi of a specific sample for which the goal is to identify a set
of simplified rules associated with the phenotype ki.

Counting Stubs
Given an RF machineM trained on datasetD and a feature vector
x � (x1, x2, . . . , xp) ∈ D, the first sub-routine of our method (the
count algorithm) proceeds as follows. It starts by identifying
among the set of trees in M, those sub-paths (sequences of
successive variable indices) encountered by sample x as it
travels through Mx , its set of out-of-bag trees. An out-of-bag
tree is a tree for which x was not included in the training set. For a
specific path P in Mx the sequence of successive variable indices
forms a vector v � (v1, . . . , vr) (note that each vj is one of the
variables xj). Each stub (ordered pair of sequentially encountered
variables vivi+1) in all out-of-bag elements along P for i � 1, . . . r-1
is accounted for in a p × p matrix Cx , where the element Cx

ij records
the number of stubs containing the ordered pair of variables xi and xj
among all paths of Mx . We restrict the counting to sequentially
encountered variables because higher order interactions involving 3 or
more sequential variables are much rarer and would require many
more trees than is necessary to build an acceptable classifier.

Constructing a Candidate Rule
A rule for classifying to a test point x will have the form “If xI � aI
then classify x to class k”. Here I is a designated subcollection of
the variable indices i � 1, . . . , p, and xI � (xi1, . . . , xi|I|) is the sub-
vector of current vector x � (x1, . . . , xp) corresponding just to the

indices ij ∈ I. The vector aI � (ai1, . . . , ai|I|) will denote a pre-
defined set of values to xi, with the above rule requirement
effectively meaning that each xi appearing in the second vector
must equal the corresponding ai in the first vector. Thus the
condition xI � aI requires a specific assignment of values to xi for
i ∈ I, and the rule is that if a test vector satisfies this condition, we
classify it to category k.

The second sub-routine (the construct algorithm) builds a
candidate rule R, based (initially) on a fixed training point, say
a ∈ D, in class k. This is done by first placing all of the stubs (i, j)
with non-zero counts Cij into a list L sorted in descending order
by their values in C.

We define the candidate rule R (based on a) through the
following steps. We initialize using the first stub L1 � (i1, j1) in
the list L, together with the two fixed values xi1 � ai1, xj1 � aj1. This
is the initialized form of the rule R, which requires that for any
test vector, its values at the above indices i1 and j1 match the
values of the above fixed training vector a ∈ D, so that xi1 � ai1,
and xi2 � ai2. For brevity, denote the pair (i1, j1) � I1 and the
corresponding assigned values as (ai1, aj1) � aI1.

Then the content of rule R will be denoted succinctly as
R : xI � aI0class k. Since ordering of the indices i1, j1 does
not matter, (as long as the indices are identified), we will
henceforth write (i1, i2)→ {i1, i2}.

We then update rule R as follows. We find all x ∈ D that
satisfy the initial part of rule R, i.e., xI � aI i.e., all training
points matching the two indices {i1, j1} of training sample a,
and store them as a subcollection D1 ⊂ D of the training set.
We call F the fraction of data points in D1 that have phenotype
k, i.e., match the phenotype of the initial sample a ∈ D. When F
is greater than or equal to a user defined threshold, the
algorithm terminates and returns R. If F >� threshold, we
stop and return the current above rule R. If F < threshold, we
continue by choosing the second stub L2 � {i2, j2} in the above list
L, and augment the current rule R by adding the condition xi2 �
ai2, xj2 � aj2 (again written xI2 � aI2) and maintaining the
assignment of class k (i.e., the same class as the currently fixed
sample a ∈ D). If the second stub L2 happens to overlap with
the initial stub L1, this added condition in the rule R will
clearly be consistent, being still based on the fixed sample a.
We augment the current index list I1 to a list I2, adding to it
the two new indices i2 and j2, so that now I2 � {i1, j1, i2, j2} writing
the augmented rule as R : xI2 � aI20class k. Again defining F
to be the fraction of the data subset D2 (matching the more
restrictive new rule R) with phenotype k, we stop the algorithm
and use the current rule R if F > � threshold, and otherwise
augment rule R by adding the indices L3 � (i3, j3) to it, as
above, yielding a larger set I3 of indices and the augmented
rule R: xI3 � aI30class k , with a more restricted subset D3 ⊂ D,
and a new value for F, now the fraction of D3 in the class kof
the fixed a ∈ D.This process continues until the fraction
F > � threshold, e.g., 100% of the samples in D match the
current set of indices, and also match the class k of the current
sample a. Alternatively, the algorithm stops when all stubs in L have
been exhausted.

