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birth weight, a risk factor for the development

of diseases of civilization
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Abstract

Primary prevention

Antenatal dietary lifestyle intervention and nutrition during pregnancy and early postnatal life are important for
appropriate lifelong metabolic programming. Epidemiological evidence underlines the crucial role of increased birth
weight as a risk factor for the development of chronic diseases of civilization such as obesity, diabetes and cancer.
Obstetricians and general practitioners usually recommend milk consumption during pregnancy as a nutrient
enriched in valuable proteins and calcium for bone growth. However, milk is not just a simple nutrient, but has
been recognized to function as an endocrine signaling system promoting anabolism and postnatal growth by
activating the nutrient-sensitive kinase mTORC1. Moreover, pasteurized cow's milk transfers biologically active
exosomal microRNAs into the systemic circulation of the milk consumer apparently affecting more than 11 000
human genes including the mTORC1-signaling pathway. This review provides literature evidence and evidence
derived from translational research that milk consumption during pregnancy increases gestational, placental, fetal
and birth weight. Increased birth weight is a risk factor for the development of diseases of civilization thus involving
key disciplines of medicine. With regard to the presented evidence we suggest that dietary recommendations
promoting milk consumption during pregnancy have to be re-evaluated.
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Introduction

To meet the requirements for macronutrients and min-
erals during pregnancy gynecologists and general practi-
tioners recommend increased servings of milk and dairy
products [1]. Although milk is a rich source of essential
amino acids and calcium, recent understanding of milk’s
biological function has changed during the last years.
Milk is not just a nutrient, but represents an endocrine
signaling system of mammals activating the key regula-
tor of cell growth and anabolism, the nutrient-sensitive
kinase mTORC1 (mechanistic target of rapamycin com-
plex 1) [2]. At the molecular level, cell growth, prolifera-
tion, and anabolism are regulated by mTORC]1 [3-12]. In
the perspective of human evolution, persistent cow’s
milk consumption is a novel human behavior, which
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may result in long-term adverse health effects [13]. In-
creased mTORCI signaling during milk consumption
has recently been confirmed in a rodent model and has
been associated with the development of obesity [14-17].
Pregravid maternal overweight and obesity are well-
known risk factors that promote fetal overnutrition and
fetal macrosomia [18-26]. Increased birth weight is a risk
factor for the development of diseases of civilization, es-
pecially obesity [22,23,25]. To understand the impact of
milk consumption on fetal growth, it is of critical im-
portance to appreciate milk’s biological function as an
activator of mTORCI1 and transmitter of gene-regulatory
exosomal microRNAs [2].

Pivotal mTORC1-activating signals

mTORCI orchestrates cell growth and proliferation [3].
mTORCI is the central hub of metabolism that activates
nucleotide, protein and lipid synthesis under conditions of
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nutrient and growth factor availability [3-12]. mTORC1
plays a fundamental role in cell cycle control and cell
growth [27], protein and lipid synthesis [7,12], lipid accu-
mulation and adipogenesis [28,29]. Thus, persistently
overactivated mTORCI signaling stimulates weight gain,
increases body mass, and fat mass [14,29,30].

Basically, there are five major pathways, that activate
mTORCI: 1) the presence of growth factors such as in-
sulin and IGF-1 [3,6,7,11,12], 2) sufficient cellular energy
(glucose, ATP) [31,32], 3) the availability of amino acids,
predominantly essential branched-chain amino acids
(BCAAs) such as leucine [5-10,33], 4) the presence of
glutamine for cellular leucine uptake and glutaminolysis-
mediated activation of mTORC1 [34-36], and 5) the
availability of saturated fatty acids, especially palmitic
acid [37].

Milk provides all signals for mTORC1-activation

Mammalian evolution relies on lactation and its se-
cretory end-product milk, required and sufficient for
postnatal growth. Milk is not just a simple nutrient, but
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represents a sophisticated postnatal endocrine system pro-
viding all signals that are required to activate mTORC1
of the milk recipient, physiologically the newborn
mammal [2].

