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Abstract: Stressful conditions occuring during cancer, inflammation or infection activate adaptive
responses that are controlled by the unfolded protein response (UPR) and the nuclear factor of
kappa light polypeptide gene enhancer in B-cells (NF-κB) signaling pathway. These systems can
be triggered by chemical compounds but also by cytokines, toll-like receptor ligands, nucleic acids,
lipids, bacteria and viruses. Despite representing unique signaling cascades, new data indicate that
the UPR and NF-κB pathways converge within the nucleus through ten major transcription factors
(TFs), namely activating transcription factor (ATF)4, ATF3, CCAAT/enhancer-binding protein (CEBP)
homologous protein (CHOP), X-box-binding protein (XBP)1, ATF6α and the five NF-κB subunits.
The combinatorial occupancy of numerous genomic regions (enhancers and promoters) coordinates
the transcriptional activation or repression of hundreds of genes that collectively determine the
balance between metabolic and inflammatory phenotypes and the extent of apoptosis and autophagy
or repair of cell damage and survival. Here, we also discuss results from genetic experiments and
chemical activators of endoplasmic reticulum (ER) stress that suggest a link to the cytosolic inhibitor
of NF-κB (IκB)α degradation pathway. These data show that the UPR affects this major control
point of NF-κB activation through several mechanisms. Taken together, available evidence indicates
that the UPR and NF-κB interact at multiple levels. This crosstalk provides ample opportunities to
fine-tune cellular stress responses and could also be exploited therapeutically in the future.

Keywords: ER stress; cancer; infection; inflammation; unfolded protein response; NF-κB;
IκBα; thapsigargin

1. Introduction

The NF-κB pathways regulate the activities of a family of five transcription factors (RELA (p65),
RELB, c-REL, NFKB1 (p105/p50) and NFKB2 (p100/p52)) that play numerous roles in physiological,
but also pathophysiological, conditions [1]. The pivotal role of NF-κB in promoting several of the ten
hallmarks of cancer is well established and has been the subject of excellent reviews [2–4].
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NF-κB is an inducible transcription factor that displays low constitutive background activity.
It can be strongly induced by a variety of agents which increase the nuclear concentration of the
DNA-binding subunits and subsequently, promote the binding to specific cognate κB sites across
the genome. The NF-κB system acts as a general stress sensor that is activated by a multitude of
adverse conditions. These are extracellular activators, such as infection or inflammation, but also
intracellular activators, such as DNA damage or the unfolded protein response (UPR). Here, we discuss
recent progress in the analysis of (reciprocal) interactions between the NF-κB pathways and the UPR,
a pathway that controls the folding capacities of the endoplasmic reticulum (reviewed in [5].

2. The Unfolded Protein Response, ER Stress and Cancer

The ER is a specialized organelle that is responsible for the synthesis, assembly, folding, transport
and degradation of a large number of membrane and secreted proteins [6]. The quality and fidelity
of all of these steps is constantly monitored by the cell. The accumulation of unfolded or misfolded
proteins in the ER lumen rapidly results in ER stress and activates the UPR process. The UPR combines
several systems to slow down ongoing protein synthesis and to increase the folding capacity of the
ER. If this reaction is successful, cellular protein synthesis resumes, and cellular homeostasis will be
restored, facilitating survival of the ER stress condition. If ER stress persists, the UPR pathways will
eventually induce oxidative stress and cell death [6]. Tumor cells have not only acquired the capacity
to suppress death-inducing pathways, to induce angiogenesis and to reprogram their metabolism,
as reviewed elsewhere [7], but also show an increased demand for protein synthesis and folding
capacity. These demands favor an increased supply of nutrients and eventually, shape the tumor
microenvironment, including the activities of invading immune cells. It is therefore not surprising that
akin to NF-κB, ER stress has also been related to cancer, and this has been comprehensively reviewed
recently [8–10]. NF-κB induction by the UPR does not only occur in highly proliferative tumor cells,
but also in other pathophysiological situations, such as infection by viruses, as demonstrated for the
hepatitis C virus or for human coronavirus 229E [11,12]. As discussed below, both the ER/UPR and
NF-κB pathways operate through gene-regulatory mechanisms, ultimately inducing and fine-tuning
the mRNA and protein expression of specific sets of genes. However, our knowledge on the interactions
of the two systems and the levels and specificities of this type of crosstalk for certain types of cancer,
for inflammatory and immune reactions or for infections is far from complete and represents an
emerging area of investigation [13–17].