In the examples that follow we have set threshold to 1. The
rationale for this choice is that we allow overfit with intention of
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pruning the overfit rules in order to find more generalizable
forms. We make this choice because from the perspective of
discovery, we assume that it is more desirable to capture as much
of a true underlying rule as possible and then prune back to a
shorter one, than it is to extract a concise rule. In practice one
might decide to tune the threshold, F, to approximate the overall
precision of the model in order to identify less complex rules or
tune it as a hyper-parameter in order to reduce the combinatorial
search space.

Curating Candidate Rules
The count and construct algorithms are the heart of BowSaw. In
our workflow, we apply these algorithms to each sample a ∈ Dk ,
where Dk denotes the set of samples in dataset D with phenotype
k. At this stage in the algorithm, we have associated a single
candidate rule q for each vector in a ∈ Dk. The union of these
candidate rules over all samples in D will form a list which we will
denote asQk , which ranks each rule q by the size

∣
∣
∣
∣Dq

∣
∣
∣
∣ of the setDq

consisting of all samples a ∈ D consistent with rule q. Since Qk

may include many redundant rules or rules that strictly extend
each other, we have another sub-routine (the curate algorithm) to
generate a concise set of candidate rules that collectively account
for all samples Dk in class k. Briefly, we initialize a listH, with the
element q1 ∈ Qk representing the largest set Dq1 ⊂ Dk of samples.
At each stage, the next rule inQk is selected so as to be satisfied by
the largest number of elements a ∈ Dk that do not satisfy any of
the previous rules. This rule is then added toH, with ties resolved
randomly. This is then continued until the elements in Dk

satisfying at least one rule in H are exhausted.

Constructing Sub-Rules
In any given dataset, rules are rarely perfectly associated with
specific phenotypes. Given the current list H of rules
describing phenotype k as above, we may consider a
looser set of rules by creating a new list Qnew consisting of
rules in H together with sub-rules satisfying some user
defined minimal complexity criterion and precision
thresholds which serve to exclude low quality rules from
the analysis. Given a rule is the conjunction of a set of
conditions, by sub-rule we mean the conjunction of a
subset of these conditions. The list Qnew can be treated
precisely as the list Qk was above, resulting in a new
curated list Hnew obtained as earlier, yielding a new
candidate rule set which has a reduced likelihood of
overfitting the data.

Thus, we will require a strategy for selecting a set of
candidate sub-rules that account for all samples with
desired observed phenotype class k. Candidate sub-rules are
shorter candidate rules (with less complexity, likely less
precise, and more broadly applicable) derived from larger
candidate rules by keeping one or more (generally i)
variables. For each candidate rule in H, and complexity
level i, we include only sub-rules that meet the user-defined
complexity criterion, designated as complexity level i. We
place each of the sub-rules derived from H at complexity
level i into a new list Qnew. For each rule in Qnew its
precision is calculated with respect to the class k, and those
rules with a precision below a given threshold are eliminated.
Finally, this reduced list is subject to the above Curate
algorithm again.

Within the above aggregation algorithm, Dq is determined for
each rule in Qnew which is then pruned with the curate algorithm
to produceHnew.The algorithms described above are generalizable
to multi-classification tasks but are currently limited to
discretized or categorical representations of the feature space.
Pseudocode for implementing each of the algorithms described
above along with an implementation of the algorithms in R (R
Core Team, 2020) can be found in the supplemental files and on
github: https://github.com/segrelab/BowSaw.