Essential branched-chain amino acids activate mTORC1

Milk proteins provide highest amounts of essential
BCAAs, especially leucine [38]. Leucine plays a pivotal
role for activating mTORCI1 (Figure 1) [33]. Of all ani-
mal proteins, whey proteins contain the highest amount
of leucine (14%) [38], and in comparsion to meat (8%
leucine), whey proteins undergo fast intestinal hydroly-
sis, thus operate like an i.v. amino acid infusion [39-42].

Glutamine activates mTORC1

Milk protein (8.09 g glutamine/100 g) in comparison to
beef protein (4.75 g glutamine/100 g) provides 70% more
glutamine [43]. Glutamine is an important activator of
mTORCI1 via its function as a gatekeeper for cellular
leucine uptake and via its precursor function in the glu-
taminolysis pathway that activates mTORC1 (Figure 1)
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Figure 1 Interactions between milk and trophoblast mTORC1 signaling. Leucine (Leu) and glutamine (GIn) derived from whey protein
hydrolysis increase serum insulin. Milk casein increases serum IGF-1. Leucine, insulin and IGF-1 stimulate trophoblast mTORC1. Milk consumption
is associated with placental weight gain, which is related to increased serum levels of human placental lactogen (HPL). HPL via STAT5/SOCS
signaling as well as increased milk-mediated mTORC1/S6K1 signaling induce insulin resistance enhancing the glucose gradient to the fetus.
Increased trophoblast mTORC1T and HPL stimulate placental expression of FGF21 upregulating GLUT1. Milk consumption during pregnancy
exaggerates glucose transfer to the fetus. Trophoblast mTORC1 stimulates the expression of L-type amino acid transporters (LAT) (dotted line).
Thus, milk intake during pregnancy overstimulates diaplacental flux of glucose and BCAAs promoting mTORC1-driven fetal overgrowth. Bovine
exosomal microRNA-21 (miR-21) reaches maternal circulation and may thus decrease trophobast PTEN expression thereby enhancing trophoblast
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[44-46]. Leucine is an allosteric activator of glutamate
dehydrogenase (GDH), the key-regulating enzyme of the
glutaminolysis pathway [44,45]. The interplay of glutam-
ine and leucine maximizes the flux through GDH in
pancreatic [-cells, which is important for mTORC1-
S6K1-dependent insulin secretion [46].

Insulin activates mTORC1

Milk stimulates insulin secretion (Figure 1) [2]. The
insulinemic index of whole cow’s milk (148 +14) and
skim milk (140 + 13) is much higher than the glycemic
indices of whole milk (42 + 5) and skim milk (37 +9), re-
spectively [47,48]. Fast hydrolysis and immediate intes-
tinal absorption of insulinotropic amino acids of the
whey protein fraction of cow’s milk raises insulin levels
to much higher magnitudes than intestinal digestion of
structural proteins such as beef (insulinemic index: 51)
[47,48]. The major insulinotropic protein fraction of cow’s
milk is the whey protein fraction [49]. Whey-derived leu-
cine and other whey-derived amino acids stimulate incre-
tin secretion of enteroendocrine K- and L-cells [50-54].
Additionally, whey-derived amino acids directly exert inu-
linotropic effects on pancreatic B-cells [55-57]. Milk pro-
tein consumption in comparison to meat protein intake
thus results in hyperinsulinemia [58].

Insulin-like growth factor-1 activates mTORC1

A meta-analysis confirmed that continued milk con-
sumption increases serum levels of insulin-like growth
factor-1 (IGF-1) [59]. The European Prospective Inves-
tigation into Cancer and Nutrition confirmed a relation-
ship between milk intake in 2 109 European women
with increased IGF-1 serum levels [60]. A 20% increase
in serum IGF-1 levels has been observed in prepubertal
children previously not used to milk consumption after
a daily intake of 710 mL of milk for 4 weeks [61]. A re-
cent study including 193 overweight adolescents aged
12-15 years drank either 1 L/day of skimmed milk,
whey, casein or water for 12 weeks. All milk-based-
drinks contained 35 g milk protein/L. IGF-1 significantly
increased with skimmed milk and tended to increase
with casein compared to the pre-test control group [62].
Casein in comparison to whey protein has been shown
to differentially enhance hepatic IGF-1 synthesis [49].
Notably, per capita cheese consumption, the major dairy
source of casein, increased in Germany from 5 kg in
1950 to 24.4 kg in 2013 [63].