3. The ER Stress Sensors

ER stress is recognized by three sensors that are inserted into the ER membrane: protein
kinase R (PKR)-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α) and ATF6α (also called
cyclic AMP-dependent transcription factor 6α). PERK and IRE1α share similar lumenal parts
and possess cytosolic ser/thr kinase domains [18]. In non-stressed cells, the major ER chaperone
binding-immunoglobulin protein (BIP), also called 78 kDa glucose-regulated protein (GPR78), binds to
the ER-oriented parts of PERK and IRE1α and keeps them in a monomeric inactive state. Increased
binding of BIP/GRP78 to misfolded proteins relieves both PERK and IRE1α and facilitates activation
by dimerization (or oligomerization) followed by trans(auto)phosphorylation [19,20]. Active PERK
then phosphorylates the eukaryotic translation initiation factor 2 (eIF2) subunit α to shut down
translation but also activates the ATF4-dependent transcription program (see below). Phosphorylated
IRE1α activates its own RNAase domain to catalyze the excision of 26 nucleotides of XBP1 mRNA,
thereby generating spliced XBP1 mRNA. This transcript is translated into the active XBP1 protein,
a multifunctional transcriptional regulator. ATF6α is a transcription factor that is processed into
its mature form (ATF6f) by Golgi-associated proteases upon relief from BIP/GRP78 interactions.
The released cytoplasmic part contains the basic-region leucine zipper (bZIP) transactivation domain.
The three branches of the UPR often act in concert but can also be activated sequentially and with
different strengths, allowing a multitude of outcomes spanning from the compensation of ER stress
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and the restoration of proteostasis to cell death as the ultimate effect [5]. As the mechanistic evidence
for a connection of ATF6α/ATF6f and XBP1s to NF-κB is scarce, in this review, we concentrate on the
crosstalk of PERK and IRE1αwith the NF-κB system.

4. Regulation of eIF2-Dependent Translation Initiation by Phosphorylation

During de novo protein synthesis, a central event in translation initiation involves the assembly
of a ternary complex composed of the multi subunit eIF2 complex loaded with both GTP and
the initiator Met-tRNA with the ribosome at the start codon [21,22]. During translation initiation,
eIF2-GTP is hydrolyzed, releasing eIF2-GDP from the ribosome. The recycling of eIF2-GDP to the
GTP-bound form requires the guanine nucleotide exchange factor, eIF2β. Phosphorylation of the
eIF2 subunit, eIF2α, by eIF2α kinases at ser51 converts the eIF2 initiation factor from a substrate to
an inhibitor of eIF2β. The resulting drop in eIF2-GTP levels then suppresses general translation [21].
Phosphorylation of eIF2α is mediated by one of the four kinases: (i) heme-regulated inhibitor kinase
(HRI, encoded by the gene EIF2AK1), (ii) RNA-activated protein kinase (PKR, encoded by the gene
EIF2AK2), (iii) PERK (encoded by the gene EIF2AK3) and (iv) general control non-derepressible-2
(GCN2, encoded by the gene EIF2AK4). Phosphorylation of eIF2α is reversed by inducible growth
arrest and DNA damage-inducible protein GADD34 (encoded by PPP1R15a) that targets protein
phosphatase 1 (PP1) to dephosphorylate and inactivate eIF2α. PP1 activity is also under control of
the constitutive repressor of eIF2α phosphorylation, CReP (encoded by PPP1R15b) [23–26]. The four
eIF2α kinases are typically activated by infection (double stranded RNA, PKR), amino acid starvation
(GCN2), heme-depletion (HRI) or by unfolded proteins in the ER (PERK). Despite their stimulus and
cell type selectivity, they cooperate to mediate the phosphorylation of eIF2α, and mouse embryonic
fibroblasts (Mefs) lacking PERK/GCN2/PKR have strongest reduction in phospho-eIF2α [27]. Notably,
the eIF2 phosphorylation/dephosphorylation cycle is often disrupted in cancer to further promote or
suppress translation, as comprehensively reviewed in [28].

5. Small Molecule Effectors as Prevailing Tools to Model ER Stress

A considerable number of reports addressing the mechanisms of ER stress have used
chemical compounds to induce the UPR, in particular tunicamycin, thapsigargin, dithiotreitol
(DTT), proteasome inhibitors and brefeldin A [6]. Tunicamycin inhibits ER-associated glycoprotein
synthesis [29,30], while thapsigargin, a sesquiterpene lactone isolated from the plant, Thapsia garganica
L., has long been known to potently inhibit the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) [31].
Thereby, thapsigargin depletes Ca2+ from the ER and is highly cytotoxic [32]. This has led to the testing
of thapsigargin as an anti-cancer agent [31]. Another UPR-inducing compound is DTT, a reducing
agent that disrupts disulfide bonds and thus, results in the accumulation of unfolded proteins [33].
In this review, we will specifically refer to mechanistic conclusions derived from such approaches
using chemical effectors that allow exact and reproducible control of the experimental conditions,
as opposed to alternative, more physiological settings

