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Abstract: Urban potable waters can be very susceptible to human activities that can impact water
quality and, hence, public health. Columbus, Ohio, is currently the 14th largest city in the United
States with an estimated population of ~860,000. Much of the urban population receives its water
supply from a series of reservoirs located north of the city proper. These reservoirs are fed by
river systems that drain either large agricultural lands, or rapidly growing suburban areas, or both.
The agricultural activities introduce dissolved nitrate, and increased usage of de-icing salts on
roads and highways within the drainage area introduce chloride into the river/reservoir systems.
High nitrate in drinking water poses a potential health risk, particularly to infants, while high
chloride, applied as halite, in drinking water can aid in the development of cardiovascular disease.
In this work, we present a 19-month time series measuring nitrate, chloride, and sulfate in local
precipitation, reservoir and household tap waters in order to better understand the relationship
of the hydrologic residence time on the tap water chemistry, as well as to evaluate the anion
concentrations. The highest chloride tap water concentration, 6.9 mM, occurred in early February
2011, while increases in nitrate occurred in both early summer and the middle of winter. In general,
the anion concentrations in the precipitation are all equal to or lower than the reservoir waters.
Similarly, the tap water had concentrations of chloride and sulfate higher than reservoir water, while
nitrate was similar to reservoir water. Tap water had higher fluoride and sulfate concentrations,
suggesting that they are added during the treatment of the reservoir water prior to residential
distribution. These data clearly demonstrate the importance of watershed lands on the quality of
water in the human distribution system.
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1. Introduction

One of the top priorities for urban development, sustainability, and the protection of public health
is the provision of safe drinking water [1]. The quality of water for urban consumption is based in large
part on its initial quality, the storage and treatment of the water supply, as well as the interaction of
the water with the distribution system. The greatest contributor to many water supplies in urbanized
areas is surface water. The initial water quality is a function of the chemistry of the precipitation and
the physical-chemical interactions of the precipitation and the watershed materials through which it
flows. The overall management of urban water supplies, from watershed to tap, can have a profound
impact on human health. Therefore, the evaluation of water resource management to provide potable
water is essential for the sustainability of water supplies.
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The primary anions in most precipitation are chloride, sulfate, and nitrate. Numerous anthropogenic
activities can influence the initial water quality, thus increasing these anions in human water supplies.
For example, chloride is a ubiquitous water pollutant, coming from a variety of potential sources [2].
However, recent work in the U.S. reports that areas receiving frozen precipitation strongly indicates that
road de-icing salt is a major contributor, and its source has increased dramatically over the past few
decades [3,4]. This is also the case in Ohio, where temporal trends indicate increases of chloride in a
number of rivers since the 1960s that have been attributed to road salt [5]. Although chloride is non-toxic,
concentrations >7.0 mM in water are of concern to human health [3].

The World Health Organization (WHO) has no health based guideline for sulfate in drinking
water. Because of its potential laxative effects, sulfate has been suggested as a possible cause of
diarrhea, especially in children. However, there has been no clear association between elevated sulfate
in drinking water and the occurrence of infant diarrhea [6], but there have been few experimental
studies on the topic [7].

Nitrate is a major groundwater and surface water pollutant in the U.S. [8]. It can have numerous
sources, which include fossil fuel burning, human and animal waste products, and agricultural runoff
from fertilizer use. Nitrate is regulated in human drinking water at 10 mg L−1 or ~0.7 mM [9]. There is
controversy regarding the effect, if any, on the consumption of high nitrate water on other diseases,
such as bladder and thyroid cancer. The major hazard of high nitrate in water is methemoglobinemia
or “blue-baby” syndrome. In this disease, nitrate is converted to nitrite in the intestinal tract and that
in turn oxidizes the ferrous iron in hemoglobin to ferric iron, thereby minimizing oxygen uptake [10].
It is rare in adults, as most victims are infants of less than six months [10]. The testing of public
water supplies is extremely important in minimizing this disease. Public water supplies that either
drain (surface water) and/or underlie (groundwater) highly agricultural landscapes must maintain
monitoring, because the potential of water high in nitrate continues to exist. This is particularly true in
the U.S. Corn Belt region where the use of fertilizer for corn agricultural and the planting of N2-fixing
legumes, such as soya, have produced nitrate-enriched water [11].