Palmitic acid activates mTORC1

Cow’s milk contains about 3.5 to 5% total lipid. About
98% of the lipid is composed of triacylglycerol, trans-
ported in milk fat globules [64]. The major fatty acid
of total fatty acids of milk lipids is palmitate (C16:0)
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with 32.3 wt% [64,65]. Palmitate like BCAAs activates
mTORCI [37].

Thus milk, the promoter of postnatal growth of mam-
mals, activates mTORC1 of the milk recipient either by
transfer or induction of critical mTORC1 activating sig-
nals (Figure 1).

It is the intention of this review to demonstrate that
milk consumption during pregnancy increases weight
trajectories of the growing human fetus promoting in-
creased birth weight, a well-known risk factor for the de-
velopment of diseases of civilization.

Milk consumption and pregravid maternal weight

Prepregnancy maternal overweight and obesity are risk
factors promoting fetal overnutrition and macrosomia
[18-26]. Obesity is associated with enhanced TORCI sig-
naling [14-16]. In obesity serum levels of insulin, BCAAs,
and free palmitate are increased [66-69]. In obese children
additional supply of leucine resulted in excessive hyperin-
sulinemia [70]. Elevated serum levels of BCAAs in chil-
dren and adolescents have been identified as predictors of
insulin resistance [69]. Notably, milk protein but not meat
protein consumption induced hyperinsulinemia and insu-
lin resistance [58]. In obesity and states of insulin resist-
ance, palmitate serum levels are significantly elevated
[71-73]. Milk-mediated stimulation of mTORC]1 increases
the phosphorylation of the major mTORCI substrate, S6
kinase 1 (S6K1) [14]. Overactivated S6K1 via phosphoryl-
ation of insulin receptor substrate-1 (IRS-1) is a pivotal
mechanism that induces insulin resistance [74,75].

There is substantial evidence that milk consumption
in children increases linear growth and body mass index
(BMI) [76-78], increases BMI in adolescents, and adults
[79-81]. Noteworthy, a recent meta-analysis of Chen et
al. [82] including 29 randomized controlled trials found
no significant effects of total dairy intake on body weight
and body fat [82]. Notably, this study did not differenti-
ate between milk and other processed milk products.
The study of Abreu et al. [83] reported a protective as-
sociation between dairy product consumption and ab-
dominal obesity among Azorean boys. However, this
study using a self-administered semiquantitative food
frequency questionnaire (categorizing<2 and>2 serv-
ings per day) did not discriminate between the effects of
milk consumption versus other dairy products and did
not provide quantitative dose—response data on daily
milk intake. By using the same semiquantitative food
frequency questionnaire methodology categorizing the
number of servings/day the authors reported an inverse
association between milk intake and both BMI and body
fat in 583 Azorean girls but not in 418 Azorean boys
[84]. In contrast, Arnberg et al. [80] investigated 203
overweight adolescents with a BMI of 25.4 + 2.3 kg/m>
(mean * SD), who received an additional daily amount of
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35 g milk protein either as 1 L/day of skim milk, whey,
or casein, or water as a control for 12 weeks. BMI-for-
age Z-score was greater at 12 weeks in the skim milk,
whey, and casein groups compared with baseline and the
control groups [80]. Remarkably, the National Health
and Nutrition Examination Survey (NHANES) data from
1999 to 2004 including 1,493 children of age 2—4 years
and 2,526 children of age 5-10 years reported an associ-
ation for the highest quartiles of milk consumption and
BMI in contrast to other dairy products, which had no
effect on BMI [77]. It is of critical concern that increased
prepregnancy BMI represents an important risk factor
for increased birth weight of the offspring [21,22,25].