6. Evidence for Activation of the Canonical NF-κB Pathway through Phosphorylation of eIF2α

In 1995, using electrophoretic mobility shift assays (EMSA) which assess the in vitro DNA-binding
activity of NF-κB proteins in nuclear extracts, Pahl and Baeuerle discovered that thapsigargin
activates p65/p50 NF-κB subunits [34,35]. In 2003, Jiang et al. reported that this effect was
abolished in Mefs lacking PERK or expressing an eIF2α S51A mutant [36]. The same effect was
seen in thapsigargin-treated Mefs subjected to leucine starvation or exposed to UV light. In this
case, NF-κB activation was reduced in cells lacking GCN2, the eIF2α kinase that functions as
a sensor for amino acid starvation [36,37]. PERK was also shown to be required for activation
of a luciferase reporter gene driven by NF-κB binding sites, demonstrating that this pathway
increases NF-κB-dependent transcriptional activity in intact cells [36]. These authors did not observe
inducible phosphorylation of IκBα or its degradation in response to thapsigargin. Rather, they
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found evidence that thapsigargin favors the release of p65/p50 from cytosolic IκBα complexes, an
effect that was absent in Mefs expressing the eIF2α S51A mutant. The phospho-eIF2α-dependent
regulation of p65 by thapsigargin was confirmed by Deng and coworkers [38]. This group also
designed experiments to investigate the role of eIF2α phosphorylation independent from stress signals.
For this, they constructed a protein consisting of the cytoplasmic PERK kinase domain fused to a
protein module that allowed conditional tethering (or oligomerization) of the PERK domains by
a bivalent cell permeable compound. Indeed, the addition of the cross linker to stable cell lines
induced phosphorylation of eIF2α, and nuclear translocation of p65 and induction of its transcriptional
activity [38]. However, in marked contrast to Jiang et al., this was paralleled by partial degradation of
IκBα. The authors concluded that the PERK–phospho-eIF2α pathway inhibits the synthesis of IκBα but
does not affect the pre-existing protein, as revealed by pulse chase experiments that monitored de novo
protein synthesis [38]. Thus, while both studies showed that the ER stress pathway activates NF-κB,
they disagreed on the underlying cytosolic activation mechanism. In both of these studies, no evidence
for the phosphorylation of IκBα or for activation of IκB kinases (IKKs) was found. Additionally,
UV treatment reduces cellular IκBα protein levels, an effect that is absent in eIF2α S51A Mefs and
thus, critically requires eIF2α phosphorylation [39]. UV treatment globally shuts down translation
through the PERK–eIF2α pathway suggesting that this is the key mechanism for IκBα decay [40].
However, UV treatment was later shown to also induce degradation of IκBα through C-terminal
phosphorylation of the PEST domain by casein kinase II (CK2) providing an alternative explanation
for IκBα depletion [41]. To date, the paradigm of ER stress-mediated suppression of constitutive IκBα
protein synthesis is still suggested to be the prevailing mechanism of ER–NF-κB crosstalk and this
view has been emphasized in several reviews [13–15,42,43].