It is essential to understand the relationship between water resource availability and climatological
conditions for developing strategies to ensure long-term sustainability of water supplies [12].
With increasing suburbanization in nearby urban areas of Columbus, Ohio, the need to understand
current water resource dynamics is extremely important in terms of anticipation of future
meteorological and hydrological conditions. Our previous work has demonstrated that temporal
meteorological variations over monthly to multiple monthly periods greatly impacted the residence
time of water in the watersheds that flow into the reservoirs [13]. The purpose of this work was to
evaluate the relationship between the geochemistry of local precipitation, reservoir waters derived
from the drainage from agricultural lands north of the city of Columbus, and household tap water
over 19 months, during much of that time with above average precipitation amounts. We investigated
the chemical connection between tap water, reservoir water and precipitation under the premise of the
importance of watershed lands on the quality of water in the human distribution system. This work
concluded that the major source of nitrate to the reservoir-tap water continuum is from anthropogenic
addition upstream from the reservoirs themselves.

2. Materials and Methods

2.1. Columbus, Ohio, Water Supply

In 2016, Columbus, Ohio, was the 14th largest city in the United States with an approximate
population of 860,090 [14]. A secure municipal water supply played a crucial role in the population
growth of Columbus over the past 100 years. Columbus has increased its water supply storage by
the use of three reservoirs, Griggs, O’Shaughnessy, and Hoover, which provide 85% of the more than
4.9 × 105 m3 of daily water supplied to the metropolitan area. The remaining 15% is drawn from wells
in southern Franklin County, Ohio [15]. More recently in 1978, the Alum Creek Reservoir was built as
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a supplement supply to the Hoover Reservoir. Leslie et al. [13] provides the complete water supply
history and describes each reservoir capacity for storage and demand.

2.2. Site Description—Reservoirs and Water Supply Distribution

Griggs Reservoir (Figure 1), located on the northwest side of Columbus, Ohio, is ~9.7 km long
and associated with the Scioto River. Approximately 16 km upstream of Griggs Dam on the Scioto
River is the O’Shaughnessy Dam, separating the slightly larger O’Shaughnessy Reservoir (Figure 1)
from Griggs Reservoir. Together, these two reservoirs (Griggs and O’Shaughnessy) have a capacity
of 2.3 × 107 m3 [15]. Approximately 30% of the drinking water for the city of Columbus comes from
the Griggs and O’Shaughnessy Reservoirs. The Griggs and O’Shaughnessy Reservoirs are more of
a riverine system connected to the Scioto River, which creates a very weather- and flow-dependent
system [16]. The Griggs and O’Shaughnessy Reservoirs hold only a small percentage of the Scioto
River water that flows through Columbus. The average residence time of water in the O’Shaughnessy
Reservoir is approximately 26 days [16]. The Dublin Road Water Plant (DRWP; southwest section
in Figure 1) utilizes surface water from the Griggs and O’Shaughnessy Reservoirs on the Scioto
River, and provides water to downtown Columbus, western, and southwestern Franklin County.
The DRWP is designed to treat up to 2.5 × 105 m3 day−1. Leslie et al. [13] reported a residence time of
approximately 60 days for water movement from the reservoirs to a DRWP household tap.
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Figure 1. The reservoirs that contribute to the Columbus, Ohio, water supply are Griggs,
O’Shaughnessy, Alum Creek, and Hoover [13]. The Dublin Road Water Plant extracts water from
Griggs and O’Shaughnessy for water supply usage.

Hoover Dam (Figure 1) forms the Hoover Memorial Reservoir, and it supplies water for the entire
northeast portion of Franklin County. The residence time of water in the Hoover Reservoir averages
approximately 152 days [16]. Alum Creek Dam is located on Alum Creek, a tributary of Big Walnut
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Creek that drains into the Scioto River south of Columbus. The Hoover and Alum Creek Reservoirs
are more characteristic of a lacustrine environment, resulting in a more classic reservoir system [16].