Milk consumption and gestational weight gain

Women with large for gestational age (LGA) newborns
had an increased BMI before pregnancy (25 kg/m?), an
increased gestational weight gain of 19.0 kg in compa-
rison to women with a normal BMI before pregnancy
of 22.4 kg/m® exhibiting a gestational weight gain of
15.8 kg, respectively [85]. Intriguingly, pregnant women
gaining excessive weight in comparison to women with
optimal weight gain reported a twofold intake of dairy
products of about 200 g/day [86]. Of all dairy products,
the strongest predictor of increased maternal weight
gain during the last trimester of pregnancy was milk
[86]. Thus, milk consumption during pregnancy may
increase gestational weight gain.

Milk consumption and placental weight

Data from 50 117 mother-infant pairs of the Danish
National Birth Cohort collected from 1996-2002 showed
a placental weight increase across the whole range of
milk intake [87]. A linear increment of placental weight
from 13.3 g (0-1 glass of milk/day) to 26.4 g (>6 glasses
of milk/day) (p<0.001) has been reported [87]. A pro-
spective study in India reported that the frequency of milk
consumption at 18th week of gestation was positively as-
sociated with an increase of placental weight [88].

A milk-induced increase in placental weight may not
only raise the nutrient transfer to the fetus but may also
increase the amount of placenta-derived growth hor-
mones that impair maternal insulin sensitivity, thereby
enhancing maternal blood glucose levels leading to fetal
overgrowth and increased birth weight. In fact, maternal
blood levels of human placental lactogen (HPL) are cor-
related with placental weight [89-91], and fetal weight
[91-94], respectively. CSH1, the predominant transcript
of HPL, is increased in placentas of LGA pregnancies
[95]. A link between fetal growth velocity in the second
half of the pregnancy and maternal serum HPL levels
has been demonstrated [96]. In LGA newborns the ex-
pression of CSHI-1, CSH2-1, and CSHLI1-4 mRNA tran-
scripts in placenta was significantly increased compared
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with appropriate for gestational age (AGA) newborns
[85]. Women with LGA newborns had an increased BMI
before pregnancy (25 kg/m?), an increased gestational
weight gain (19 kg), and increased placental weight
(777.6 g) compared to AGA newborns associated with a
normal maternal BMI before pregnancy of 22.4 kg/m?, a
gestational weight gain of 15.8 kg, and a placental weight
of 650 g, respectively [85].

mTORC1 promotes placental nutrient transfer

The placenta is the nutrient and endocrine system con-
trolling prenatal mTORCI signaling for appropriate fetal
growth [97,98]. The syncytiotrophoblast, which highly
expresses mTOR [99], represents the transporting epi-
thelium and the primary endocrine cell of the human
placenta and functions as an mTORC1-dependent nutri-
ent sensor that plays a unique role in the regulation of
fetal growth [100]. It has been demonstrated in cultured
primary human trophoblast cells that mTORCI1 is regu-
lated by glucose, amino acids, and growth factors [101].
mTORCI is a positive regulator of placental system A
and system L amino acid transporters, suggesting that
trophoblast mTORC1 modulates amino acid transfer
across the placenta [100]. Trophoblast mTORCI1 activa-
tion increases the cell surface density of amino acid
transporters and thus links maternal nutrient availability
and growth factor signaling to fetal growth by modulat-
ing the mTORC1-mediated flux of amino acids across
the placenta, a mechanism that finally results fetal over-
growth (Figure 1) [100].

Activation of placental mTORCI signaling has been
observed in association with maternal obesity [102]. In
female Albino Wistar rats, maternal overweight increased
placental mTOR and fetal growth [103]. Obesity is associ-
ated with elevated circulating levels of BCAAs, free palmi-
tate, hyperinsulinemia, and insulin resistance [66-70,104].
Obviously, the metabolomics of obesity with enhanced
nutrient and hormonal signals overstimulate trophoblast
mTORCI activity. In fact, in obese women giving birth to
LGA newborns, the activity of placental insulin/IGF-1 and
mTORC1 signaling was positively correlated with birth
weight [103].

In contrast, mTORCI in the human placenta is down-
regulated in restricted fetal growth [99]. Furthermore, in
pregnant baboons maternal nutrient restriction down-
regulated placental mTOR, insulin/IGF-1 signaling and
nutrient transporters [105].