7. Regulation of IκBαHalf-Life: The Major Control Point Affected by ER Stress?

The regulation of IκB protein levels is key to NF-κB activation, as also shown by the early
observation that the inhibition of protein synthesis by cycloheximide (CHX) is sufficient for NF-κB
activation [44]. This raises the question of what is known about the half-life of IκBα in diverse
conditions and whether these observations match the conclusion that ER stress mainly activates NF-κB
indirectly by suppressing constitutive IκBα steady state levels. Amongst others, the IκBα protein (and
its related family members, IκBβ and IκBε) can be regarded as one of the most powerful and universal
negative regulators of NF-κB [45]. A plethora of infectious and inflammatory conditions, including
cytokines such as interleukin(IL)-1 or tumor necrosis factor(TNF)α trigger the active and rapid
destruction of IκBα by the well-characterized phosphorylation-dependent proteasomal degradation
pathway [46,47]. This allows NF-κB subunits to translocate to the nucleus and to induce transcription
of numerous target genes, including the NFKBIA gene that encodes IκBα [48]. The newly synthesized
IκBα sequesters NF-κB from promoters and enhancers, retaining it in the cytoplasm [49]. This major
negative feedback loop shuts down NF-κB transcriptional activation in multiple cell types [45,50,51].
However, with respect to the regulation of basal IκBα protein levels, several studies have reported
different half-lives in a number of cell types and suggested different ways in which this might be
regulated [52–55]. Mathes et al. provided one of the most comprehensive studies on the regulation
of basal IκBα levels. By studying genetically modified Mefs, they concluded that cells essentially
contain two pools of IκBα, a small fraction of free IκBα (around 15% of total) and IκBα bound to
NF-κB. The level of free IκBα is severely reduced in cells lacking the p105, c-REL and p65 (RELA)
subunits, showing that the NF-κB subunits are required for protein stabilization of IκBα. They may
also be required for basal transcription of the NFKBIA gene, an issue not addressed in this study.
The half-life of free IκBα ranges from 10 min to 20 min, whereas that of the NF-κB-bound IκBα
is more stable, ranging from 8 h to 10 h. Free IκBα is degraded by the proteasome through IKK-
and ubiquitination-independent events involving the C-terminal PEST domain [56]. Mathes and
coworkers also showed that the free IκBα degradation pathway allows for fast and maximal activation
of NF-κB, as cells expressing a degradation-resistant C-terminal IκBαmutant (∆C288) have a delayed
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and dampened TNFα-inducible NF-κB activation profile [56]. It follows that our understanding of the
true role of the PERK–eIF2α pathway in the regulation of the IκBα–NF-κB complex is still hampered
by a lack of data concerning a detailed analysis of the effects of ER stress on IκBα protein stability
and the stoichiometry of free versus bound IκBα in physiological and pathophysiological situations,
independent from highly toxic chemicals, such as thapsigargin.

8. Additional Levels of Cytosolic NF-κB Regulation by ER Stress

Emerging evidence has shown that ER stress also modulates (or requires) critical upstream
regulators of the NF-κB pathway. Thapsigargin or tunicamycin can also induce NF-κB through the
catalytic activity of the IRE1α kinase. In this case, IRE forms a complex with IκB kinase (IKK)β and
tumor necrosis factor receptor (TNFR)-associated factor (TRAF)2. In this model, thapsigargin-induced
cell death involves the strongly increased synthesis and secretion of TNFα which is blocked in
cells expressing a non-degradable IκBα mutant or in cells lacking IRE1α [57,58]. TRAF2 is an
ubiquitous adaptor protein of TNFα and toll-like receptor (TLR) pathways [59]. Another TLR adaptor
protein called toll-interleukin-1 receptor domain-containing adapter protein inducing interferon
β TRIF or TIR domain-containing adapter molecule 1 (TCAM-1) is essential for activation of the
lipopolysaccharide (LPS) target gene, IL-1β. Pretreatment of macrophages with thapsigargin or
tunicamycin strongly increases LPS-triggered synthesis, processing and release of mature IL-1β in a
TRIF-dependent manner [60]. However, when macrophages are pretreated with low doses of LPS,
TRIF specifically mediates the suppression of tunicamycin-induced CHOP and ATF4 expression [61,62].
These data reveal that complex positive or negative crosstalk loops between the UPR and NF-κB also
operate through secreted cytokines (TNFα, IL-1β) or TLR agonists (LPS) that are all well known
for strongly activating the canonical NF-κB pathway [63].The IRE1α-dependent mechanism seems
to cooperate with the PERK pathway for regulating NF-κB. DTT- or thapsigargin-induced NF-κB
activity (as determined by EMSA) does not depend on IKKα, but rather on IKKβ, as revealed by
the analysis of Mefs lacking IKKβ or IKKα/β or re-expressing a kinase-inactive mutant of IKKβ.
Thapsigargin-mediated IκBα decay is abrogated in cells reconstituted with an IκBα super repressor
mutant (SS32/36AA), suggesting that IκBα decay depends on IκBα phosphorylation. Puzzling though,
neither IκBα phosphorylation, nor IKK activity, were directly triggered by thapsigargin or DTT
through PERK. Rather, NF-κB activity and IκBα degradation were reduced in IRE1α-deficient cells.
The half-life of IκBα is around 5 h in wild type cells but IκBα is very stable in IRE1α -/- cells. Both,
reduced basal phosphorylation of IκBα and diminished NF-κB activity in IRE1α-deficient cells were
restored by IRE1α, but also by IKKβ (but not IKKα) [64]. These results suggest that basal IKK activity,
maintained by IRE1α, is critical for the activation of NF-κB when PERK-induced translation inhibition
(by thapsigargin) occurs. Tam et al. also showed that the extent of DTT- or thapsigargin-induced
activation of NF-κB correlates with the amount of IRE1 re-expressed in IRE1α-deficient cells. NF-κB
activity inversely correlates with CHX-mediated translational inhibition, showing a proportional
correlation with the level of NF-κB activation. Based on these genetic experiments, IRE1α-dependent
regulation of basal IKK activity is necessary for effective activation of NF-κB by PERK [64]. Such a
link may also operate in disease, as demonstrated in a model of dextran sulfate-induced colitis in
mice, where IKKα suppressed ER stress through the TNFR and nucleotide-binding oligomerization
domain-containing protein (NOD)1/2 receptor-mediated pathways. Mice expressing a non-activatable
IKKα mutant show increased IRE1α-dependent ER stress [65]. Thus, these data show that upon
chemical ER stress, the PERK and IRE1α branches of the UPR may, in fact, work in concert to modulate
the NF-κB pathway. However, it remains an open question how exactly IRE1α regulates basal or
inducible IKK activity and vice versa. In conclusion, multiple lines of evidence suggest that strong
activation of the canonical NF-κB pathway (by IL-1, TNFα, LPS) is accompanied by (moderate)
activation of the IRE1α and PERK branches of the UPR. The various levels of interplay between NF-κB
and the UPR are schematically displayed in Figure 1.
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Figure 1. Integration of unfolded protein response (UPR) and NF-κB signaling. (A) In the absence of 
signals, most cells have no or very low basal activity of the UPR and of the canonical NF-κB pathway. 
The protein kinases IRE1α and PERK are kept inactive by binding to the chaperone BIP/GRP78 
within the endoplasmic reticulum (ER) lumen. Most of the IκBα inhibitor is bound to NF-κB subunits 
retaining them in the cytoplasm. (B) Different classes of chemical stressors (tunicamcyin, 
thapsigargin or dithiotreitol (DTT)) increase the unfolded protein load in the ER causing massive 
auto-phosphorylation and activation of both IRE1α and PERK. IRE1α binds to the adapter protein 
TRAF2 and (indirectly) to the protein kinase IKKβ. PERK phosphorylates the eukaryotic translation 
initiation factor eIF2α causing translational shut-off for multiple proteins including the free unbound 
IκBα. Destruction of free IκBα also requires phosphorylation by IRE1α-associated IKKβ. (C) During 
infection, inflammation or cancer, strong activation of NF-κB by cytokines or toll-like receptor (TLR) 
agonists occurs in parallel to ER stress. In this case, the formation of specific signaling complexes at 