RESULTS

Application to Simulated Data
To test the capacity of BowSaw to recover multiple decision rules
when the ground truth is known, we applied it to increasingly
challenging simulated data sets. These data sets consist of binary
vectors representing different samples. The phenotype associated
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with each sample is a function of the corresponding vector. The
function consists of a set of multiple mutually distinct Boolean
rules, such that if a rule is satisfied, it will cause the sample to have
the phenotype with a certain probability (which we call here
“penetrance” because of its resemblance to the genetics concept).
The first dataset (IDEALIZED) we use is relatively simple and
includes multiple equally prevalent rules. It is also generated
under the assumption that there are no unmeasured confounders,
i.e., that if a sample does have a phenotype, then it must be
satisfying at least one of the above rules. We then apply BowSaw
to a more challenging scenario (INTERMEDIATE) in which the
phenotype-generating rules differ in their relative prevalence and
the assumption of unmeasured confounders is violated. Finally, is
a set of data sets with complex co-varying parameters
(COMPLEX), we systematically varied the underlying
parameters of the simulation and examined the relationship
between summary statistics of the RF performance and the
ability of BowSaw to generate candidate rules containing the
true phenotype-generating rules.

For the IDEALIZED scenario, we simulated a data set of 100
independent and identically distributed random binary
variables and 2,000 samples. We randomly defined five rules,
each requiring four randomly selected variables to have specific
values (e.g., all variables equal to 1) in order to assign a
hypothetical phenotype with likelihood between 0.8 and 0.9.
Here we present the results of this scenario with a specified
random seed, but other seeds and parameters can be explored
using the scripts provided in the supplemental files. Using these

parameters, 497 samples were assigned the phenotype and
BowSaw produced a set of 135 unique candidate rules
ranging in complexity from six to fourteen variables. From
these rules, we produced all sub-rules involving anywhere
between two and five variables, which resulted in unique
50,034 sub-rules. To reduce the number of sub-rules that the
Curate algorithm would need to examine, we eliminated from
consideration any rules that had a class precision below 80%.
We selected an 80% threshold because in the cluster centered
around 125 matching samples there is a small cloud of rules that
are clearly segregating the phenotype more efficiently than the
others (Figure 2A). We selected the most general remaining
sub-rule to initialize our list of candidate rules. This produced a
final list consisting of five candidate rules that accounted for all
of the samples with the phenotype and were each one of the true
phenotype generating rules (Figure 2A red points). These
results demonstrate that in an ideal scenario with no
measurement errors, BowSaw is indeed capable of recovering
multiple true rules.

For the more challenging scenario (INTERMEDIATE), we
generated the data set as before, except that this time we allowed
the five underlying rules to vary in complexity from three to five
variables. Varying the complexity of rules resulted in different
prevalence among them, as rules that are more complicated are
less likely to appear in the data. In this case, we had one rule of
complexity five, two that required four variables, and two that
used three variables. We also added background noise by
randomly assigning the phenotype to 2% of samples that did