Milk intake and maternal insulin resistance

Maternal insulin resistance is a physiologic adaptation of
pregnancy that limits maternal glucose uptake to ensure
an adequate supply of glucose that is shunted to the
growing fetus. Hyperinsulinemia and insulin resistance
start to develop in the second half of pregnancy and are
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induced by the placenta-derived growth hormones, pla-
cental growth hormone (PGH) and human placental lac-
togen (HPL). The somatogenic and lactogenic hormones
of the placenta and maternal pituitary gland integrate
the metabolic adaptations of pregnancy with the de-
mands of fetal and neonatal development. Dysregulation
of placental growth hormones in pathologic conditions
of pregnancy adversely affects fetal growth and postnatal
metabolic function [106]. In addition to promoting
growth of maternal tissue, PGH induces maternal insulin
resistance and thereby facilitates the mobilization of ma-
ternal nutrients for fetal growth. HPL and prolactin
increase maternal food intake by induction of central
leptin resistance and promote maternal (-cell expansion
and insulin production [106]. Remarkably, milk con-
sumption during pregnancy increased placental weight
[87,88], which has been associated with increased mater-
nal serum levels of HPL [89-91]. PGH, which activates
the maternal GH receptor (GHR), and HPL, which acti-
vates the maternal prolactin receptor (PRLR) both in-
duce signal transducer and activator of transcription 5
(STATS5) [107]. STAT5 promotes the expression of sup-
pressor of cytokine signaling proteins (SOCS) [107]. It is
well known that HPL stimulates the Janus-activated-
kinase-2 (JAK2)/STAT5 signaling pathway [108-110].
HPL induces SOCS1 and SOCS2 [111]. SOCS1, SOCS3,
SOCS6 and SOCS7 are negative regulators of insulin sig-
naling by binding to the insulin receptor (IR), blocking
access of signaling intermediates and inhibiting IR tyro-
sine kinase activity, leading to a reduction of IR-directed
phosphorylation of IRS-1 and its downstream events,
and by targeting IRS-1 and IRS-2 for proteasomal deg-
radation [112-114]. Increased PGH and HPL signaling
via upregulated SOCS expression thus induces SOCS-
mediated insulin resistance (Figure 1) [112-115].

Overstimulated mTORCI signaling activates S6K1
[7,14,116,117], which reduces insulin signaling by inhibi-
tory phosphorylation of IRS-1 [116,117]. BCAA-mediated
insulin resistance is explained by enhanced activation of
S6K1 [117-124]. In fact, high intake of milk, but not meat,
induces insulin resistance in humans [58].

Milk consumption during pregnancy apparently in-
creases the magnitude of maternal insulin resistance 1)
by upregulation of placental HPL-SOCS signaling, and
2) by stimulation of maternal mTORC1-S6K1 signaling
(Figure 1). Both pathways in a synergistic manner may
enhance the magnitude of maternal insulin resistance,
thereby increasing the glucose flux to the fetus.

Milk and FGF21-mediated GLUT1-overexpression

Placental weight gain, which is related to milk consump-
tion during pregnancy, is associated with increased
maternal serum levels of HPL [87-91]. HPL activates
downstream JAK2/STATS5 signaling [108-110]. Recently,
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fibroblast growth factor-21 (FGF21) has been related to
insulin resistance, type 2 diabetes mellitus, obesity and
the metabolic syndrome [125,126]. In comparison to
control subjects, plasma FGF21 levels were significantly
higher in women with gestational diabetes mellitus
(GDM) [127]. Increased mRNA expression of FGF21
has been detected in the placenta of women with GDM
[128]. Notably, the FGF21 promoter contains three pu-
tative STAT5-binding sites [129]. Increased FGF21 pro-
duction has been observed in late pregnancy in the
mouse [130]. Ectopic activation of hepatic mTORCI in
liver-specific Tscl knockout mice resulted in enhanced
expression of FGF21 [131]. Intriguingly, overexpression
of FGF21 in 3 T3-L1 adipocytes upregulated glucose up-
take and increased mRNA expression of glucose trans-
porter 1 (GLUT1) [132]. GLUT1 is the primary glucose
transporter isoform in the human placenta that in-
creases its expression over gestation [133]. GLUT1 has
been localized to both the maternal facing microvillous
plasma membrane (MVM) with threefold higher expres-
sion as compared to the basal plasma membrane (BM)
[134]. In maternal diabetes, the expression of GLUT1 in
the BM has been reported to increase [135,136]. More-
over, increased BM expression of GLUT1 has been associ-
ated with high birth weight of large babies of non-diabetic
mothers [137].