Figure 1. Integration of unfolded protein response (UPR) and NF-κB signaling. (A) In the absence of
signals, most cells have no or very low basal activity of the UPR and of the canonical NF-κB pathway.
The protein kinases IRE1α and PERK are kept inactive by binding to the chaperone BIP/GRP78
within the endoplasmic reticulum (ER) lumen. Most of the IκBα inhibitor is bound to NF-κB subunits
retaining them in the cytoplasm. (B) Different classes of chemical stressors (tunicamcyin, thapsigargin or
dithiotreitol (DTT)) increase the unfolded protein load in the ER causing massive auto-phosphorylation
and activation of both IRE1α and PERK. IRE1α binds to the adapter protein TRAF2 and (indirectly)
to the protein kinase IKKβ. PERK phosphorylates the eukaryotic translation initiation factor eIF2α
causing translational shut-off for multiple proteins including the free unbound IκBα. Destruction of
free IκBα also requires phosphorylation by IRE1α-associated IKKβ. (C) During infection, inflammation
or cancer, strong activation of NF-κB by cytokines or toll-like receptor (TLR) agonists occurs in parallel
to ER stress. In this case, the formation of specific signaling complexes at PERK and IRE1α sensors
by still putative “UPRosomes” is suggested to restrict maximal ER stress, thereby contributing to
context-specific gene activation or repression.
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9. Cross-Interference of ER Stress and NF-κB at the Level of Transcription Factors and
Gene Regulation