FIGURE 2 | For both scenarios 2,000 samples were generated with 100 randomly generated binary features. (A) The generality of sub-rules (number of points that
exactly satisfy the rule criteria) is plotted against their precision for the IDEALIZED scenario (Five rules that cause the phenotype and no noise). Each point represents a
unique sub-rule. X-axis is the number of samples in the dataset that exactly match the pattern defined by the rule. Y-axis is the fraction of matching samples with the
observed phenotype (i.e., precision of the rule). Each cluster of points corresponds to decreasing rule complexity from 5 variables per rule to 2 on the right-most
cluster. These clusters appear because the values of each variable are produced by an identical binomial distribution. The dashed line is the precision threshold we chose
in order to exclude low quality rules. Only candidate rules with precision above this threshold were considered for the curate algorithm. Red points are the causative sub-
rules we defined. BowSaw correctly identified all five red points in this scenario. (B) Candidate sub-rules generated for the more challenging INTERMEDIATE scenario.
We defined 5 causative rules of varying lengths in this scenario and allowed 2% of samples without a causative rule to be assigned the label. BowSaw completely
recovered 4 of the causative rules (red points). The longest rule which involved 5 variables was not fully recovered by any candidate rule. Rules that were selected by the
Curate algorithm because of their contribution to additional coverage but that did not contain a complete true rule are indicated by blue points.
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not possess any of the rules, 655 samples were assigned the
phenotype. BowSaw produced 176 unique candidate rules
involving between six to thirteen variables. From this list we
generated 68,938 sub-rules and chose a precision threshold of
75% because there are two clusters at ∼|T| � 125 that begin to
clearly separate in that range and the two outlier points at ∼|T| �
250 do not combine to account for all of the phenotype
(Figure 2B). Applying the Curate algorithm to the rules
meeting this threshold selected 19 candidate sub-rules, the top
four (when ranked by |T|) of which were true rules (red points).
The remaining 15 rules were noise rules (blue points). The rule of
five variables was not recovered. These results show that BowSaw
is able to recover strongly associated patterns (and in this case,

causal patterns) even in the presence of noise, but low prevalence
rules can be masked by more highly prevalent rules.

We used the same data generation method to investigate
BowSaw’s ability to produce candidate rules containing true
rules when the underlying parameters change. We applied
BowSaw to 20,000 simulated data sets where we randomly
altered the number of features (50–1,000), sample size (200 or
2,000 samples), complexity of the rules (2–8 variables), number of
rules (2–8), the likelihood of each rule assigning the phenotype
(0.0005–1), and the background noise (1x10−5 to 0.1). For each
simulation we extracted a single candidate rule per sample with
the assigned phenotype and ranked them without generating sub-
rules.

TABLE 1 | Correlation of performance metrics and data dimensions with rule recovery.

ROC-AUC PR-AUC N Features Sample size

Fraction of rules recovered 0.672 0.585 -0.151 0.556
Mean partial recovery all rules 0.683 0.581 -0.251 0.657
Median rank of first recovered rule 0.268 0.195 -0.073 0.071

FIGURE 3 | (A) Performance of the random forest classifier as measured by area under the receiver operator curve (ROC-AUC) is not strongly perturbed by
simplifying OTU representation to a presence/absence scheme vs. the original continuous count. Dashed line indicates the performance of a perfectly random classifier.
(B) The area under the curve of the precision recall curve is similarly not strongly affected by the new representation scheme. Dashed horizontal line is the random
performance line. (C) Each point represents a unique candidate sub-rule. On the x-axis is the number of samples in the data matrix that are subject to that rule. The
y-axis represents what fraction of matching samples were diagnosed as Crohn’s disease. (D) The taxon identities of the OTUs that make up themost generally applicable
of the sub-rules where all matching samples have the Crohn’s disease label.
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To investigate how effectively BowSaw recovers true rules,
for each simulation we calculated the fraction of true rules
fully recovered, the probability of fully recovering at least one
rule, the median rank of the first recovered rule when at least
one is recovered, and the mean rule completeness of
recovered rules. We investigated the relationship of these
measurements to the to the ROC-AUC, PR-AUC, number of
features, and sample size. These values were chosen because
they are easily accessible to researchers during model
building and could potentially be used to assess the
likelihood of obtaining useful insights from applications of
BowSaw.

ROC-AUC, PR-AUC, and sample size are positively correlated
with full recovery of true rules, mean completeness of recovered
rules, and median rank. Number of features was negatively
correlated with these values. These correlations are
summarized in Table 1. The probability of recovering at least
one true rule gradually decreases with increasing feature space,
gradually increases with increasing sample size, and forms a
sigmoidal curve with both ROC-AUC and PR-AUC. Plots

depicting the relationship of the four metrics with the fraction
of fully recovered rules, probability of recovering at least one rule,
median rank of rules, and mean rule completeness can be found
in Supplementary Figures S1–S4.