Thus, milk-mediated overactivation of mTORC1 via
placental overexpression of FGF21 and enhanced HPL/
STAT5-driven placental expression of FGF21 may over-
stimulate trophoblast GLUT1 expression that increases
the diaplacental flux of glucose to the fetus (Figure 1). Al-
terations of maternal and placental metabolic signaling by
milk consumption during pregnancy may thus explain ac-
celerated fetal growth and increased birth weight.

MicroRNA-21 and placental, fetal and adipocyte growth

Jiang et al. [138] recently reported on aberrant upregula-
tion of microRNA-21 in placental tissue of macrosomia.
Importantly, exosomal microRNA-21 is an abundant
and consistent microRNA of cow’s milk [139]. Notably,
human and bovine microRNA-21 stem-loops are identi-
cal (www.mirbase.org). Milk has been proposed to func-
tion as a metabolic transfection system by transfer of
exosomal microRNAs activating mTORC1 signaling of
the milk recipient [2]. Milk’s exosomal microRNA repre-
sent milk’s “software” and milk-derived BCAAs milk’s
“hardware” for activating mTORC]1 signaling [2]. In fact,
Baier et al. [140] provided evidence that microRNAs of
commercial pasteurized cow’s milk are absorbed by adult
human subjects in biologically meaningful amounts from
nutritionally relevant doses of cow’s milk and affect gene
expression of peripheral blood mononuclear cells, HEK-
293 kidney cell cultures and mouse livers. Furthermore,
they demonstrated that disintegration of milk exosomes
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by ultrasonication abolished the transfer and uptake of
milk-derived microRNAs [140]. Notably, in placental tis-
sues target genes of microRNA-21 were involved in
JAK-STAT, PI3K-AKT, and mTOR signaling pathways
[138]. It is thus conceivable that milk-derived exosomal
microRNA-21 may reach the trophoblast cell and con-
tributes to overactivated trophoblast mTORCI1 signaling.
Critical targets of microRNA-21 are mRNAs of import-
ant tumor suppressor proteins involved in upstream and
downstream suppression of mTORC1 signaling such as
PTEN [141-144], Sproutyl and Sprouty2 [145-147], and
PDCD4 [148-150]. Moreover, microRNA-21 has been
shown to induce the cell cycle promoter cyclin D1 in an
mTORCI1-dependent manner [151]. Supposed that milk-
derived microRNA-21 reaches the trophoblast cells via
systemic circulation of the pregnant milk-consuming
mother, PTEN suppression could increase insulin/IGF-1/
PI3K/AKT signaling, which further augments mTORC1
activation (Figure 1). MicroRNA-21-mediated inhibition
of Sproutyl and 2 would amplify RAS-RAF-MEK-ERK
signaling, which additionally suppresses TSC2 and thus
raises mTORC1 activity. Furthermore, microRNA-21
could stimulate the initiation of translation by repres-
sion of PDCD4, which is a suppressor of translation ini-
tiation that inhibits the RNA helicase elF4A [152].
Both, 4E-BP-1 and PDCD4 are crucial regulatory inhibi-
tors of translation initiation and thus of protein synthesis.
Activation of the mTORCI pathway and its substrate kin-
ase S6K1 results in subsequent phosphorylation of 4E-
BP-1 and PDCD4 that promote elF4E-eIF4G complex
assembly and stimulate mRNA translation [151]. Milk
microRNA-21-mediated suppression of PDCD4 expres-
sion may further amply translation, which enhances
placental and finally fetal overgrowth. Furthermore,
microRNA-21 promotes adipogenic differentiation and
proliferation of human adipose tissue-derived mesenchy-
mal stem cells [153,154], thus promoting fat mass accre-
tion. It has recently been shown that long-term inhibition
of microRNA-21 reduced obesity in db/db mice [155].