Arguably the most striking but least discussed aspect of ER stress interactions with the NF-κB
system involves the chromatin response within the nucleus. Early studies showed that thapsigargin
strongly induces the protein levels of the transcription factors ATF3 and ATF4 and CHOP (also
called growth arrest and DNA damage-inducible protein (GADD)153 or DNA damage-inducible
transcript 3 protein (DDIT3)). Besides transcriptional induction, this occurs by a unique mechanism
that allows preferential translation from downstream open reading frames (ORFs) of ATF4 or CHOP
(and also GADD34) [66–68]. ATF3 seems to be mainly regulated by transcriptional mechanisms
involving ATF4, CHOP and Jun family members [69,70]. ATFs belong to the bZIP family of TFs,
while CHOP is a member of the C/EBP family of TFs. Thapsigargin strongly induces the expression of
all three of them [27]. This effect is absent in PERK-deficient cells, while during amino acid starvation,
GCN2 is employed for their expression. Importantly, cells lacking ATF4 do not express ATF3 or
CHOP, whereas cells lacking ATF3 normally induce ATF4 and CHOP. ATF4 and ATF3 are also required
for the regulation of GADD34, thus forming a negative feedback loop for eIF2α phosphorylation.
These landmark studies defined the PERK/GCN2–ATF4–ATF3–CHOP pathway and clearly established
a hierarchy of the three TFs within this signaling cascade [27,71]. Upon amino acid starvation, ATF3 and
ATF4 bind to the amino acid response elements (AARE) of the ATF3 promoter and numerous metabolic
genes, such asparagine synthetase (ASNS), sodium-coupled neutral amino acid transporter-2 (SNAT2),
and the γ-glutamyl cyclotransferase (CHAC1) but also to the vascular endothelial growth factor
(VEGF) promoter [72–75]. Interestingly, some of the genes regulated by nutritional stress are well
known inflammatory NF-κB target genes, such as IL8 and CXCL2 [74,76–78]. Thus ATF4 and ATF3,
together with the NF-κB subunits, form a transcription factor network that coordinates metabolic gene
expression programs during nutritional and ER stress [79]. As nutritional and metabolic changes are
major hallmarks of cancer, these observations form a natural link between ER stress, the UPR and the
NF-κB system in malignant disease that warrants further investigation.

Less is known about the regulation of ER stress target genes by NF-κB subunits. In one report,
the thapsigargin-inducible expression of CHOP and ATF4 was unchanged in cells lacking p65 [36].
Expression of BIP/GRP78 upon thapsigargin treatment is normal in PERK-deficient cells suggesting
that this crucial ER chaperone is regulated independently from ATF3, ATF4 or CHOP [27]. Interestingly,
another observation from the study of Tam and coworkers is that thapsigargin-induced expression of
BIP/GRP78 is reduced in p65-deficient Mefs, and p65 binds to the BIP/GRP78 promoter, suggesting a
new direct link from NF-κB subunits to ER stress target genes [64].

The connection of ATF3/ATF4/CHOP to the NF-κB system also became apparent with the advent
of bioinformatics approaches and genome-wide assays correlating DNA-binding profiles (obtained by
chromatin immunoprecipitation sequencing (ChIP-seq)) with mRNA expression. In macrophages, a
combination of microarray analyses and motif searches resulted in the identification of ATF3 as an
early LPS-induced gene that bound in the proximity of p50 (REL) NF-κB sites. ChIP-qPCR confirmed
the binding of NF-κB and ATF3 to the IL6 and IL12b (IL12p40) promoters [80]. ATF3 is required
for the recruitment of HDAC1 and negative regulation of eleven LPS-target genes [80]. This was
confirmed by a systems biology approach showing that ATF3 attenuated LPS-induced IL6 as part of a
regulatory circuit that involves sequential activation and cooperative activity of NF-κB and C/EBPδ.
Depletion of ATF3 or C/EBPδ or pharmacological inhibition of NF-κB by the IKK inhibitor SC-514
disrupted the kinetics and amplitude of LPS-induced IL6 expression [81]. ATF3 was also identified as
a high-density lipoprotein-inducible repressor of TLR-induced proinflammatory cytokines. This first
ATF3 ChIP-seq study confirmed the inducible binding of ATF3 to the promoters of the IL6, IL12p40 and
TNFA genes [82]. ATF3 is also a type I interferon-inducible negative regulator of multiple interferon
response genes (ISGs) and binds to the IFNβ promoter [83]. These studies assigned a broad and largely
negative regulatory role to ATF3 in regulating the NF-κB response and provided links to immunity
and cancer (also reviewed in [84].
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Han et al. systematically identified the target genes of ATF4 and CHOP in response to
tunicamyin by a combination of ChIP-seq and RNA-seq approaches using ATF4 or CHOP-deficient
Mefs. They showed that ATF4 and CHOP co-occupy many genomic regions and identified around
3000 binding sites within the genome. This analysis also revealed several hundred common,
but also unique, target genes of both factors. Upregulated gene sets were clearly enriched for
ER stress target genes involved in protein folding, amino acid synthesis and protein transport,
while downregulated genes were involved in proliferation, wound healing, anti-apoptosis, and steroid
and lipid synthesis [85]. We interrogated this data set for factors that may represent the crosstalk of ER
stress with (NF-κB-dependent) immunoregulatory genes. Indeed, as illustrated by the selection shown
in Figure 2, tunicamycin also regulates multiple genes with annotated functions in immune responses
such as various cytokines and their receptors (e.g., Il23a, Il1a, Il6, Ifnar1, Il17ra, Il6ra), chemokines (Ccl2,
Ccl9), adhesion molecules (Icam1) and prostaglandin synthetases (Ptgs2, Cox-2). In many cases these
are suppressed in an ATF4- or CHOP-dependent manner, while Il23a is induced as previously reported
(Figure 2), [86,87].