Application to Human Microbiome Data
Irregular distributions of microbial taxa within the gut are
often associated with serious illnesses such as Crohn’s disease
or ulcerative colitis (Carding et al., 2015; Levy et al., 2017).
Human microbiome studies regularly use 16s rRNA amplicon
sequencing methods and extensive reference databases to
report on microbial taxa found in samples as operational
taxon units (OTUs). RF classifiers are frequently built
using counts of OTUs to accurately discriminate between
disease and healthy patient samples (Ai et al., 2019;
Vangay et al., 2019). Despite their demonstrated
effectiveness as good classifiers of Crohn’s disease, studies
that look to discover associations with disease status typically
focus on individual OTUs, while specific microbial association
rules found by RF are not discussed, as a result it is uncertain

TABLE 2 | Association rules identified by BowSaw that account for all Crohn’s disease samples.

Rule CD samples Non CD samples New samples covered Taxonomy Presence

1 38 0 38 Bacteroides (genus) y
Lachnoclsotridium (genus) y
Tyzzerella (genus) n
Lachnospira (genus) n
Lachnospiricae UCG-001 (genus) n

2 41 4 20 Dialister (genus) y
Christensenellacea R7 group (genus) n
Collinsella (genus) n
Ruminococcaceae (family) n
Finegoldia (genus) n
Ruminococcus (genus) n

3 9 1 9 Ruminococcus (genus) y
Ruminococcaceae UCG-002 (genus) n
Lachnospirceae (family) n

4 24 2 6 Streptococcus (genus) y
Tyzzerella (genus) n
Lachnospiraceae (family) n
Hafnia obesumbacterium n

5 27 3 5 Lachnospiricae UCG-008 (genus) y
Ruminococcus 1 (genus) n
Eubacterium eligens group n

6 5 0 2 Ruminococcus 1 (genus) y
Dorea (genus) n

7 7 0 2 Bacteroides (genus) y
Dialister (genus) n
Eubacterium rectale group n

8 15 0 2 Lachnospiraceae NK4A136 group y
Eubacterium eligens group y
Tyzzerella (genus) n
Christensenellacea R7 group (genus) n
Lachnospira (genus) n

9 3 0 1 Ruminococcus gnavus group y
Veillonella (genus) n
Bacteroides (genus) n
Finegoldia (genus) n

10 10 1 1 Parabacteroides (genus) y
Eubacterium eligens group y
Ruminococcaceae Ucg-003 (genus) n
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how heterogeneous study cohorts are. To investigate potential
rule heterogeneity in a human microbiome cohort we
downloaded processed files from the Human Microbiome
Project for inflammatory bowel disease (IBD) (Proctor
et al., 2019) which contain information on the taxonomic
profiles of 982 OTUs in 178 patients–86 of which have been
diagnosed with Crohn’s disease, 46 diagnosed with ulcerative
colitis, and 46 diagnosed as non-IBD. We were specifically
interested in finding rules that separate the Crohn’s disease
samples from ulcerative colitis and non-IBD, so we framed the
problem as a binary classification task with Crohn’s disease as
the target phenotype.

Since the current implementation of BowSaw is limited to
finding rules when the variables have categorical values, we first
converted the OTU counts of each taxon to a simple presence/
absence scheme. This resulted in nearly equivalent RF
performance relative to training RF with the original
continuous OTU inputs: ROC AUC of 0.856 (binary) vs
0.872 (continuous) and PR AUC of 0.853 (binary) vs 0.86
(continuous) (Figures 3A,B). This is an important result
because it allows us to think about associations just in terms
of presence or absence of an OTU without sacrificing much in
model performance. We next applied BowSaw to the Crohn’s
disease samples and generated 86 unique classification rules.
These rules ranged in complexity from 4 OTUs to 16 OTUs
(median 9 OTUs) and applied to as few as 1 sample up to 36
samples (mean 6.3, +/-6.6, median: 4). The most broadly
applicable rule involved 8 OTUs.