Water to these reservoirs is derived from their riverine watersheds north of Columbus, Ohio.
The drainage area of Griggs-O’Shaughnessy is ~2700 km2, and Hoover’s is ~500 km2. Between 50–85%
of the Griggs-O’Shaughnessy system (i.e., the Scioto River watershed) north of the reservoirs is
agricultural, while 40–75% of the Alum Creek-Big Walnut watershed is cultivated. Both of these
river systems lie in the Eastern Corn Belt Ecoregion, where the major crops are corn and soybean.
The addition of fertilizer to the corn crops and the fixation of N2 by the legumes produce surface
waters with high concentrations of nitrate. The nitrate concentrations in the river waters draining
into the reservoirs are enhanced by the usage of tile drains within the croplands, which can rapidly
transfer nitrate from soils into the river systems during rain and snow melt events, thereby bypassing
recharge [17,18]. Concentrations of nitrate in the upstream, agricultural portion of the Scioto River
have been measured as high as ~790 µM [19], and the Ohio EPA has described the upper Scioto to
have moderate water quality issues [20]. Therefore, the primary source of water into these reservoirs
has been impacted by agriculture, and the nitrate is derived from the upper drainages.

2.3. Collection, Storage, and Analyses of Water Samples

Event precipitation (n = 119) was collected using a precipitation collector located at the Byrd
Polar Research Center on Ohio State’s campus (latitude: 40.0025; longitude: −83.0390). This collector
consisted of a plastic funnel (top diameter = 248 mm; height = 319 mm), tygon tubing, and a 1000 mL
Nalgene high density polyethylene (HDPE) bottle. Precipitation samples were collected in 20 mL
plastic scintillation vials for anion analysis. Samples were then stored in the dark and chilled at 4 ◦C
until time for analysis, usually within 1–3 months of collection.

Precipitation event volumes and daily temperatures were measured at Waterman Farm of The
Ohio State University, which is <1 km north of the precipitation collector. These data are reported
online through the Ohio Agricultural Research and Development Center [21].

Reservoir water collection was completed weekly at Griggs Reservoir (n = 31) due to its proximity
to the university, and all other reservoirs were sampled on a monthly basis (May 2010–November
2011) by an individual wearing vinyl gloves (O’Shaughnessy n = 16, Hoover n = 17, and Alum n = 16).
Water was collected at the farthest point on each reservoir pier, and reservoir samples were syringe
filtered in the field using 0.4 µM Nucleopore filter caps into a 60 mL pre-cleaned Nalgene low density
polyethylene (LDPE) bottle for anion analysis. Samples were refrigerated and stored in the dark
until analysis.

Tap waters (n = 54) were collected from a residence tap in downtown Columbus supplied by the
DRWP weekly over the study from May 2010 to November 2011. Water from the tap was allowed to
flow for ~5 seconds, and an anion aliquot was collected and stored as the precipitation samples.

Major anion concentrations were analyzed using ion chromatography (Dionex DX-120) at Ohio
State University, within 1–2 months of collection using the techniques of Welch et al. [22]. The anion
precision calculated by relative standard deviation was Cl− ≤ 4.4%, NO3

− ≤ 3.0% and SO4
2− ≤ 3.6%,

respectively, of 100 measurements.

3. Results and Discussion

3.1. Meteorology

These meteorology data were previously published in Leslie et al. [13], and are noted here for
context. The precipitation totals for this study were above the 25-year average monthly precipitation
totals for central Ohio for more than half of the months in this study (May 2010 to November 2011;
Figure 2). Monthly mean temperatures were slightly above normal compared to the 25-year monthly
average temperature (Figure 2). The wettest year on record in Columbus was 2011 (total annual
precipitation of 139.6 cm), with a previous record of 135.0 cm in 1990. Columbus also experienced
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the third wettest spring on record in 2011 (44.8 cm, with previous record of 48.8 cm in 1882), and the
second wettest fall on record (38.1 cm, with the previous record of 39.4 cm in 1881) [23]. It is expected
that these high rainfall periods had a very different impact on the reservoir/water system than other,
more average precipitation years. Higher precipitation rates will also signify greater amounts of runoff,
increasing concentrations of ions in these reservoirs as previously noted by Allen [16].

Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  5 of 15 

 

 
Figure 2. Monthly precipitation totals and average monthly air temperatures across the study during 
May 2010 to November 2011 in comparison to the 25 year monthly precipitation totals and average 
monthly air temperatures [13]. Data gathered from a weather station within the network of Ohio 
Agricultural Research and Development Center (OARDC) of The Ohio State University [21]. 

3.2. Precipitation Anion Chemistry 

Cl− concentrations were as high as 1.2 mM, with the average value only 0.03 mM. The days that 
the three highest Cl− concentrations occurred were 30 December 2010, 18 January 2011, and 1 
February 2011, when rain samples turned to ice prior to collection. These extremely high winter Cl− 
values may be due, at least in part, to the nearby addition of road de-icing salt around The Ohio State 
University campus, and thus may be contaminated. However, we have included them in the data set. 
A statistical analysis using Pearson correlations was done using the day of year, precipitation 
amount, air temperature, Cl−, NO3−, and SO42− (Table 1). Significant relationships were noted if the 
variables had a p-value < 0.05. Cl− concentrations in precipitation had a significant negative 
relationship with air temperature, and a significant positive correlation with NO3− and SO42−. 

Table 1. Pearson correlation coefficients of significance for May 2010 to November 2011 precipitation 
data relationships with a p-value of <0.05. 

2010–2011 Precipitation       
n = 119 Day of Year Amount Temp Cl− NO3− SO42− 

Day of Year 1      

Amount  1     

Temp 0.18  1    

Figure 2. Monthly precipitation totals and average monthly air temperatures across the study during
May 2010 to November 2011 in comparison to the 25 year monthly precipitation totals and average
monthly air temperatures [13]. Data gathered from a weather station within the network of Ohio
Agricultural Research and Development Center (OARDC) of The Ohio State University [21].

3.2. Precipitation Anion Chemistry

Cl− concentrations were as high as 1.2 mM, with the average value only 0.03 mM. The days
that the three highest Cl− concentrations occurred were 30 December 2010, 18 January 2011,
and 1 February 2011, when rain samples turned to ice prior to collection. These extremely high
winter Cl− values may be due, at least in part, to the nearby addition of road de-icing salt around The
Ohio State University campus, and thus may be contaminated. However, we have included them in the
data set. A statistical analysis using Pearson correlations was done using the day of year, precipitation
amount, air temperature, Cl−, NO3

−, and SO4
2− (Table 1). Significant relationships were noted if

the variables had a p-value < 0.05. Cl− concentrations in precipitation had a significant negative
relationship with air temperature, and a significant positive correlation with NO3

− and SO4
2−.
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Table 1. Pearson correlation coefficients of significance for May 2010 to November 2011 precipitation
data relationships with a p-value of <0.05.

2010–2011 Precipitation

n = 119 Day of Year Amount Temp Cl− NO3
− SO4

2−

Day of Year 1
Amount 1

Temp 0.18 1
Cl− −0.25 1

NO3
− −0.32 0.46 1

SO4
2− −0.20 0.68 0.46 1

NO3
− concentrations were as high as 0.34 mM, which occurred on 8 April 2011, with an average

NO3
− concentration of 0.04 mM. A significant negative correlation existed between NO3

− and
precipitation amount, with a positive correlation between SO4

2− and Cl−.
SO4

2− concentrations ranged as high as 0.61 mM, which occurred on 23 October 2010, with an
average concentration of 0.03 mM. A significant relationship was seen between SO4

2− and precipitation
amount, Cl−, and NO3

−. A negative correlation existed between precipitation amount and SO4
2−.

Sulfate concentrations were positively correlated with Cl− and NO3
−. These data were consistent with

increased precipitation amounts decreasing, or diluting out, the anion concentrations.

3.3. Reservoir Water Anion Chemistry

The Pearson correlation coefficients of significance with a p-value <0.05 for reservoir data are
presented in Tables 2–5. All variables that were significantly correlated varied from reservoir to
reservoir. Many similarities did occur between the previously mentioned connected/comparable
systems of Griggs-O’Shaughnessy and Alum-Hoover. A significant positive correlation occurred
between Cl− and SO4

2− in both reservoir systems of flow-through and lacustrine.