The significant overlap in target genes of NF-κB and the UPR transcription factors, ATF4- and
CHOP, was also seen by the comparative analysis of gene expression sets visualized in Figure 3.
These data show ATF4- and CHOP-dependent regulation of 58 genes that have a documented role
in regulation of the NF-κB signaling pathway, including three IκBs, (IκBα, IκBe, IκBz). Data sets of
this kind, therefore, not only highlight how closely ER stress and the NF-κB response are intertwined,
they also provide a rich resource for further analyses of the exact mechanisms of crosstalk between
these two systems. In physiological settings, this crosstalk between ER stress transcription factors is not
necessarily always negative or repressive. For example, it was recently shown that ATF4 is a positive
regulator for LPS-induced Ccl2 expression in the endothelium and mediates leukocyte infiltration
within the retina, while ATF3 can support breast cancer metastasis [88,89]. Ccl2 is a prototypical
NF-κB target gene that also requires additional transcription factors from the c-Jun/Fos family for full
activation [90]. Likewise, all three canonical ER stress TFs, ATF4, ATF3 and CHOP, engage in multiple
further interactions with other TFs that also shape their influence on the NF-κB response, as reported
in several reviews [91,92]). More generally, the main ER stress TFs are likely always integrated into
large protein–protein interaction (PPI) networks and co-occupy their target genes, as shown recently
by large studies that combined multiple ChIP-seq and mass spectrometry profiling approaches [93,94].
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ER stress. Published RNA-seq data sets from wild type murine embryonic fibroblasts or cells deficient
in CHOP (CHOP-/-) or ATF4 (ATF4-/-) treated with tunicamycin (Tm) for 10 h or left untreated
were extracted from GEO (GSE35681). Data were filtered for genes regulated by at least two-fold.
The gene list is sorted by fold change compared to untreated wild type cells. Shown is a selection
of prototypical target genes of the UPR and of immune responses. Gray colored boxes indicate the
absence of expression.
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Figure 3. ATF4- or CHOP-dependent modulation of NF-κB regulators by chemical ER stress. The same
data sets described in Figure 2 (GSE35681) were filtered for mRNA expression of 262 genes with a
documented role in the regulation of NF-κB in diverse systems (as revealed by searching public data
bases). The left column shows their role in regulation of the canonical (core), non-canonical, or atypical
NF-κB pathways and some additional information on their established functions according to (Perkins,
2007). Two hundred and thirty-two of these factors were found to be expressed in all conditions.
The left heatmap summarizes 58 components (25% of all components) that were deregulated by at
least two-fold by tunicamycin (Tm) in wild type cells and the corresponding changes in CHOP- or
ATF4-deficient Mef cells. The right color map categorizes the effects of loss of CHOP or ATF on
basal and Tm-inducible expression of the NF-κB components based on log2 differences of more than
0.5. Gray colored boxes indicate the absence of expression. Abbreviations are as follows: ireceptors,
intracellular receptors; rpr, receptor-proximal component; Tbcell; NF-κB pathway components mainly
characterized in T- or B-lymphocytes.
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10. The Impact of Pharmacological Inhibition of PERK or IRE1α on NF-κB Function

