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C
irculating glucose levels serve as the principal
regulator of the rate of insulin secretion from
the pancreatic b-cell, which, in turn, is the body’s
principal mechanism preventing excessive ele-

vation in circulating glucose. The control center for this
critical negative feedback loop is generally thought to reside
solely within the province of the b-cell. However, in the
February issue of Diabetes, Osundiji et al. (1) provide evi-
dence that there may be another player involved, namely,
the hypothalamus. They observed that raising glucose levels
locally or pharmacologically blocking glucose entry into
cells close to the third ventricle of the rat altered the acute
insulin secretory response to intravenous glucose, pre-
sumably by the extensive neural connections that exist
between the hypothalamus and islet. As pointed out by
the authors, it is now well recognized that a subgroup of
hypothalamic neurons, and neurons elsewhere in the brain,
have the capacity to sense glucose and influence the se-
cretion of anti-insulin hormones and hepatic glucose pro-
duction (2–6). Yet, the idea that the glucose-sensing capacity
of these neurons may also influence the function of the
b-cell has not been appreciated, and if shown to be true
under more physiological conditions, could have important
therapeutic implications.

It is commonly believed that the KATP-dependent model
of glucose-stimulated secretion coupling is the primary
means used by the b-cell to activate insulin secretion (7–10).
In this model, glucose enters the b-cell, is phosphorylated
by glucokinase to glucose-6-phosphate, and then enters
the glycolytic and oxidative phosphorylation pathways to
be metabolized. Through this, ATP is generated, causing
ATP-sensitive potassium channel closure, plasma mem-
brane depolarization, and activation of voltage-gated
calcium channels, which ultimately cause exocytosis of
insulin-containing granules. Although the components of
this mechanism are expressed in the b-cell and appear
adequate to explain most insulin responses to glucose, there
is a growing body of data that cannot be solely explained by
this KATP-dependent mechanism of glucose-stimulated in-
sulin secretion (GSIS). As a result, signals other than the
ATP/ADP ratio have been postulated in recent years (11–16).
These KATP-independent mechanisms have mainly focused
on the mitochondria and generation of second messengers

other than ATP. In these models, it is postulated that con-
version of pyruvate to oxaloacetate by pyruvate carboxylase
leads to generation of a number of intermediary metabolites
that are capable of acting as signals to stimulate insulin re-
lease (17,18). Some of these messengers, including NADPH
(19–21), malonyl-CoA/long-chain CoA (22,23), short-chain
CoA (24), glutamate (25), a-ketoglutarate (26), and GTP
(27), are thought to act either directly or indirectly to alter
the influx of calcium into the b-cell, ultimately affecting in-
sulin secretory kinetics.

While studies examining GSIS have focused on factors
that directly affect the b-cell, little attention has been
given to the potential role of the brain in this regard. The
brain and islet are tightly linked functionally through
neural-entero-islet, brain-islet, and islet-brain axes. Thus,
secretion of insulin and other islet hormones are clearly
influenced by the hypothalamus and other brain areas, and
conversely, insulin action in the hypothalamus influences
both energy balance and glucose metabolism. The article
in the February issue of Diabetes (1) presents some novel
observations suggesting that hypothalamic glucose sensing
may also provide an additional input to b-cells that modu-
lates the first-phase insulin response to a glucose stimulus.
In particular, data are presented suggesting that conversion
of glucose to glucose-6-phosphate by glucokinase in the
hypothalamus may serve to regulate the first phase of in-
sulin secretion in response to glucose. Thirty minutes prior
to giving an intravenous glucose tolerance test, the authors
administered either glucose to activate glucokinase or one
of two pharmacological inhibitors of glucokinase (glucos-
amine or mannoheptulose) into the third ventricle. When
glucose was administered, a greater insulin secretory re-
sponse occurred, along with a more rapid decline in plasma
glucose levels. Conversely, when either of the nonspecific
glucokinase inhibitors was administered, the acute insulin
response to intravenous glucose was diminished and glu-
cose excursions were slightly greater. The effect was more
pronounced with glucosamine. This may be because glu-
cosamine cannot only inhibit glucokinase, but it may also
enter cells via glucose transporters, thereby redirecting in-
termediary metabolites of glycolysis into the hexosamine
biosynthetic pathway. It should be noted that the study
design employed a time-sequenced exposure of glucose or
glucokinase inhibitors to the brain much before peripheral
changes in glucose were induced in the experiments. This
may have magnified the impact of the hypothalamus relative
to what occurs in the physiological setting. Undoubtedly,
more specific reductions in glucokinase gene expression
within the hypothalamus will be required before the physi-
ological importance of these specific observations can be
determined.

Nonetheless, findings implicating the hypothalamus in
GSIS are consistent with recent reports examining the role
of insulin and glucose transport in the brain. We have
reported that chronic knockdown of insulin receptors in
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the ventromedial hypothalamus reduces insulin secretory
responses to a standardized hyperglycemic stimulus (28).
In addition, data from the laboratories of Simon Fisher
and Domenico Accili indicate that deletion of the insulin-
responsive glucose transporter, GLUT4, in the brain leads
to impairments in glucose sensing and glucose tolerance
in mice (29,30). Together, these data support the role of
an insulin-responsive glucose-sensing mechanism within
the hypothalamus that regulates islet hormone secretion
to maintain glucose homeostasis. One can postulate that
following meal ingestion, the rapid rise in peripheral glu-
cose levels acts to initiate the insulin response. Subsequent
rises in insulin and glucose may work together to stimulate
an increase in glucose uptake by hypothalamic glucose-
responsive neurons that further augment insulin secretion
and increase glucose handling. Under conditions where
central insulin resistance develops, it is intriguing to spec-
ulate that a reduction in the capacity to take up glucose in
the hypothalamus may contribute to a diminution of the
GSIS response.

It is becoming increasingly evident that GSIS likely
involves several signaling events that converge to activate
exocytosis of insulin-containing granules from the b-cell.
The study by Osundiji et al. (1) adds yet another dimension
to this already complicated story by providing some of
the first evidence that a central nervous system glucose-
responsive input might be involved in regulating the early
insulin secretory response to a glucose stimulus. On the
other hand, it should be emphasized that the observed
effects were modest and that peripheral signals are still
likely to play the dominant role in initiating insulin release.
The brain, which is likely delayed in seeing changes in
glucose concentrations, most likely provides a later signal
to modulate the magnitude of the response. It will be in-
teresting to see whether this response is due solely to a
change in glucose levels or whether it is in response to a
rapid rise in insulin. As the authors indicated, this may have
important implications for the development of therapeutic
strategies in the future.
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