We then applied the Sub-rule algorithm and visualized
56,902 resultant sub-rules ranging in complexity from 2 to
7 variables (Figure 3C). There were 1,941 sub-rules with
precision � 1. We selected the most general of these rules
(max|T|) to be the top candidate for the curate algorithm and
found that it considers the status of 5 OTUs and accounts for
38 of the 86 Crohn’s disease samples (Figure 3C), this rule was
derived from the rule that considered the status of 8 OTUs and
accounted for 36 Crohn’s disease samples. We set a precision
threshold of 90% and ended up with 10 sub-rules involving an
average of 4 OTUs (min � 2, max � 7), each derived from a
unique parent rule (average OTUs � 9.6, min � 6, max � 16),
that together account for all 86 Crohn’s disease samples and an
additional 11 non-Crohn’s disease samples (4 non-IBD, 7
ulcerative colitis). The top five rules combine to account for
78 of 86 Crohn’s disease samples and include 10 non-Crohn’s
disease samples (Table 2).

The top candidate rule is comprised of the presence of
Bacteroides and Lachnoclostridium and the absence of three
genera from the family Lachnospiraceae: Lachnospira,
Tyzerrella, and Lachnospiracea UCG 001 (Figure 3D).
Detection of Bacteroides was nearly ubiquitous within the
cohort, it was found in 170 of 178 total samples, but only 3 of
the samples in which it was missing are diagnosed as Crohn’s
disease. For the remaining taxa we performed a t-test comparing
the distribution of the taxa in Crohn’s disease vs. ulcerative colitis
and vs. healthy samples. Lachnoclostridium was frequently found
in Crohn’s disease (67/86) but not in ulcerative colitis (27/46, p �
0.02) and was detected at roughly the same rate in non-IBD

samples (34/46, p � 0.616). Detection of Lachnospirawas depleted
in Crohn’s disease samples (20/86) relative to ulcerative colitis
(20/46, p � 0.022) and to non-IBD samples (31/46, p � 9.9–7).
Tyzzerellawas also detected at a lower rate in Crohn’s disease (63/
86) relative to ulcerative colitis (24/46, p � 0.019) and non-IBD
(24/46, p � 0.019). Lachnospiracea UCG 001 was rarely detected
in Crohn’s disease (4/86) which is a lower rate than it was
detected in ulcerative colitis (9/46, p � 0.022) and in non-IBD
samples (19/46, p � 1.45–5).

Application to Mushroom Data
To further demonstrate the generalizability of our approach
to non-binarized datasets we identified the mushroom data
set from the UCI machine learning repository (UCI Machine
Learning Repository). This data set contains 8,123
observations of poisonous (3,915) and edible (4,208)
mushrooms. There are 22 categorical features ranging
from 2 to 12 categories. The two classes are perfectly
separable, and the documentation accompanying the
matrix describes a set of rules that separate all edible
mushrooms from poisonous samples. This rule set
provides a good baseline to compare the complexity of the
final rule sets obtained with BowSaw to.

We applied our approach to the original matrix of 22
features with multiple categories and to a binarized
transformation where we give each category its own
column (117 features). In both cases we used BowSaw to
extract classification rules that account either for all edible
mushrooms or for all poisonous mushrooms. Since the
samples are fully separable we again set F � 1. This setting
resulted in candidate rules ranging in complexity from 2 to 9
variables. We examined all sub-rules from complexity 1 up to
complexity 9 and retained only those that were entirely
associated with the target class (precision � 1) for curating
a short list. In total we generated 4 different rule lists that
fully separate edible from poisonous mushrooms and also
differ from the data donor’s contributed list. Each list is
composed of 7 rules. The rule lists obtained from each run
are described in Supplementary Table S1 along with the
contributed list

DISCUSSION

Linear models for classification such as logistic regression are
often the “go to” approach due to their ease of implementation
and interpretation of coefficients. However, many biological
datasets contain non-linear interactions between features. In
these situations it is not uncommon for random forests to
significantly outperform logistic regression. Interpretation of
random forest models for classification is not straightforward
and may be complicated when there are multiple rules
(combinations of variables and their specific values) associated
with a phenotype of interest. Our newly developed BowSaw
approach, best applied when random forest is the appropriate
classifier, is an algorithmic method for identifying the rules that a
trained random forest model uses to make classifications when
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the values are categorical in nature. By taking advantage of the
structure of trees found within a random forest, BowSaw
produces a set of multiple decision rules that combine to
account for each sample with a given observed phenotype.
When the variables are the presumed causal agents, these rules
represent plausible mechanistic relationships.