Table 2. Pearson correlation coefficients of significance for Griggs Reservoir data relationships with a
p-value < 0.05.

Griggs Reservoir

n = 31 Day of Year Temp Cl− NO3
− SO4

2−

Day of Year 1
Temp −0.47 1
Cl− 1

NO3
− −0.42 −0.41 1

SO4
2− 0.93 1

Table 3. Pearson correlation coefficients of significance for O’Shaughnessy Reservoir data relationships
with a p-value < 0.05.

O’Shaughnessy Reservoir

n = 16 Day of Year Temp Cl− NO3
− SO4

2−

Day of Year 1
Temp 1
Cl− 0.54 1

NO3
− 1

SO4
2− 0.59 0.96 1
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Table 4. Pearson correlation coefficients of significance for Hoover Reservoir data relationships with a
p-value < 0.05.

Hoover Reservoir

n = 17 Day of Year Temp Cl− NO3
− SO4

2−

Day of Year 1
Temp 1
Cl− 1

NO3
− 1

SO4
2− −0.56 0.91 1

Table 5. Pearson correlation coefficients of significance for Alum Creek Reservoir data relationships
with a p-value < 0.05.

Alum Creek Reservoir

n = 16 Day of Year Temp Cl− NO3
− SO4

2−

Day of Year 1
Temp 1
Cl− −0.55 1

NO3
− 0.81 1

SO4
2− 0.92 1

As noted above, the Griggs-O’Shaughnessy (henceforth G-O) system functions more like a
riverine system, while the Alum-Hoover (henceforth A-H) system is more like a lacustrine system [16].
This difference is reflected in most of the anion data. The G-O system is much more variable through
time with a shorter residence time of 26 days and 5× the drainage area of A-H; signifying more
runoff, less mixing, and acting as a plug flow reactor model (PFR) to control anion concentrations [16].
The A-H system has relatively constant concentrations with a longer residence time of 152 days and a
smaller drainage area; resulting in more mixing with less runoff to describe a completely mixed flow
reactor model (CMFR) [16].

The F− concentrations in the reservoir water are all below 34 µM, with G-O values being as much
as 2× to 3× higher than the A-H values through most of the year (Figure 3). The G-O shows higher
concentrations in the late summer/fall, with the highest concentrations in July–November of 2011
during times of higher precipitation. These F− values, especially those of the A-H system, are within
the range and close to the mean values of 13 µM and 16 µM, for South Asia and United Kingdom rivers,
respectively [24,25], suggesting potential baseline concentrations for central Ohio. The reason for the
higher concentrations in G-O is not known. It should be noted that there is a difference in headwater
lithologies between G-O and A-H, where G-O is of limestone/dolomites and shale, while A-H consists
primarily of shale. For example, the mineral fluorite (CaF2) is known to be associated with Silurian
aged dolomites in Ohio [26].
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Figure 3. Fluoride concentrations in reservoirs (Griggs, O’Shaughnessy, Hoover, and Alum) across
May 2010 to November 2011.

The Cl− concentrations in these reservoirs ranged from <0.1 to 1.8 µM, with generally slightly
lower concentrations in the A-H system (Figure 4). The mean Cl− value in “natural” river systems
in North America has been determined to be ~0.2 mM, while the “actual” mean is 0.26 mM [27].
The majority of the reservoir values are above these concentrations, indicating above average input
of Cl− into these systems. This Cl− comes from the addition of road de-icing salt [5,28]. However,
the highest concentrations are in the G-O systems, rising through the summer into early winter, and in
the late spring/early summer period. Although Gardner and Carey [28] have documented a continual
flux of de-icing salt from major highways in Columbus throughout the year, it is unlikely that this is
the primary source of Cl− to these reservoirs in the summer months. The direct source of this Cl−

is unknown, but reservoir Cl− systematics could reflect a dilution or concentration depending on
precipitation amounts.
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Figure 4. Chloride concentrations in reservoirs (Griggs, O’Shaughnessy, Hoover, and Alum) across
May 2010 to November 2011.