Milk consumption and fetal and birth weight

The Generation R Study, a population-based prospective
cohort study from fetal life until young adulthood in
Rotterdam investigated 3 405 mothers during pregnancy
[156]. Maternal milk consumption of >3 glasses (450 mL
of milk) per day was associated with greater fetal weight
gain in the third trimester of pregnancy, which led to an
88 g higher birth weight than that with milk consump-
tion of 0 to 1 glass per day [156]. This association was
limited to milk, whereas protein intake from nondairy
food or cheese was not associated with increased birth
weight. A possible explanation for this finding is the
presence of biologically active microRNAs in milk and
their absence in processed milk products such as cheese.
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Compared with the lowest reference category of milk con-
sumption (0—1 glasses/day), maternal milk intakes of > 1—
2 glasses/day, 2—3 glasses/day, and >3 glasses/day were
associated with increased fetal weight gain. Fetal weight
gain has been estimated by the procedure of Hadlock
et al. [157]. Milk-mediated differences in fetal weight gain
appeared from the 20th week onward, but became most
evident in the last part of the third trimester [156], a
period that is controlled by HLP signaling.

Worldwide studies confirmed an increase of birth
weight in relation to milk consumption during preg-
nancy (Table 1). A retrospective cohort in Sweden re-
ported a birth weight increase of 75 g and 134 g in the
offspring of mothers consuming >200 mL and 1 L milk
daily, respectively [158]. A prospective study in India re-
ported that the frequency of milk consumption at the
18th week of gestation was positively associated with
birth weight, birth length, and head circumference [88].
According to a prospective study in Canada, maternal
daily consumption of an additional 237 mL of milk was
associated with a 41 g increase in offspring birth weight
[159]. A prospective Australian study in 557 mothers re-
ported that protein intake from dairy products was asso-
ciated with a higher birth weight of the offspring [160].
In a randomized controlled trial of 72 adolescent preg-
nant mothers in the USA, 25 mothers were counseled to
consume > 4 servings of dairy products a day, which re-
sulted in a 240 g higher birth weight compared to the
control group [161]. According to a systematic literature
review, the majority of studies reported positive associa-
tions between milk and/or dairy consumption and birth
weight-related outcomes [162].

Table 1 Milk intake increases prepregnancy, gestational,
placental, fetal, and birth weight

Effect of milk Outcome Studies [Ref.]

intake

Prepregnancy Increase  Randomized intervention study, Denmark [80]

weight

Gestational Increase  Observational study, Iceland [86]

weight gain

Placental Increase  Danish National Birth Cohort, Denmark [87]

weight Increase  Pune Maternal Nutrition Study, India [88]

Fetal weight  Increase  Generation R Study, Netherlands [156]

Birth weight  Increase  Generation R Study, Netherlands [156]
Increase  Observational study, Sweden [158]
Increase  Pune Maternal Nutrition Study, India [88]
Increase  Observational study, Canada [159]

Increase  Prospective observational study, Australia [160]

Increase  Randomized controlled trial, USA [161]

Increase  Systematic literature review, Norway [162]
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Conclusions

We provided literature evidence supported by trans-
lational research that milk consumption increases preg-
ravid, gestational, placental, fetal, and birth weight,
respectively (Table 1). The Mater-University Study of
Pregnancy and Its Outcomes demonstrated that maternal
BMI in comparison to paternal BMI is associated with
the BMI of the offspring at ages 5 and 14 years [22].
Based on these data, Lawlor et al [22] proposed the
fetal overnutrition hypothesis of obesity and concluded
that nutrient-dependent programming effects during fetal
life are responsible for the development of obesity [22].