Results on simulated data demonstrate that when there are
multiple rules associated with a single phenotype label that
BowSaw is capable of faithfully identifying them. Application
to data from the human microbiome project offers further
evidence that BowSaw provides an efficient way of generating
plausible hypotheses for high throughput metagenomics
studies. In particular we identified a rule that utilizes a
presence/absence pattern of five microbial taxa (present:
Bacteroides, Lachnoclostridium; absent: Lachnospira,
Lachnospiracea, Tyzerrella) that accounts for nearly half of
all Crohn’s disease samples in the cohort (38/86). This
specific pattern of microbial colonization in the guts of
Crohn’s disease patients is unreported, but each taxon’s
respective enrichment or depletion status and association
with disease status has been reported. If the cohort of patients
in the human microbiome study are representative of all
people afflicted by Crohn’s disease, then this rule
represents a significantly large subset of those suffering.
Inquiries into the relationship of the taxa included in this
rule with disease status may yield important insights into the
mechanisms of the disease and potential therapeutic
strategies for this sub-population. Of the five associated
taxa, we suspect that the absence of Lachnospira,
Lachnospiracea UCG 001, and Tyzzerella are biologically
meaningful. We have reason to believe so because it has
been reported that the Lachnospiraceae family is generally
suppressed in Crohn’s disease (Loh and Blaut, 2012;
Geirnaert et al., 2017; Nagao-Kitamoto and Kamada,
2017). Lachnospira has been reported as depleted with
respect to Crohn’s disease several times (Wright et al.,
2017; Wang Y. et al., 2018). The depletion of Tyzzerella
has been associated with chronic intestinal inflammation
and supplementation suggested as a probiotic for Crohn’s
disease (Berry et al., 2018; Chen et al., 2018). While the
relationship of Lachnospiracea UCG 001 with Crohn’s
disease is still unclear, its depletion has been reported in
mice displaying symptoms of anhedonia and it was
significantly enriched in anhedonia resilient mice (Yang
et al., 2019). Partly because IBD is frequently accompanied
by depression, anhedonia has been suggested as an important
symptom in the diagnosis of IBD (Carpinelli et al., 2019). The
associations of the individual OTUs defined by this rule are
consistent with previously reported findings in the existing
literature and describe a taxonomic profile that exclusively
identifies a large sub-population of Crohn’s disease samples
within this cohort. The presence of Bacteroides does not
appear to be particularly useful and in this context is
probably preserved because it causes a perfect association,
although high levels of some species are implicated in the
pathology of Crohn’s disease (Rabizadeh et al., 2007).
Lachnoclostridium is differentially distributed across the

three classes. Notably it is less frequently detected in
ulcerative colitis relative to Crohn’s and non-IBD samples,
which roughly resemble one another. Increased levels of this
genus were detected in rats that showed relief of colitis
symptoms after treatment with a proposed therapeutic
agent (Wang K. et al., 2018).

The current implementation of the algorithms is restricted to
classification tasks with categorical predictor values. This is a
challenge that can be addressed in future variants of this
approach, in order to make it more generally applicable.
Future work could also focus on extending these approaches
to the interpretation of regression models or to consider the effect
of counting stubs of higher-order interactions or co-occurring
pairs on bookkeeping and rule extraction as opposed to strict
parent-child relationships. We anticipate that the concept at the
core of BowSaw and its different possible extensions could help
uncover complex feature-phenotype maps for other types of
biological datasets.
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