Nitrate concentrations in the A-H fluctuate around 0.1 mM, with lower concentrations in the late
summer/early fall that we attribute to biological uptake within the watershed, possibly in the reservoirs
themselves (Figure 5). The G-O data show similar decreases in the summer/fall to concentrations
observed in A-H, but the G-O system has early summer and winter concentrations approaching 0.6 mM
(Figure 5). The high values in the spring are probably due to runoff from recently fertilized agricultural
lands in the northern part of the watershed, but it is unclear what the source of higher winter values
are. During the winter increase in NO3

−, both the Cl− and SO4
2− values are decreasing, implying

different sources of these solutes to these reservoirs. Previous work in central Ohio streams/rivers
affected by agricultural activities has demonstrated increases as large as 90% from summer NO3

− lows
to spring NO3

− highs [5]. Nitrate concentrations as high as 0.67 mM and values as low as 0.04 mM
have recently been observed in agriculturally dominated streams in central Ohio [5]. This range of
NO3

− values is similar to those observed by us in these reservoir waters.
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2010 to November 2011.

Sulfate concentrations show a similar pattern to Cl−. In general, the G-O system has higher
concentrations with ~2-fold variations, while the A-H system has lower concentrations (0.3–0.6 mM)
(Figure 6). The average North American river SO4

2− concentration is 0.19 mM, so even the A-H waters
have relatively elevated values, while the highest G-O values of ~1.6 mM are close to an order of
magnitude above the North American mean. The G-O SO4

2− time series closely resembles the Cl−

pattern, perhaps suggesting similar sources or similar processes controlling their distributions.
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Both the Griggs-O’Shaughnessy and Hoover-Alum followed similar trends in anion
concentrations over time. Chloride and sulfate concentrations were higher in May 2010,
decreased during June 2010, and increased steadily until November 2010. This was followed by a steady
decrease in concentrations through June 2011. Concentrations rose in July 2011, and then Cl− decreased,
while SO4

2− remained relatively constant through the rest of the time series. Nitrate increased in June
2010 and then decreased corresponding with decreases in Cl− and SO4

2−. Low NO3
− concentrations

occurred through November 2010, with a spike in December 2010. Then NO3
− values steadily

decreased until September 2011, with a minor increase into October–November 2011. Hoover and
Alum Creek Reservoirs had relatively constant concentrations of SO4

2− and NO3
− throughout the

study with minimal fluctuation of SO4
2− concentrations of <0.1 mM and with NO3

− concentrations
fairly constant. The concentrations of Cl- in Alum Creek Reservoir changed by 0.3 mM throughout the
time period, and Cl− reached its peak of ~1.2 mM in March 2011. The Cl− concentrations continually
decrease through November 2011. In the Hoover Reservoir, Cl− values remained constant until
December 2010 and increased by March 2011. Hoover Cl− concentrations decreased to their lowest
level in July 2011, and by August 2011, concentrations returned to the previous Cl− concentration
observed in June 2011.

Reservoir management and water supply dynamics are important in order to anticipate water
resources availability [29]. Higher anion concentrations could signify lower reservoir volumes
through evapoconcentration and/or water consumption. Precipitation amounts were near the 25-year
average during this period in 2010. Reservoir waters of lower anion concentrations occurred during
June–November 2011, which likely indicates that higher precipitation volumes diluted reservoir anion
concentrations. We suggest that the observed reservoir behavior that occurred in 2010 was due to
evaporation, while in 2011, increased precipitation amounts diluted anion concentrations. Normally,
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conservative elements such as Cl− can be utilized to help determine evaporation effects, but the high
Cl− concentrations in these reservoir waters and the lack of knowledge about its sources make this
more challenging. This aspect of the systems’ anion geochemistry complicates discerning between
reservoir evaporative loss and variations in precipitation sources.