As outlined above, much of the mechanistic knowledge on the ER stress–NF-κB relationship
has been derived from genetically altered mouse fibroblasts. Recently, fast acting pharmacological
compounds have become available, facilitating dissection of ER stress pathways in more complex
models. In 2012, a novel, small molecule, ATP-competitive PERK inhibitor (GSK2606414) was reported
to inhibit thapsigargin-induced PERK autophosphorylation in intact cells within the nM range.
This inhibitor is highly selective and only affected 20 out of 294 kinases tested by >85% at 10 µM and
suppressed tumor growth in a mouse xenograft model [95]. An optimized version of this compound
(GSK2656157) was 1000-fold more active on PERK against a panel of 300 kinases, including HRI,
PKR and GCN2 [96,97]. Again, this compound suppressed a range of human xenograft tumors and
inhibited PERK autophosphorylation, eIF2α phosphorylation and the induction of UPR target genes
in cell lines and tumors [96]. However, the inhibitor was also cytotoxic to the exocrine/endocrine
pancreas tissues in non-tumor controls consistent with the results from PERK-deficient mice and loss of
function PERK mutations in humans [98,99]. These and other data suggest tissue-specific functions of
PERK in the development and exocrine function of the pancreas that may also partly operate through
P-eIF2α independent effects [100]. The latter is supported by the observation that the PERK inhibitor
caused cell death in human HT1080 tumor cells engineered to express the eIF2α S51A mutant, thus
bypassing the P-eIF2α pathway [101]. Like for any protein kinase inhibitor, this may simply be the
result of off-target effects and indeed, there is a single study suggesting that both PERK inhibitors
also inhibit RIPK1 in the TNFα pathway [102]. However, recent studies have reported suppressive
effects of PERK inhibitors on prototypical NF-κB target genes in diverse models. Using transcriptome
analyses, Iwasaki et al. found that saturated fatty acids acting as proinflammatory factors induce
nuclear translocation of ATF4 and p65 in macrophages. As demonstrated by ChIP, both TFs are
co-recruited to the IL6 promoter and activate IL6 transcription. A functional interaction between p65
and ATF4 was found by reduced nuclear translocation and promoter binding of p65 in ATF4-deficient
cells [103]. Iwasaki et al. also showed that the expression of ATF4 was suppressed by the PERK
inhibitor, GSK2656157. These data confirm, in physiological settings, that ATF4 links various metabolic
stresses to the NF-κB chromatin response [103]. In a rat model of intervertebral disc degeneration,
silencing of PERK or ATF4 or application of GSK2606414 also suppressed inducible Il6 expression in
addition to Tnfa [104].

A further inhibitor acting on the PERK–eIF2α pathway is salubrinal. This compound suppressed
eIF2α dephosphorylation through the GADD34/PP1 and CReP/PP1 complexes [105]. Recently,
salubrinal was shown to inhibit TNFα (but not IL-1)-induced activation of NF-κB and the expression
of Ccl2/Mcp-1. This effect was not abrogated in cells with siRNA-mediated suppression of eIF2α,
suggesting that the salubrinal effect occurred through PP1, independent from eIF2α. In support of this,
the same effect was seen with guanabenz, another PP1 inhibitor [106].

Another newly developed inhibitor is based on the finding that oligomerization of the IRE1α
kinase domain controls the catalytic activity of the adjacent endoribonulease domain. Ghosh et al.
developed an optimized small molecule inhibitor called kinase-inhibiting RNase-attenuator (KIRA)6.
KIRAs disrupt IRE1α oligomerization thereby suppressing the RNase activities of IRE1α [107]. IRE1α
is often mutated in cancer and it will be interesting to learn if KIRA compounds also modulate NF-κB
activities in malignant diseases [9,107]. Consistent with the observations cited above, Keestra et al.
found that thapsigargin induces IL6 mRNA and protein levels through NOD1/NOD2 receptors—two
cytosolic sensors of bacterial peptidoglycans. Interestingly, IL-6 secretion was suppressed by KIRA6 but
not by GSK2656157 [108]. Together, these pharmacological approaches provide independent support
for a link between ER stress and NF-κB, although the underlying mechanisms and the specificity of
the effects require further investigation.
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11. Concluding Remarks and Open Questions

In this review we have summarized studies that connect the ER stress-mediated activation
of the UPR to activation of the NF-κB pathway. So far, the evidence has been mainly derived
from genetic experiments and chemical activators of ER stress, with a focus on cytosolic signaling
pathways. However, as schematically depicted in Figure 4 these two pathways can also be viewed as
a combinatorial system of ten transcription factors that cooperate to shape gene activation patterns
and protein folding capacities. In the future, it will be important to test the concept of specific
signaling complexes assembling at IRE1α and PERK during infection, inflammation and in malignant
processes. The idea of such “UPRosomes” is attractive as it provides ample opportunity to adapt the
extent and kinetics of UPR activation to the activity of other signaling pathways, such as NF-κB [5].
Another important area of research will be the systematic investigation of combined UPR and NF-κB
activation on transcriptional programs and chromatin structure in disease.
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Figure 4. Integration of UPR and NF-κB signaling at chromatin. Despite representing unique signaling
cascades, new data indicate that UPR and NF-κB pathways converge within the nucleus through ten
major transcription factors. The combinatorial occupancy of numerous genomic regions (enhancers
and promoters) coordinates the transcriptional activation or repression of hundreds of genes that
collectively determine the balance between metabolic and inflammatory phenotypes and the extent of
apoptosis and autophagy or repair of cell damage and survival.
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