The central hub of nutrient sensing, growth regulation
and anabolism is the kinase mTORCI1, which is up-
regulated in obese subjects and by milk consumption
[2,14-17]. Milk is an evolutionary feeding and anabolic
programming system controlled by the lactation genome
that regulates mTORCI1-dependent postnatal growth
by donation of mTORCI-activating essential BCAAs
and exosomal microRNAs [2,140]. The placenta is the
natural feeding and programming system controlling
mTORC1-dependent fetal growth. No other gravid
mammal is simultaneously exposed to lactation-driven
as well as placenta-driven mTORCI signaling, except
human beings since the Neolithic revolution boosted
after the widespread distribution of refrigerators in
the early 1950’s allowing daily access to bovine milk.
From an anthropological perspective, Wiley [13] con-
cluded that milk consumption by humans is a novel
behavior that increases BMI and may induce long-
lasting adverse effects on human health. In fact, our
evidence underlines that milk consumption increases
prepregnancy BMI [79-81], gestational [85,86], placen-
tal [87,88], fetal [156], and birth weight [156,158-162],
respectively. Notably, increased birth weight, is a risk
factor for the development of mTORCI1-driven diseases of
civilization [163-171]. The magnitude of fetal and post-
natal mTORC1-signaling apparently determines lifelong
axes of metabolic, hypothalamic and immunological
programming [172-176].

Intrauterine overnutrition affects the risk of obesity
[177-180]. High maternal plasma concentrations of glu-
cose, amino acids and free fatty acids have been impli-
cated to result in permanent changes in appetite control,
neuroendocrine functioning, and energy metabolism in
the developing fetus, thus leading to obesity later in life
[176-179]. Milk consumption provides abundant BCAAs
and palmitate, stimulates insulin/IGF-1 signaling, and
provides abundant exosomal microRNAs that in a syner-
gistic manner may overstimulate trophoblast mTORC1
activity (Figure 1). Overactivated trophoblast mTORC1
signaling finally explains 1) increased expression of
mTORCI1-dependent amino acid transporters with en-
hanced diaplacental flux of amino acids, 2) increased
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HPL synthesis with STAT5-promoted induction of ma-
ternal insulin resistance thus increasing the glucose flux to
the fetus, and 3) increased STAT5/FGF21- and mTORC1/
FGF21-driven trophoblast GLUT1 expression promot-
ing diaplacental glucose transfer to the fetus. Accord-
ingly, fetal cells obtain an excessive supply of glucose
and BCAAs. Finally, BCAAs that reach fetal cells over-
activate fetal mTORC1 signaling promoting fetal over-
growth [180].

When overactivated mTORC]1 signaling persists dur-
ing the postnatal period by the introduction of artificial
high protein formula feeding, lifelong deviations of
mTORC1-dependent metabolic, neuroendocrine and
immunological programming may result [181,182]. In
this regard, the worst scenario for mTORC1-dependent
perinatal malprogramming is an obese mother, who
increases milk consumption during pregnancy, and
provides excessive protein by artificial formula feeding
[182]. High milk intake during pregnancy and high pro-
tein formula feeding may synergistically enhance perinatal
mTORC1 signaling explaining the fetal overnutrition hy-
pothesis and the early protein hypothesis [22,174,182].
These two hypotheses converge to a perinatal mTORCI-
overactivation hypothesis, explaining the adverse ef-
fects of increased milk-mediated mTORC1 signaling
during the pre- and postnatal period of metabolic
programming.

Current dietary recommendations for pregnant wo-
men intend to assure sufficient supply of calcium and
high quality proteins for the growing fetus. However,
there is more and more concern about milk’s role as
a source of calcium. According to the recent opinion
of Harvard School of Public Health milk isn’t the
only, or even best, source of calcium [183]. There
are non-dairy foods including leafy green vegetables,
broccoli, beans and tofu that supply high amounts of
calcium. These calcium-rich food alternatives have a
significant advantage in comparison to milk: they do
not overstimulate mTORC1 signaling and most im-
portantly do not transfer biologically active exosomal
microRNAs [141].

Therefore, we suggest to re-evaluate dietary recom-
mendations for pregnant women. We appeal to the
medical community to define save upper limits for milk
consumption during pregnancy, especially for those
women who enter gravity with increased BMI. Whereas
boiling of milk destroys milk’s bioactive microRNAs
[184], boiling has no effect on milk-BCAA-mediated
mTORC1 activation. Future randomized-controlled clini-
cal studies are needed to better study the effect of dietary
interventions based on milk consumption’s difference
during pregnancy, especially in women who enter preg-
nancy with overweight or obesity, and the risk of in-
creased birth weight [185].
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