3.4. Residential Tap Waters

Over the time of this investigation, Cl− and SO4
2− followed similar trends, while NO3

− and F−

varied together as well. Chloride concentrations increased to 6.9 mM on 6 February 2011 with
an average concentration of 1.5 mM. The highest SO4

2− concentration of 1.8 mM occurred on
24 October 2010 with an average concentration of 1.2 mM. Fluoride and nitrate concentrations were
minimal, <0.05 mM, with higher nitrate levels of ~0.05 mM occurring in June 2010, December 2010,
and January 2011.

Pearson correlations were calculated for the tap water samples (Table 6). Significant positive
correlations existed between day of year–SO4

2−, F−–Cl−, F−–NO3
−, F−–SO4

2−, Cl−–NO3
−,

and Cl−–SO4
2−. Significant negative relationships occurred between day of year–Cl−, day of

year–NO3
−, temperature–F−, temperature–Cl−, temperature–NO3

−, and temperature–SO4
2−.

Chloride and nitrate had lower concentrations later in the calendar year, while SO4
2− had higher

concentrations later in the year. The negative correlations with temperature indicate that as the air
temperature increases, solute concentrations decrease. Solute–solute correlations of F− and Cl− with
NO3

−, SO4
2−, and Cl− have positive correlations, demonstrating a co-variance.

Table 6. Pearson correlation coefficients of significance for residential tap water, distributed from
Dublin Road Water Plant, data relationships with a p-value of <0.05.

Dublin Road Water Plant Tap Water

n = 54 Day of Year Temp F− Cl− NO3
− SO4

2−

Day of Year 1
Temp 1

F− −0.31 1
Cl− −0.28 −0.51 0.35 1

NO3
− −0.43 −0.61 0.35 0.36 1

SO4
2− 0.33 −0.35 0.29 0.61 1

3.5. Anion Comparison of Precipitation to Reservoir To Tap

Plots to compare over time the four anionic species from each of the three water types
(precipitation reservoir tap) are shown in Figure 7. The F−, Cl−, NO3

−, and SO4
2− concentrations

in the precipitation were all equal or lower than in the reservoirs with a few exceptions. Seemingly
anomalously high NO3

− concentrations in precipitation collected in April 2011 are thought to be due
to a local effect near the collection site. In general, the tap water has concentrations similar or lower
than the reservoir. Not surprisingly, the tap has in most cases 2× higher F− than the reservoir water,
as F− is being added as an anti-tooth decay agent during the treatment process. Our highest observed
F− value is very similar to that reported by the City of Columbus for tap water (~62 µM) [30]. At most
times, the SO4

2− concentration in the tap water were greater than the reservoir value. This should
be expected, given the fact that alum (Al-SO4 salts) is used to treat the water before distribution. In
most cases, the Cl− in the tap water was higher than the reservoirs (Figure 7B), but this difference is
rather small (~0.1–0.2 mM). The rather large difference in January to March 2011 may be because of an
extensive ice cover on the reservoirs themselves. The reservoirs were not sampled during this time,
while the tap water was. Here, the tap water may well represent the reservoir Cl− concentrations due
to the influx for Cl− from the local highway de-icing and potentially other anthropogenic activities,
but we have no reservoir water to substantiate this hypothesis.
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4. Conclusions

This work describes an anionic characterization of precipitation, surface reservoir waters,
and residential tap waters to better understand the relationship of the hydrologic residence time
on the tap water chemistry, as well as seasonal variations. The highest Cl− tap water concentration
occurred in early February 2011, while increases in NO3

− occurred in both early summer and the
middle of winter. Tap water Cl− and NO3

− concentrations did not exceed the EPA drinking water
standard concentrations. The tap water had concentrations similar to or lower than the reservoir
water. Tap water had higher F− and SO4

2− concentrations, suggesting that they are added during the
treatment of the reservoir water prior to residential distribution. In general, the anion concentrations
in the precipitation are all equal to or lower than the reservoir waters. The input of these anions
from the interaction of precipitation and the watershed soils greatly affect the concentrations of these
constituents. This is particularly the case for nitrate, as agricultural practices far afield from the
reservoirs themselves are the most influential. While 2011 proved to be the wettest year on record
in Columbus, Ohio, one implication of this was a shorter residence time of reservoir water to the
residential tap.
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